2011-01-26 Kai Tietz <kai.tietz@onevision.com>
[binutils.git] / gas / config / tc-i386.c
blob0028f1769a034d1a44e80ea97a4753795760daa0
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 REP_PREFIX, LOCK_PREFIX. */
63 #define WAIT_PREFIX 0
64 #define SEG_PREFIX 1
65 #define ADDR_PREFIX 2
66 #define DATA_PREFIX 3
67 #define REP_PREFIX 4
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 /* Intel Syntax. Use a non-ascii letter since since it never appears
87 in instructions. */
88 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90 #define END_OF_INSN '\0'
93 'templates' is for grouping together 'template' structures for opcodes
94 of the same name. This is only used for storing the insns in the grand
95 ole hash table of insns.
96 The templates themselves start at START and range up to (but not including)
97 END.
99 typedef struct
101 const insn_template *start;
102 const insn_template *end;
104 templates;
106 /* 386 operand encoding bytes: see 386 book for details of this. */
107 typedef struct
109 unsigned int regmem; /* codes register or memory operand */
110 unsigned int reg; /* codes register operand (or extended opcode) */
111 unsigned int mode; /* how to interpret regmem & reg */
113 modrm_byte;
115 /* x86-64 extension prefix. */
116 typedef int rex_byte;
118 /* 386 opcode byte to code indirect addressing. */
119 typedef struct
121 unsigned base;
122 unsigned index;
123 unsigned scale;
125 sib_byte;
127 /* x86 arch names, types and features */
128 typedef struct
130 const char *name; /* arch name */
131 unsigned int len; /* arch string length */
132 enum processor_type type; /* arch type */
133 i386_cpu_flags flags; /* cpu feature flags */
134 unsigned int skip; /* show_arch should skip this. */
135 unsigned int negated; /* turn off indicated flags. */
137 arch_entry;
139 static void update_code_flag (int, int);
140 static void set_code_flag (int);
141 static void set_16bit_gcc_code_flag (int);
142 static void set_intel_syntax (int);
143 static void set_intel_mnemonic (int);
144 static void set_allow_index_reg (int);
145 static void set_sse_check (int);
146 static void set_cpu_arch (int);
147 #ifdef TE_PE
148 static void pe_directive_secrel (int);
149 #endif
150 static void signed_cons (int);
151 static char *output_invalid (int c);
152 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
153 const char *);
154 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
155 const char *);
156 static int i386_att_operand (char *);
157 static int i386_intel_operand (char *, int);
158 static int i386_intel_simplify (expressionS *);
159 static int i386_intel_parse_name (const char *, expressionS *);
160 static const reg_entry *parse_register (char *, char **);
161 static char *parse_insn (char *, char *);
162 static char *parse_operands (char *, const char *);
163 static void swap_operands (void);
164 static void swap_2_operands (int, int);
165 static void optimize_imm (void);
166 static void optimize_disp (void);
167 static const insn_template *match_template (void);
168 static int check_string (void);
169 static int process_suffix (void);
170 static int check_byte_reg (void);
171 static int check_long_reg (void);
172 static int check_qword_reg (void);
173 static int check_word_reg (void);
174 static int finalize_imm (void);
175 static int process_operands (void);
176 static const seg_entry *build_modrm_byte (void);
177 static void output_insn (void);
178 static void output_imm (fragS *, offsetT);
179 static void output_disp (fragS *, offsetT);
180 #ifndef I386COFF
181 static void s_bss (int);
182 #endif
183 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
184 static void handle_large_common (int small ATTRIBUTE_UNUSED);
185 #endif
187 static const char *default_arch = DEFAULT_ARCH;
189 /* VEX prefix. */
190 typedef struct
192 /* VEX prefix is either 2 byte or 3 byte. */
193 unsigned char bytes[3];
194 unsigned int length;
195 /* Destination or source register specifier. */
196 const reg_entry *register_specifier;
197 } vex_prefix;
199 /* 'md_assemble ()' gathers together information and puts it into a
200 i386_insn. */
202 union i386_op
204 expressionS *disps;
205 expressionS *imms;
206 const reg_entry *regs;
209 enum i386_error
211 operand_size_mismatch,
212 operand_type_mismatch,
213 register_type_mismatch,
214 number_of_operands_mismatch,
215 invalid_instruction_suffix,
216 bad_imm4,
217 old_gcc_only,
218 unsupported_with_intel_mnemonic,
219 unsupported_syntax,
220 unsupported
223 struct _i386_insn
225 /* TM holds the template for the insn were currently assembling. */
226 insn_template tm;
228 /* SUFFIX holds the instruction size suffix for byte, word, dword
229 or qword, if given. */
230 char suffix;
232 /* OPERANDS gives the number of given operands. */
233 unsigned int operands;
235 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
236 of given register, displacement, memory operands and immediate
237 operands. */
238 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
240 /* TYPES [i] is the type (see above #defines) which tells us how to
241 use OP[i] for the corresponding operand. */
242 i386_operand_type types[MAX_OPERANDS];
244 /* Displacement expression, immediate expression, or register for each
245 operand. */
246 union i386_op op[MAX_OPERANDS];
248 /* Flags for operands. */
249 unsigned int flags[MAX_OPERANDS];
250 #define Operand_PCrel 1
252 /* Relocation type for operand */
253 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
255 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
256 the base index byte below. */
257 const reg_entry *base_reg;
258 const reg_entry *index_reg;
259 unsigned int log2_scale_factor;
261 /* SEG gives the seg_entries of this insn. They are zero unless
262 explicit segment overrides are given. */
263 const seg_entry *seg[2];
265 /* PREFIX holds all the given prefix opcodes (usually null).
266 PREFIXES is the number of prefix opcodes. */
267 unsigned int prefixes;
268 unsigned char prefix[MAX_PREFIXES];
270 /* RM and SIB are the modrm byte and the sib byte where the
271 addressing modes of this insn are encoded. */
272 modrm_byte rm;
273 rex_byte rex;
274 sib_byte sib;
275 vex_prefix vex;
277 /* Swap operand in encoding. */
278 unsigned int swap_operand;
280 /* Force 32bit displacement in encoding. */
281 unsigned int disp32_encoding;
283 /* Error message. */
284 enum i386_error error;
287 typedef struct _i386_insn i386_insn;
289 /* List of chars besides those in app.c:symbol_chars that can start an
290 operand. Used to prevent the scrubber eating vital white-space. */
291 const char extra_symbol_chars[] = "*%-(["
292 #ifdef LEX_AT
294 #endif
295 #ifdef LEX_QM
297 #endif
300 #if (defined (TE_I386AIX) \
301 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
302 && !defined (TE_GNU) \
303 && !defined (TE_LINUX) \
304 && !defined (TE_NETWARE) \
305 && !defined (TE_FreeBSD) \
306 && !defined (TE_NetBSD)))
307 /* This array holds the chars that always start a comment. If the
308 pre-processor is disabled, these aren't very useful. The option
309 --divide will remove '/' from this list. */
310 const char *i386_comment_chars = "#/";
311 #define SVR4_COMMENT_CHARS 1
312 #define PREFIX_SEPARATOR '\\'
314 #else
315 const char *i386_comment_chars = "#";
316 #define PREFIX_SEPARATOR '/'
317 #endif
319 /* This array holds the chars that only start a comment at the beginning of
320 a line. If the line seems to have the form '# 123 filename'
321 .line and .file directives will appear in the pre-processed output.
322 Note that input_file.c hand checks for '#' at the beginning of the
323 first line of the input file. This is because the compiler outputs
324 #NO_APP at the beginning of its output.
325 Also note that comments started like this one will always work if
326 '/' isn't otherwise defined. */
327 const char line_comment_chars[] = "#/";
329 const char line_separator_chars[] = ";";
331 /* Chars that can be used to separate mant from exp in floating point
332 nums. */
333 const char EXP_CHARS[] = "eE";
335 /* Chars that mean this number is a floating point constant
336 As in 0f12.456
337 or 0d1.2345e12. */
338 const char FLT_CHARS[] = "fFdDxX";
340 /* Tables for lexical analysis. */
341 static char mnemonic_chars[256];
342 static char register_chars[256];
343 static char operand_chars[256];
344 static char identifier_chars[256];
345 static char digit_chars[256];
347 /* Lexical macros. */
348 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
349 #define is_operand_char(x) (operand_chars[(unsigned char) x])
350 #define is_register_char(x) (register_chars[(unsigned char) x])
351 #define is_space_char(x) ((x) == ' ')
352 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
353 #define is_digit_char(x) (digit_chars[(unsigned char) x])
355 /* All non-digit non-letter characters that may occur in an operand. */
356 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
358 /* md_assemble() always leaves the strings it's passed unaltered. To
359 effect this we maintain a stack of saved characters that we've smashed
360 with '\0's (indicating end of strings for various sub-fields of the
361 assembler instruction). */
362 static char save_stack[32];
363 static char *save_stack_p;
364 #define END_STRING_AND_SAVE(s) \
365 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
366 #define RESTORE_END_STRING(s) \
367 do { *(s) = *--save_stack_p; } while (0)
369 /* The instruction we're assembling. */
370 static i386_insn i;
372 /* Possible templates for current insn. */
373 static const templates *current_templates;
375 /* Per instruction expressionS buffers: max displacements & immediates. */
376 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
377 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
379 /* Current operand we are working on. */
380 static int this_operand = -1;
382 /* We support four different modes. FLAG_CODE variable is used to distinguish
383 these. */
385 enum flag_code {
386 CODE_32BIT,
387 CODE_16BIT,
388 CODE_64BIT };
390 static enum flag_code flag_code;
391 static unsigned int object_64bit;
392 static unsigned int disallow_64bit_reloc;
393 static int use_rela_relocations = 0;
395 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
396 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
397 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
399 /* The ELF ABI to use. */
400 enum x86_elf_abi
402 I386_ABI,
403 X86_64_ABI,
404 X86_64_X32_ABI
407 static enum x86_elf_abi x86_elf_abi = I386_ABI;
408 #endif
410 /* The names used to print error messages. */
411 static const char *flag_code_names[] =
413 "32",
414 "16",
415 "64"
418 /* 1 for intel syntax,
419 0 if att syntax. */
420 static int intel_syntax = 0;
422 /* 1 for intel mnemonic,
423 0 if att mnemonic. */
424 static int intel_mnemonic = !SYSV386_COMPAT;
426 /* 1 if support old (<= 2.8.1) versions of gcc. */
427 static int old_gcc = OLDGCC_COMPAT;
429 /* 1 if pseudo registers are permitted. */
430 static int allow_pseudo_reg = 0;
432 /* 1 if register prefix % not required. */
433 static int allow_naked_reg = 0;
435 /* 1 if pseudo index register, eiz/riz, is allowed . */
436 static int allow_index_reg = 0;
438 static enum
440 sse_check_none = 0,
441 sse_check_warning,
442 sse_check_error
444 sse_check;
446 /* Register prefix used for error message. */
447 static const char *register_prefix = "%";
449 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
450 leave, push, and pop instructions so that gcc has the same stack
451 frame as in 32 bit mode. */
452 static char stackop_size = '\0';
454 /* Non-zero to optimize code alignment. */
455 int optimize_align_code = 1;
457 /* Non-zero to quieten some warnings. */
458 static int quiet_warnings = 0;
460 /* CPU name. */
461 static const char *cpu_arch_name = NULL;
462 static char *cpu_sub_arch_name = NULL;
464 /* CPU feature flags. */
465 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
467 /* If we have selected a cpu we are generating instructions for. */
468 static int cpu_arch_tune_set = 0;
470 /* Cpu we are generating instructions for. */
471 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
473 /* CPU feature flags of cpu we are generating instructions for. */
474 static i386_cpu_flags cpu_arch_tune_flags;
476 /* CPU instruction set architecture used. */
477 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
479 /* CPU feature flags of instruction set architecture used. */
480 i386_cpu_flags cpu_arch_isa_flags;
482 /* If set, conditional jumps are not automatically promoted to handle
483 larger than a byte offset. */
484 static unsigned int no_cond_jump_promotion = 0;
486 /* Encode SSE instructions with VEX prefix. */
487 static unsigned int sse2avx;
489 /* Encode scalar AVX instructions with specific vector length. */
490 static enum
492 vex128 = 0,
493 vex256
494 } avxscalar;
496 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
497 static symbolS *GOT_symbol;
499 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
500 unsigned int x86_dwarf2_return_column;
502 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
503 int x86_cie_data_alignment;
505 /* Interface to relax_segment.
506 There are 3 major relax states for 386 jump insns because the
507 different types of jumps add different sizes to frags when we're
508 figuring out what sort of jump to choose to reach a given label. */
510 /* Types. */
511 #define UNCOND_JUMP 0
512 #define COND_JUMP 1
513 #define COND_JUMP86 2
515 /* Sizes. */
516 #define CODE16 1
517 #define SMALL 0
518 #define SMALL16 (SMALL | CODE16)
519 #define BIG 2
520 #define BIG16 (BIG | CODE16)
522 #ifndef INLINE
523 #ifdef __GNUC__
524 #define INLINE __inline__
525 #else
526 #define INLINE
527 #endif
528 #endif
530 #define ENCODE_RELAX_STATE(type, size) \
531 ((relax_substateT) (((type) << 2) | (size)))
532 #define TYPE_FROM_RELAX_STATE(s) \
533 ((s) >> 2)
534 #define DISP_SIZE_FROM_RELAX_STATE(s) \
535 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
537 /* This table is used by relax_frag to promote short jumps to long
538 ones where necessary. SMALL (short) jumps may be promoted to BIG
539 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
540 don't allow a short jump in a 32 bit code segment to be promoted to
541 a 16 bit offset jump because it's slower (requires data size
542 prefix), and doesn't work, unless the destination is in the bottom
543 64k of the code segment (The top 16 bits of eip are zeroed). */
545 const relax_typeS md_relax_table[] =
547 /* The fields are:
548 1) most positive reach of this state,
549 2) most negative reach of this state,
550 3) how many bytes this mode will have in the variable part of the frag
551 4) which index into the table to try if we can't fit into this one. */
553 /* UNCOND_JUMP states. */
554 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
555 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
556 /* dword jmp adds 4 bytes to frag:
557 0 extra opcode bytes, 4 displacement bytes. */
558 {0, 0, 4, 0},
559 /* word jmp adds 2 byte2 to frag:
560 0 extra opcode bytes, 2 displacement bytes. */
561 {0, 0, 2, 0},
563 /* COND_JUMP states. */
564 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
565 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
566 /* dword conditionals adds 5 bytes to frag:
567 1 extra opcode byte, 4 displacement bytes. */
568 {0, 0, 5, 0},
569 /* word conditionals add 3 bytes to frag:
570 1 extra opcode byte, 2 displacement bytes. */
571 {0, 0, 3, 0},
573 /* COND_JUMP86 states. */
574 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
575 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
576 /* dword conditionals adds 5 bytes to frag:
577 1 extra opcode byte, 4 displacement bytes. */
578 {0, 0, 5, 0},
579 /* word conditionals add 4 bytes to frag:
580 1 displacement byte and a 3 byte long branch insn. */
581 {0, 0, 4, 0}
584 static const arch_entry cpu_arch[] =
586 /* Do not replace the first two entries - i386_target_format()
587 relies on them being there in this order. */
588 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
589 CPU_GENERIC32_FLAGS, 0, 0 },
590 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
591 CPU_GENERIC64_FLAGS, 0, 0 },
592 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
593 CPU_NONE_FLAGS, 0, 0 },
594 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
595 CPU_I186_FLAGS, 0, 0 },
596 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
597 CPU_I286_FLAGS, 0, 0 },
598 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
599 CPU_I386_FLAGS, 0, 0 },
600 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
601 CPU_I486_FLAGS, 0, 0 },
602 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
603 CPU_I586_FLAGS, 0, 0 },
604 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
605 CPU_I686_FLAGS, 0, 0 },
606 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
607 CPU_I586_FLAGS, 0, 0 },
608 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
609 CPU_PENTIUMPRO_FLAGS, 0, 0 },
610 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
611 CPU_P2_FLAGS, 0, 0 },
612 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
613 CPU_P3_FLAGS, 0, 0 },
614 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
615 CPU_P4_FLAGS, 0, 0 },
616 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
617 CPU_CORE_FLAGS, 0, 0 },
618 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
619 CPU_NOCONA_FLAGS, 0, 0 },
620 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
621 CPU_CORE_FLAGS, 1, 0 },
622 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
623 CPU_CORE_FLAGS, 0, 0 },
624 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
625 CPU_CORE2_FLAGS, 1, 0 },
626 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
627 CPU_CORE2_FLAGS, 0, 0 },
628 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
629 CPU_COREI7_FLAGS, 0, 0 },
630 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
631 CPU_L1OM_FLAGS, 0, 0 },
632 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
633 CPU_K6_FLAGS, 0, 0 },
634 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
635 CPU_K6_2_FLAGS, 0, 0 },
636 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
637 CPU_ATHLON_FLAGS, 0, 0 },
638 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
639 CPU_K8_FLAGS, 1, 0 },
640 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
641 CPU_K8_FLAGS, 0, 0 },
642 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
643 CPU_K8_FLAGS, 0, 0 },
644 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
645 CPU_AMDFAM10_FLAGS, 0, 0 },
646 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BDVER1,
647 CPU_BDVER1_FLAGS, 0, 0 },
648 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
649 CPU_8087_FLAGS, 0, 0 },
650 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
651 CPU_287_FLAGS, 0, 0 },
652 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
653 CPU_387_FLAGS, 0, 0 },
654 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
655 CPU_ANY87_FLAGS, 0, 1 },
656 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
657 CPU_MMX_FLAGS, 0, 0 },
658 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
659 CPU_3DNOWA_FLAGS, 0, 1 },
660 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
661 CPU_SSE_FLAGS, 0, 0 },
662 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
663 CPU_SSE2_FLAGS, 0, 0 },
664 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
665 CPU_SSE3_FLAGS, 0, 0 },
666 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
667 CPU_SSSE3_FLAGS, 0, 0 },
668 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
669 CPU_SSE4_1_FLAGS, 0, 0 },
670 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
671 CPU_SSE4_2_FLAGS, 0, 0 },
672 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
673 CPU_SSE4_2_FLAGS, 0, 0 },
674 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
675 CPU_ANY_SSE_FLAGS, 0, 1 },
676 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
677 CPU_AVX_FLAGS, 0, 0 },
678 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
679 CPU_ANY_AVX_FLAGS, 0, 1 },
680 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
681 CPU_VMX_FLAGS, 0, 0 },
682 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
683 CPU_SMX_FLAGS, 0, 0 },
684 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
685 CPU_XSAVE_FLAGS, 0, 0 },
686 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
687 CPU_XSAVEOPT_FLAGS, 0, 0 },
688 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
689 CPU_AES_FLAGS, 0, 0 },
690 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
691 CPU_PCLMUL_FLAGS, 0, 0 },
692 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
693 CPU_PCLMUL_FLAGS, 1, 0 },
694 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
695 CPU_FSGSBASE_FLAGS, 0, 0 },
696 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
697 CPU_RDRND_FLAGS, 0, 0 },
698 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
699 CPU_F16C_FLAGS, 0, 0 },
700 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
701 CPU_FMA_FLAGS, 0, 0 },
702 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
703 CPU_FMA4_FLAGS, 0, 0 },
704 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
705 CPU_XOP_FLAGS, 0, 0 },
706 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
707 CPU_LWP_FLAGS, 0, 0 },
708 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
709 CPU_MOVBE_FLAGS, 0, 0 },
710 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
711 CPU_EPT_FLAGS, 0, 0 },
712 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
713 CPU_CLFLUSH_FLAGS, 0, 0 },
714 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
715 CPU_NOP_FLAGS, 0, 0 },
716 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
717 CPU_SYSCALL_FLAGS, 0, 0 },
718 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
719 CPU_RDTSCP_FLAGS, 0, 0 },
720 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
721 CPU_3DNOW_FLAGS, 0, 0 },
722 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
723 CPU_3DNOWA_FLAGS, 0, 0 },
724 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
725 CPU_PADLOCK_FLAGS, 0, 0 },
726 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
727 CPU_SVME_FLAGS, 1, 0 },
728 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
729 CPU_SVME_FLAGS, 0, 0 },
730 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
731 CPU_SSE4A_FLAGS, 0, 0 },
732 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
733 CPU_ABM_FLAGS, 0, 0 },
734 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
735 CPU_BMI_FLAGS, 0, 0 },
736 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
737 CPU_TBM_FLAGS, 0, 0 },
740 #ifdef I386COFF
741 /* Like s_lcomm_internal in gas/read.c but the alignment string
742 is allowed to be optional. */
744 static symbolS *
745 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
747 addressT align = 0;
749 SKIP_WHITESPACE ();
751 if (needs_align
752 && *input_line_pointer == ',')
754 align = parse_align (needs_align - 1);
756 if (align == (addressT) -1)
757 return NULL;
759 else
761 if (size >= 8)
762 align = 3;
763 else if (size >= 4)
764 align = 2;
765 else if (size >= 2)
766 align = 1;
767 else
768 align = 0;
771 bss_alloc (symbolP, size, align);
772 return symbolP;
775 static void
776 pe_lcomm (int needs_align)
778 s_comm_internal (needs_align * 2, pe_lcomm_internal);
780 #endif
782 const pseudo_typeS md_pseudo_table[] =
784 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
785 {"align", s_align_bytes, 0},
786 #else
787 {"align", s_align_ptwo, 0},
788 #endif
789 {"arch", set_cpu_arch, 0},
790 #ifndef I386COFF
791 {"bss", s_bss, 0},
792 #else
793 {"lcomm", pe_lcomm, 1},
794 #endif
795 {"ffloat", float_cons, 'f'},
796 {"dfloat", float_cons, 'd'},
797 {"tfloat", float_cons, 'x'},
798 {"value", cons, 2},
799 {"slong", signed_cons, 4},
800 {"noopt", s_ignore, 0},
801 {"optim", s_ignore, 0},
802 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
803 {"code16", set_code_flag, CODE_16BIT},
804 {"code32", set_code_flag, CODE_32BIT},
805 {"code64", set_code_flag, CODE_64BIT},
806 {"intel_syntax", set_intel_syntax, 1},
807 {"att_syntax", set_intel_syntax, 0},
808 {"intel_mnemonic", set_intel_mnemonic, 1},
809 {"att_mnemonic", set_intel_mnemonic, 0},
810 {"allow_index_reg", set_allow_index_reg, 1},
811 {"disallow_index_reg", set_allow_index_reg, 0},
812 {"sse_check", set_sse_check, 0},
813 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
814 {"largecomm", handle_large_common, 0},
815 #else
816 {"file", (void (*) (int)) dwarf2_directive_file, 0},
817 {"loc", dwarf2_directive_loc, 0},
818 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
819 #endif
820 #ifdef TE_PE
821 {"secrel32", pe_directive_secrel, 0},
822 #endif
823 {0, 0, 0}
826 /* For interface with expression (). */
827 extern char *input_line_pointer;
829 /* Hash table for instruction mnemonic lookup. */
830 static struct hash_control *op_hash;
832 /* Hash table for register lookup. */
833 static struct hash_control *reg_hash;
835 void
836 i386_align_code (fragS *fragP, int count)
838 /* Various efficient no-op patterns for aligning code labels.
839 Note: Don't try to assemble the instructions in the comments.
840 0L and 0w are not legal. */
841 static const char f32_1[] =
842 {0x90}; /* nop */
843 static const char f32_2[] =
844 {0x66,0x90}; /* xchg %ax,%ax */
845 static const char f32_3[] =
846 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
847 static const char f32_4[] =
848 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
849 static const char f32_5[] =
850 {0x90, /* nop */
851 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
852 static const char f32_6[] =
853 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
854 static const char f32_7[] =
855 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
856 static const char f32_8[] =
857 {0x90, /* nop */
858 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
859 static const char f32_9[] =
860 {0x89,0xf6, /* movl %esi,%esi */
861 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
862 static const char f32_10[] =
863 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
864 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
865 static const char f32_11[] =
866 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
867 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
868 static const char f32_12[] =
869 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
870 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
871 static const char f32_13[] =
872 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
873 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
874 static const char f32_14[] =
875 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
876 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
877 static const char f16_3[] =
878 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
879 static const char f16_4[] =
880 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
881 static const char f16_5[] =
882 {0x90, /* nop */
883 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
884 static const char f16_6[] =
885 {0x89,0xf6, /* mov %si,%si */
886 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
887 static const char f16_7[] =
888 {0x8d,0x74,0x00, /* lea 0(%si),%si */
889 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
890 static const char f16_8[] =
891 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
892 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
893 static const char jump_31[] =
894 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
895 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
896 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
897 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
898 static const char *const f32_patt[] = {
899 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
900 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
902 static const char *const f16_patt[] = {
903 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
905 /* nopl (%[re]ax) */
906 static const char alt_3[] =
907 {0x0f,0x1f,0x00};
908 /* nopl 0(%[re]ax) */
909 static const char alt_4[] =
910 {0x0f,0x1f,0x40,0x00};
911 /* nopl 0(%[re]ax,%[re]ax,1) */
912 static const char alt_5[] =
913 {0x0f,0x1f,0x44,0x00,0x00};
914 /* nopw 0(%[re]ax,%[re]ax,1) */
915 static const char alt_6[] =
916 {0x66,0x0f,0x1f,0x44,0x00,0x00};
917 /* nopl 0L(%[re]ax) */
918 static const char alt_7[] =
919 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
920 /* nopl 0L(%[re]ax,%[re]ax,1) */
921 static const char alt_8[] =
922 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
923 /* nopw 0L(%[re]ax,%[re]ax,1) */
924 static const char alt_9[] =
925 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
926 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
927 static const char alt_10[] =
928 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
929 /* data16
930 nopw %cs:0L(%[re]ax,%[re]ax,1) */
931 static const char alt_long_11[] =
932 {0x66,
933 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
934 /* data16
935 data16
936 nopw %cs:0L(%[re]ax,%[re]ax,1) */
937 static const char alt_long_12[] =
938 {0x66,
939 0x66,
940 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
941 /* data16
942 data16
943 data16
944 nopw %cs:0L(%[re]ax,%[re]ax,1) */
945 static const char alt_long_13[] =
946 {0x66,
947 0x66,
948 0x66,
949 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
950 /* data16
951 data16
952 data16
953 data16
954 nopw %cs:0L(%[re]ax,%[re]ax,1) */
955 static const char alt_long_14[] =
956 {0x66,
957 0x66,
958 0x66,
959 0x66,
960 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
961 /* data16
962 data16
963 data16
964 data16
965 data16
966 nopw %cs:0L(%[re]ax,%[re]ax,1) */
967 static const char alt_long_15[] =
968 {0x66,
969 0x66,
970 0x66,
971 0x66,
972 0x66,
973 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
974 /* nopl 0(%[re]ax,%[re]ax,1)
975 nopw 0(%[re]ax,%[re]ax,1) */
976 static const char alt_short_11[] =
977 {0x0f,0x1f,0x44,0x00,0x00,
978 0x66,0x0f,0x1f,0x44,0x00,0x00};
979 /* nopw 0(%[re]ax,%[re]ax,1)
980 nopw 0(%[re]ax,%[re]ax,1) */
981 static const char alt_short_12[] =
982 {0x66,0x0f,0x1f,0x44,0x00,0x00,
983 0x66,0x0f,0x1f,0x44,0x00,0x00};
984 /* nopw 0(%[re]ax,%[re]ax,1)
985 nopl 0L(%[re]ax) */
986 static const char alt_short_13[] =
987 {0x66,0x0f,0x1f,0x44,0x00,0x00,
988 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
989 /* nopl 0L(%[re]ax)
990 nopl 0L(%[re]ax) */
991 static const char alt_short_14[] =
992 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
993 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
994 /* nopl 0L(%[re]ax)
995 nopl 0L(%[re]ax,%[re]ax,1) */
996 static const char alt_short_15[] =
997 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
998 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
999 static const char *const alt_short_patt[] = {
1000 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1001 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1002 alt_short_14, alt_short_15
1004 static const char *const alt_long_patt[] = {
1005 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1006 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1007 alt_long_14, alt_long_15
1010 /* Only align for at least a positive non-zero boundary. */
1011 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1012 return;
1014 /* We need to decide which NOP sequence to use for 32bit and
1015 64bit. When -mtune= is used:
1017 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1018 PROCESSOR_GENERIC32, f32_patt will be used.
1019 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1020 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1021 PROCESSOR_GENERIC64, alt_long_patt will be used.
1022 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1023 PROCESSOR_AMDFAM10, and PROCESSOR_BDVER1, alt_short_patt
1024 will be used.
1026 When -mtune= isn't used, alt_long_patt will be used if
1027 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1028 be used.
1030 When -march= or .arch is used, we can't use anything beyond
1031 cpu_arch_isa_flags. */
1033 if (flag_code == CODE_16BIT)
1035 if (count > 8)
1037 memcpy (fragP->fr_literal + fragP->fr_fix,
1038 jump_31, count);
1039 /* Adjust jump offset. */
1040 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1042 else
1043 memcpy (fragP->fr_literal + fragP->fr_fix,
1044 f16_patt[count - 1], count);
1046 else
1048 const char *const *patt = NULL;
1050 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1052 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1053 switch (cpu_arch_tune)
1055 case PROCESSOR_UNKNOWN:
1056 /* We use cpu_arch_isa_flags to check if we SHOULD
1057 optimize with nops. */
1058 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1059 patt = alt_long_patt;
1060 else
1061 patt = f32_patt;
1062 break;
1063 case PROCESSOR_PENTIUMPRO:
1064 case PROCESSOR_PENTIUM4:
1065 case PROCESSOR_NOCONA:
1066 case PROCESSOR_CORE:
1067 case PROCESSOR_CORE2:
1068 case PROCESSOR_COREI7:
1069 case PROCESSOR_L1OM:
1070 case PROCESSOR_GENERIC64:
1071 patt = alt_long_patt;
1072 break;
1073 case PROCESSOR_K6:
1074 case PROCESSOR_ATHLON:
1075 case PROCESSOR_K8:
1076 case PROCESSOR_AMDFAM10:
1077 case PROCESSOR_BDVER1:
1078 patt = alt_short_patt;
1079 break;
1080 case PROCESSOR_I386:
1081 case PROCESSOR_I486:
1082 case PROCESSOR_PENTIUM:
1083 case PROCESSOR_GENERIC32:
1084 patt = f32_patt;
1085 break;
1088 else
1090 switch (fragP->tc_frag_data.tune)
1092 case PROCESSOR_UNKNOWN:
1093 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1094 PROCESSOR_UNKNOWN. */
1095 abort ();
1096 break;
1098 case PROCESSOR_I386:
1099 case PROCESSOR_I486:
1100 case PROCESSOR_PENTIUM:
1101 case PROCESSOR_K6:
1102 case PROCESSOR_ATHLON:
1103 case PROCESSOR_K8:
1104 case PROCESSOR_AMDFAM10:
1105 case PROCESSOR_BDVER1:
1106 case PROCESSOR_GENERIC32:
1107 /* We use cpu_arch_isa_flags to check if we CAN optimize
1108 with nops. */
1109 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1110 patt = alt_short_patt;
1111 else
1112 patt = f32_patt;
1113 break;
1114 case PROCESSOR_PENTIUMPRO:
1115 case PROCESSOR_PENTIUM4:
1116 case PROCESSOR_NOCONA:
1117 case PROCESSOR_CORE:
1118 case PROCESSOR_CORE2:
1119 case PROCESSOR_COREI7:
1120 case PROCESSOR_L1OM:
1121 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1122 patt = alt_long_patt;
1123 else
1124 patt = f32_patt;
1125 break;
1126 case PROCESSOR_GENERIC64:
1127 patt = alt_long_patt;
1128 break;
1132 if (patt == f32_patt)
1134 /* If the padding is less than 15 bytes, we use the normal
1135 ones. Otherwise, we use a jump instruction and adjust
1136 its offset. */
1137 int limit;
1139 /* For 64bit, the limit is 3 bytes. */
1140 if (flag_code == CODE_64BIT
1141 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1142 limit = 3;
1143 else
1144 limit = 15;
1145 if (count < limit)
1146 memcpy (fragP->fr_literal + fragP->fr_fix,
1147 patt[count - 1], count);
1148 else
1150 memcpy (fragP->fr_literal + fragP->fr_fix,
1151 jump_31, count);
1152 /* Adjust jump offset. */
1153 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1156 else
1158 /* Maximum length of an instruction is 15 byte. If the
1159 padding is greater than 15 bytes and we don't use jump,
1160 we have to break it into smaller pieces. */
1161 int padding = count;
1162 while (padding > 15)
1164 padding -= 15;
1165 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1166 patt [14], 15);
1169 if (padding)
1170 memcpy (fragP->fr_literal + fragP->fr_fix,
1171 patt [padding - 1], padding);
1174 fragP->fr_var = count;
1177 static INLINE int
1178 operand_type_all_zero (const union i386_operand_type *x)
1180 switch (ARRAY_SIZE(x->array))
1182 case 3:
1183 if (x->array[2])
1184 return 0;
1185 case 2:
1186 if (x->array[1])
1187 return 0;
1188 case 1:
1189 return !x->array[0];
1190 default:
1191 abort ();
1195 static INLINE void
1196 operand_type_set (union i386_operand_type *x, unsigned int v)
1198 switch (ARRAY_SIZE(x->array))
1200 case 3:
1201 x->array[2] = v;
1202 case 2:
1203 x->array[1] = v;
1204 case 1:
1205 x->array[0] = v;
1206 break;
1207 default:
1208 abort ();
1212 static INLINE int
1213 operand_type_equal (const union i386_operand_type *x,
1214 const union i386_operand_type *y)
1216 switch (ARRAY_SIZE(x->array))
1218 case 3:
1219 if (x->array[2] != y->array[2])
1220 return 0;
1221 case 2:
1222 if (x->array[1] != y->array[1])
1223 return 0;
1224 case 1:
1225 return x->array[0] == y->array[0];
1226 break;
1227 default:
1228 abort ();
1232 static INLINE int
1233 cpu_flags_all_zero (const union i386_cpu_flags *x)
1235 switch (ARRAY_SIZE(x->array))
1237 case 3:
1238 if (x->array[2])
1239 return 0;
1240 case 2:
1241 if (x->array[1])
1242 return 0;
1243 case 1:
1244 return !x->array[0];
1245 default:
1246 abort ();
1250 static INLINE void
1251 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1253 switch (ARRAY_SIZE(x->array))
1255 case 3:
1256 x->array[2] = v;
1257 case 2:
1258 x->array[1] = v;
1259 case 1:
1260 x->array[0] = v;
1261 break;
1262 default:
1263 abort ();
1267 static INLINE int
1268 cpu_flags_equal (const union i386_cpu_flags *x,
1269 const union i386_cpu_flags *y)
1271 switch (ARRAY_SIZE(x->array))
1273 case 3:
1274 if (x->array[2] != y->array[2])
1275 return 0;
1276 case 2:
1277 if (x->array[1] != y->array[1])
1278 return 0;
1279 case 1:
1280 return x->array[0] == y->array[0];
1281 break;
1282 default:
1283 abort ();
1287 static INLINE int
1288 cpu_flags_check_cpu64 (i386_cpu_flags f)
1290 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1291 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1294 static INLINE i386_cpu_flags
1295 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1297 switch (ARRAY_SIZE (x.array))
1299 case 3:
1300 x.array [2] &= y.array [2];
1301 case 2:
1302 x.array [1] &= y.array [1];
1303 case 1:
1304 x.array [0] &= y.array [0];
1305 break;
1306 default:
1307 abort ();
1309 return x;
1312 static INLINE i386_cpu_flags
1313 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1315 switch (ARRAY_SIZE (x.array))
1317 case 3:
1318 x.array [2] |= y.array [2];
1319 case 2:
1320 x.array [1] |= y.array [1];
1321 case 1:
1322 x.array [0] |= y.array [0];
1323 break;
1324 default:
1325 abort ();
1327 return x;
1330 static INLINE i386_cpu_flags
1331 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1333 switch (ARRAY_SIZE (x.array))
1335 case 3:
1336 x.array [2] &= ~y.array [2];
1337 case 2:
1338 x.array [1] &= ~y.array [1];
1339 case 1:
1340 x.array [0] &= ~y.array [0];
1341 break;
1342 default:
1343 abort ();
1345 return x;
1348 #define CPU_FLAGS_ARCH_MATCH 0x1
1349 #define CPU_FLAGS_64BIT_MATCH 0x2
1350 #define CPU_FLAGS_AES_MATCH 0x4
1351 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1352 #define CPU_FLAGS_AVX_MATCH 0x10
1354 #define CPU_FLAGS_32BIT_MATCH \
1355 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1356 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1357 #define CPU_FLAGS_PERFECT_MATCH \
1358 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1360 /* Return CPU flags match bits. */
1362 static int
1363 cpu_flags_match (const insn_template *t)
1365 i386_cpu_flags x = t->cpu_flags;
1366 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1368 x.bitfield.cpu64 = 0;
1369 x.bitfield.cpuno64 = 0;
1371 if (cpu_flags_all_zero (&x))
1373 /* This instruction is available on all archs. */
1374 match |= CPU_FLAGS_32BIT_MATCH;
1376 else
1378 /* This instruction is available only on some archs. */
1379 i386_cpu_flags cpu = cpu_arch_flags;
1381 cpu.bitfield.cpu64 = 0;
1382 cpu.bitfield.cpuno64 = 0;
1383 cpu = cpu_flags_and (x, cpu);
1384 if (!cpu_flags_all_zero (&cpu))
1386 if (x.bitfield.cpuavx)
1388 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1389 if (cpu.bitfield.cpuavx)
1391 /* Check SSE2AVX. */
1392 if (!t->opcode_modifier.sse2avx|| sse2avx)
1394 match |= (CPU_FLAGS_ARCH_MATCH
1395 | CPU_FLAGS_AVX_MATCH);
1396 /* Check AES. */
1397 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1398 match |= CPU_FLAGS_AES_MATCH;
1399 /* Check PCLMUL. */
1400 if (!x.bitfield.cpupclmul
1401 || cpu.bitfield.cpupclmul)
1402 match |= CPU_FLAGS_PCLMUL_MATCH;
1405 else
1406 match |= CPU_FLAGS_ARCH_MATCH;
1408 else
1409 match |= CPU_FLAGS_32BIT_MATCH;
1412 return match;
1415 static INLINE i386_operand_type
1416 operand_type_and (i386_operand_type x, i386_operand_type y)
1418 switch (ARRAY_SIZE (x.array))
1420 case 3:
1421 x.array [2] &= y.array [2];
1422 case 2:
1423 x.array [1] &= y.array [1];
1424 case 1:
1425 x.array [0] &= y.array [0];
1426 break;
1427 default:
1428 abort ();
1430 return x;
1433 static INLINE i386_operand_type
1434 operand_type_or (i386_operand_type x, i386_operand_type y)
1436 switch (ARRAY_SIZE (x.array))
1438 case 3:
1439 x.array [2] |= y.array [2];
1440 case 2:
1441 x.array [1] |= y.array [1];
1442 case 1:
1443 x.array [0] |= y.array [0];
1444 break;
1445 default:
1446 abort ();
1448 return x;
1451 static INLINE i386_operand_type
1452 operand_type_xor (i386_operand_type x, i386_operand_type y)
1454 switch (ARRAY_SIZE (x.array))
1456 case 3:
1457 x.array [2] ^= y.array [2];
1458 case 2:
1459 x.array [1] ^= y.array [1];
1460 case 1:
1461 x.array [0] ^= y.array [0];
1462 break;
1463 default:
1464 abort ();
1466 return x;
1469 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1470 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1471 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1472 static const i386_operand_type inoutportreg
1473 = OPERAND_TYPE_INOUTPORTREG;
1474 static const i386_operand_type reg16_inoutportreg
1475 = OPERAND_TYPE_REG16_INOUTPORTREG;
1476 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1477 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1478 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1479 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1480 static const i386_operand_type anydisp
1481 = OPERAND_TYPE_ANYDISP;
1482 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1483 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1484 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1485 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1486 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1487 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1488 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1489 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1490 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1491 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1492 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1493 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1495 enum operand_type
1497 reg,
1498 imm,
1499 disp,
1500 anymem
1503 static INLINE int
1504 operand_type_check (i386_operand_type t, enum operand_type c)
1506 switch (c)
1508 case reg:
1509 return (t.bitfield.reg8
1510 || t.bitfield.reg16
1511 || t.bitfield.reg32
1512 || t.bitfield.reg64);
1514 case imm:
1515 return (t.bitfield.imm8
1516 || t.bitfield.imm8s
1517 || t.bitfield.imm16
1518 || t.bitfield.imm32
1519 || t.bitfield.imm32s
1520 || t.bitfield.imm64);
1522 case disp:
1523 return (t.bitfield.disp8
1524 || t.bitfield.disp16
1525 || t.bitfield.disp32
1526 || t.bitfield.disp32s
1527 || t.bitfield.disp64);
1529 case anymem:
1530 return (t.bitfield.disp8
1531 || t.bitfield.disp16
1532 || t.bitfield.disp32
1533 || t.bitfield.disp32s
1534 || t.bitfield.disp64
1535 || t.bitfield.baseindex);
1537 default:
1538 abort ();
1541 return 0;
1544 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1545 operand J for instruction template T. */
1547 static INLINE int
1548 match_reg_size (const insn_template *t, unsigned int j)
1550 return !((i.types[j].bitfield.byte
1551 && !t->operand_types[j].bitfield.byte)
1552 || (i.types[j].bitfield.word
1553 && !t->operand_types[j].bitfield.word)
1554 || (i.types[j].bitfield.dword
1555 && !t->operand_types[j].bitfield.dword)
1556 || (i.types[j].bitfield.qword
1557 && !t->operand_types[j].bitfield.qword));
1560 /* Return 1 if there is no conflict in any size on operand J for
1561 instruction template T. */
1563 static INLINE int
1564 match_mem_size (const insn_template *t, unsigned int j)
1566 return (match_reg_size (t, j)
1567 && !((i.types[j].bitfield.unspecified
1568 && !t->operand_types[j].bitfield.unspecified)
1569 || (i.types[j].bitfield.fword
1570 && !t->operand_types[j].bitfield.fword)
1571 || (i.types[j].bitfield.tbyte
1572 && !t->operand_types[j].bitfield.tbyte)
1573 || (i.types[j].bitfield.xmmword
1574 && !t->operand_types[j].bitfield.xmmword)
1575 || (i.types[j].bitfield.ymmword
1576 && !t->operand_types[j].bitfield.ymmword)));
1579 /* Return 1 if there is no size conflict on any operands for
1580 instruction template T. */
1582 static INLINE int
1583 operand_size_match (const insn_template *t)
1585 unsigned int j;
1586 int match = 1;
1588 /* Don't check jump instructions. */
1589 if (t->opcode_modifier.jump
1590 || t->opcode_modifier.jumpbyte
1591 || t->opcode_modifier.jumpdword
1592 || t->opcode_modifier.jumpintersegment)
1593 return match;
1595 /* Check memory and accumulator operand size. */
1596 for (j = 0; j < i.operands; j++)
1598 if (t->operand_types[j].bitfield.anysize)
1599 continue;
1601 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1603 match = 0;
1604 break;
1607 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1609 match = 0;
1610 break;
1614 if (match)
1615 return match;
1616 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1618 mismatch:
1619 i.error = operand_size_mismatch;
1620 return 0;
1623 /* Check reverse. */
1624 gas_assert (i.operands == 2);
1626 match = 1;
1627 for (j = 0; j < 2; j++)
1629 if (t->operand_types[j].bitfield.acc
1630 && !match_reg_size (t, j ? 0 : 1))
1631 goto mismatch;
1633 if (i.types[j].bitfield.mem
1634 && !match_mem_size (t, j ? 0 : 1))
1635 goto mismatch;
1638 return match;
1641 static INLINE int
1642 operand_type_match (i386_operand_type overlap,
1643 i386_operand_type given)
1645 i386_operand_type temp = overlap;
1647 temp.bitfield.jumpabsolute = 0;
1648 temp.bitfield.unspecified = 0;
1649 temp.bitfield.byte = 0;
1650 temp.bitfield.word = 0;
1651 temp.bitfield.dword = 0;
1652 temp.bitfield.fword = 0;
1653 temp.bitfield.qword = 0;
1654 temp.bitfield.tbyte = 0;
1655 temp.bitfield.xmmword = 0;
1656 temp.bitfield.ymmword = 0;
1657 if (operand_type_all_zero (&temp))
1658 goto mismatch;
1660 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1661 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1662 return 1;
1664 mismatch:
1665 i.error = operand_type_mismatch;
1666 return 0;
1669 /* If given types g0 and g1 are registers they must be of the same type
1670 unless the expected operand type register overlap is null.
1671 Note that Acc in a template matches every size of reg. */
1673 static INLINE int
1674 operand_type_register_match (i386_operand_type m0,
1675 i386_operand_type g0,
1676 i386_operand_type t0,
1677 i386_operand_type m1,
1678 i386_operand_type g1,
1679 i386_operand_type t1)
1681 if (!operand_type_check (g0, reg))
1682 return 1;
1684 if (!operand_type_check (g1, reg))
1685 return 1;
1687 if (g0.bitfield.reg8 == g1.bitfield.reg8
1688 && g0.bitfield.reg16 == g1.bitfield.reg16
1689 && g0.bitfield.reg32 == g1.bitfield.reg32
1690 && g0.bitfield.reg64 == g1.bitfield.reg64)
1691 return 1;
1693 if (m0.bitfield.acc)
1695 t0.bitfield.reg8 = 1;
1696 t0.bitfield.reg16 = 1;
1697 t0.bitfield.reg32 = 1;
1698 t0.bitfield.reg64 = 1;
1701 if (m1.bitfield.acc)
1703 t1.bitfield.reg8 = 1;
1704 t1.bitfield.reg16 = 1;
1705 t1.bitfield.reg32 = 1;
1706 t1.bitfield.reg64 = 1;
1709 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1710 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1711 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1712 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1713 return 1;
1715 i.error = register_type_mismatch;
1717 return 0;
1720 static INLINE unsigned int
1721 mode_from_disp_size (i386_operand_type t)
1723 if (t.bitfield.disp8)
1724 return 1;
1725 else if (t.bitfield.disp16
1726 || t.bitfield.disp32
1727 || t.bitfield.disp32s)
1728 return 2;
1729 else
1730 return 0;
1733 static INLINE int
1734 fits_in_signed_byte (offsetT num)
1736 return (num >= -128) && (num <= 127);
1739 static INLINE int
1740 fits_in_unsigned_byte (offsetT num)
1742 return (num & 0xff) == num;
1745 static INLINE int
1746 fits_in_unsigned_word (offsetT num)
1748 return (num & 0xffff) == num;
1751 static INLINE int
1752 fits_in_signed_word (offsetT num)
1754 return (-32768 <= num) && (num <= 32767);
1757 static INLINE int
1758 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1760 #ifndef BFD64
1761 return 1;
1762 #else
1763 return (!(((offsetT) -1 << 31) & num)
1764 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1765 #endif
1766 } /* fits_in_signed_long() */
1768 static INLINE int
1769 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1771 #ifndef BFD64
1772 return 1;
1773 #else
1774 return (num & (((offsetT) 2 << 31) - 1)) == num;
1775 #endif
1776 } /* fits_in_unsigned_long() */
1778 static INLINE int
1779 fits_in_imm4 (offsetT num)
1781 return (num & 0xf) == num;
1784 static i386_operand_type
1785 smallest_imm_type (offsetT num)
1787 i386_operand_type t;
1789 operand_type_set (&t, 0);
1790 t.bitfield.imm64 = 1;
1792 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1794 /* This code is disabled on the 486 because all the Imm1 forms
1795 in the opcode table are slower on the i486. They're the
1796 versions with the implicitly specified single-position
1797 displacement, which has another syntax if you really want to
1798 use that form. */
1799 t.bitfield.imm1 = 1;
1800 t.bitfield.imm8 = 1;
1801 t.bitfield.imm8s = 1;
1802 t.bitfield.imm16 = 1;
1803 t.bitfield.imm32 = 1;
1804 t.bitfield.imm32s = 1;
1806 else if (fits_in_signed_byte (num))
1808 t.bitfield.imm8 = 1;
1809 t.bitfield.imm8s = 1;
1810 t.bitfield.imm16 = 1;
1811 t.bitfield.imm32 = 1;
1812 t.bitfield.imm32s = 1;
1814 else if (fits_in_unsigned_byte (num))
1816 t.bitfield.imm8 = 1;
1817 t.bitfield.imm16 = 1;
1818 t.bitfield.imm32 = 1;
1819 t.bitfield.imm32s = 1;
1821 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1823 t.bitfield.imm16 = 1;
1824 t.bitfield.imm32 = 1;
1825 t.bitfield.imm32s = 1;
1827 else if (fits_in_signed_long (num))
1829 t.bitfield.imm32 = 1;
1830 t.bitfield.imm32s = 1;
1832 else if (fits_in_unsigned_long (num))
1833 t.bitfield.imm32 = 1;
1835 return t;
1838 static offsetT
1839 offset_in_range (offsetT val, int size)
1841 addressT mask;
1843 switch (size)
1845 case 1: mask = ((addressT) 1 << 8) - 1; break;
1846 case 2: mask = ((addressT) 1 << 16) - 1; break;
1847 case 4: mask = ((addressT) 2 << 31) - 1; break;
1848 #ifdef BFD64
1849 case 8: mask = ((addressT) 2 << 63) - 1; break;
1850 #endif
1851 default: abort ();
1854 #ifdef BFD64
1855 /* If BFD64, sign extend val for 32bit address mode. */
1856 if (flag_code != CODE_64BIT
1857 || i.prefix[ADDR_PREFIX])
1858 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1859 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1860 #endif
1862 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1864 char buf1[40], buf2[40];
1866 sprint_value (buf1, val);
1867 sprint_value (buf2, val & mask);
1868 as_warn (_("%s shortened to %s"), buf1, buf2);
1870 return val & mask;
1873 enum PREFIX_GROUP
1875 PREFIX_EXIST = 0,
1876 PREFIX_LOCK,
1877 PREFIX_REP,
1878 PREFIX_OTHER
1881 /* Returns
1882 a. PREFIX_EXIST if attempting to add a prefix where one from the
1883 same class already exists.
1884 b. PREFIX_LOCK if lock prefix is added.
1885 c. PREFIX_REP if rep/repne prefix is added.
1886 d. PREFIX_OTHER if other prefix is added.
1889 static enum PREFIX_GROUP
1890 add_prefix (unsigned int prefix)
1892 enum PREFIX_GROUP ret = PREFIX_OTHER;
1893 unsigned int q;
1895 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1896 && flag_code == CODE_64BIT)
1898 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1899 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1900 && (prefix & (REX_R | REX_X | REX_B))))
1901 ret = PREFIX_EXIST;
1902 q = REX_PREFIX;
1904 else
1906 switch (prefix)
1908 default:
1909 abort ();
1911 case CS_PREFIX_OPCODE:
1912 case DS_PREFIX_OPCODE:
1913 case ES_PREFIX_OPCODE:
1914 case FS_PREFIX_OPCODE:
1915 case GS_PREFIX_OPCODE:
1916 case SS_PREFIX_OPCODE:
1917 q = SEG_PREFIX;
1918 break;
1920 case REPNE_PREFIX_OPCODE:
1921 case REPE_PREFIX_OPCODE:
1922 q = REP_PREFIX;
1923 ret = PREFIX_REP;
1924 break;
1926 case LOCK_PREFIX_OPCODE:
1927 q = LOCK_PREFIX;
1928 ret = PREFIX_LOCK;
1929 break;
1931 case FWAIT_OPCODE:
1932 q = WAIT_PREFIX;
1933 break;
1935 case ADDR_PREFIX_OPCODE:
1936 q = ADDR_PREFIX;
1937 break;
1939 case DATA_PREFIX_OPCODE:
1940 q = DATA_PREFIX;
1941 break;
1943 if (i.prefix[q] != 0)
1944 ret = PREFIX_EXIST;
1947 if (ret)
1949 if (!i.prefix[q])
1950 ++i.prefixes;
1951 i.prefix[q] |= prefix;
1953 else
1954 as_bad (_("same type of prefix used twice"));
1956 return ret;
1959 static void
1960 update_code_flag (int value, int check)
1962 PRINTF_LIKE ((*as_error));
1964 flag_code = (enum flag_code) value;
1965 if (flag_code == CODE_64BIT)
1967 cpu_arch_flags.bitfield.cpu64 = 1;
1968 cpu_arch_flags.bitfield.cpuno64 = 0;
1970 else
1972 cpu_arch_flags.bitfield.cpu64 = 0;
1973 cpu_arch_flags.bitfield.cpuno64 = 1;
1975 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1977 if (check)
1978 as_error = as_fatal;
1979 else
1980 as_error = as_bad;
1981 (*as_error) (_("64bit mode not supported on `%s'."),
1982 cpu_arch_name ? cpu_arch_name : default_arch);
1984 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1986 if (check)
1987 as_error = as_fatal;
1988 else
1989 as_error = as_bad;
1990 (*as_error) (_("32bit mode not supported on `%s'."),
1991 cpu_arch_name ? cpu_arch_name : default_arch);
1993 stackop_size = '\0';
1996 static void
1997 set_code_flag (int value)
1999 update_code_flag (value, 0);
2002 static void
2003 set_16bit_gcc_code_flag (int new_code_flag)
2005 flag_code = (enum flag_code) new_code_flag;
2006 if (flag_code != CODE_16BIT)
2007 abort ();
2008 cpu_arch_flags.bitfield.cpu64 = 0;
2009 cpu_arch_flags.bitfield.cpuno64 = 1;
2010 stackop_size = LONG_MNEM_SUFFIX;
2013 static void
2014 set_intel_syntax (int syntax_flag)
2016 /* Find out if register prefixing is specified. */
2017 int ask_naked_reg = 0;
2019 SKIP_WHITESPACE ();
2020 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2022 char *string = input_line_pointer;
2023 int e = get_symbol_end ();
2025 if (strcmp (string, "prefix") == 0)
2026 ask_naked_reg = 1;
2027 else if (strcmp (string, "noprefix") == 0)
2028 ask_naked_reg = -1;
2029 else
2030 as_bad (_("bad argument to syntax directive."));
2031 *input_line_pointer = e;
2033 demand_empty_rest_of_line ();
2035 intel_syntax = syntax_flag;
2037 if (ask_naked_reg == 0)
2038 allow_naked_reg = (intel_syntax
2039 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2040 else
2041 allow_naked_reg = (ask_naked_reg < 0);
2043 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2045 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2046 identifier_chars['$'] = intel_syntax ? '$' : 0;
2047 register_prefix = allow_naked_reg ? "" : "%";
2050 static void
2051 set_intel_mnemonic (int mnemonic_flag)
2053 intel_mnemonic = mnemonic_flag;
2056 static void
2057 set_allow_index_reg (int flag)
2059 allow_index_reg = flag;
2062 static void
2063 set_sse_check (int dummy ATTRIBUTE_UNUSED)
2065 SKIP_WHITESPACE ();
2067 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2069 char *string = input_line_pointer;
2070 int e = get_symbol_end ();
2072 if (strcmp (string, "none") == 0)
2073 sse_check = sse_check_none;
2074 else if (strcmp (string, "warning") == 0)
2075 sse_check = sse_check_warning;
2076 else if (strcmp (string, "error") == 0)
2077 sse_check = sse_check_error;
2078 else
2079 as_bad (_("bad argument to sse_check directive."));
2080 *input_line_pointer = e;
2082 else
2083 as_bad (_("missing argument for sse_check directive"));
2085 demand_empty_rest_of_line ();
2088 static void
2089 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2090 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2092 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2093 static const char *arch;
2095 /* Intel LIOM is only supported on ELF. */
2096 if (!IS_ELF)
2097 return;
2099 if (!arch)
2101 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2102 use default_arch. */
2103 arch = cpu_arch_name;
2104 if (!arch)
2105 arch = default_arch;
2108 /* If we are targeting Intel L1OM, we must enable it. */
2109 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2110 || new_flag.bitfield.cpul1om)
2111 return;
2113 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2114 #endif
2117 static void
2118 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2120 SKIP_WHITESPACE ();
2122 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2124 char *string = input_line_pointer;
2125 int e = get_symbol_end ();
2126 unsigned int j;
2127 i386_cpu_flags flags;
2129 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2131 if (strcmp (string, cpu_arch[j].name) == 0)
2133 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2135 if (*string != '.')
2137 cpu_arch_name = cpu_arch[j].name;
2138 cpu_sub_arch_name = NULL;
2139 cpu_arch_flags = cpu_arch[j].flags;
2140 if (flag_code == CODE_64BIT)
2142 cpu_arch_flags.bitfield.cpu64 = 1;
2143 cpu_arch_flags.bitfield.cpuno64 = 0;
2145 else
2147 cpu_arch_flags.bitfield.cpu64 = 0;
2148 cpu_arch_flags.bitfield.cpuno64 = 1;
2150 cpu_arch_isa = cpu_arch[j].type;
2151 cpu_arch_isa_flags = cpu_arch[j].flags;
2152 if (!cpu_arch_tune_set)
2154 cpu_arch_tune = cpu_arch_isa;
2155 cpu_arch_tune_flags = cpu_arch_isa_flags;
2157 break;
2160 if (!cpu_arch[j].negated)
2161 flags = cpu_flags_or (cpu_arch_flags,
2162 cpu_arch[j].flags);
2163 else
2164 flags = cpu_flags_and_not (cpu_arch_flags,
2165 cpu_arch[j].flags);
2166 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2168 if (cpu_sub_arch_name)
2170 char *name = cpu_sub_arch_name;
2171 cpu_sub_arch_name = concat (name,
2172 cpu_arch[j].name,
2173 (const char *) NULL);
2174 free (name);
2176 else
2177 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2178 cpu_arch_flags = flags;
2180 *input_line_pointer = e;
2181 demand_empty_rest_of_line ();
2182 return;
2185 if (j >= ARRAY_SIZE (cpu_arch))
2186 as_bad (_("no such architecture: `%s'"), string);
2188 *input_line_pointer = e;
2190 else
2191 as_bad (_("missing cpu architecture"));
2193 no_cond_jump_promotion = 0;
2194 if (*input_line_pointer == ','
2195 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2197 char *string = ++input_line_pointer;
2198 int e = get_symbol_end ();
2200 if (strcmp (string, "nojumps") == 0)
2201 no_cond_jump_promotion = 1;
2202 else if (strcmp (string, "jumps") == 0)
2204 else
2205 as_bad (_("no such architecture modifier: `%s'"), string);
2207 *input_line_pointer = e;
2210 demand_empty_rest_of_line ();
2213 enum bfd_architecture
2214 i386_arch (void)
2216 if (cpu_arch_isa == PROCESSOR_L1OM)
2218 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2219 || flag_code != CODE_64BIT)
2220 as_fatal (_("Intel L1OM is 64bit ELF only"));
2221 return bfd_arch_l1om;
2223 else
2224 return bfd_arch_i386;
2227 unsigned long
2228 i386_mach ()
2230 if (!strncmp (default_arch, "x86_64", 6))
2232 if (cpu_arch_isa == PROCESSOR_L1OM)
2234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2235 || default_arch[6] != '\0')
2236 as_fatal (_("Intel L1OM is 64bit ELF only"));
2237 return bfd_mach_l1om;
2239 else if (default_arch[6] == '\0')
2240 return bfd_mach_x86_64;
2241 else
2242 return bfd_mach_x64_32;
2244 else if (!strcmp (default_arch, "i386"))
2245 return bfd_mach_i386_i386;
2246 else
2247 as_fatal (_("Unknown architecture"));
2250 void
2251 md_begin ()
2253 const char *hash_err;
2255 /* Initialize op_hash hash table. */
2256 op_hash = hash_new ();
2259 const insn_template *optab;
2260 templates *core_optab;
2262 /* Setup for loop. */
2263 optab = i386_optab;
2264 core_optab = (templates *) xmalloc (sizeof (templates));
2265 core_optab->start = optab;
2267 while (1)
2269 ++optab;
2270 if (optab->name == NULL
2271 || strcmp (optab->name, (optab - 1)->name) != 0)
2273 /* different name --> ship out current template list;
2274 add to hash table; & begin anew. */
2275 core_optab->end = optab;
2276 hash_err = hash_insert (op_hash,
2277 (optab - 1)->name,
2278 (void *) core_optab);
2279 if (hash_err)
2281 as_fatal (_("Internal Error: Can't hash %s: %s"),
2282 (optab - 1)->name,
2283 hash_err);
2285 if (optab->name == NULL)
2286 break;
2287 core_optab = (templates *) xmalloc (sizeof (templates));
2288 core_optab->start = optab;
2293 /* Initialize reg_hash hash table. */
2294 reg_hash = hash_new ();
2296 const reg_entry *regtab;
2297 unsigned int regtab_size = i386_regtab_size;
2299 for (regtab = i386_regtab; regtab_size--; regtab++)
2301 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2302 if (hash_err)
2303 as_fatal (_("Internal Error: Can't hash %s: %s"),
2304 regtab->reg_name,
2305 hash_err);
2309 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2311 int c;
2312 char *p;
2314 for (c = 0; c < 256; c++)
2316 if (ISDIGIT (c))
2318 digit_chars[c] = c;
2319 mnemonic_chars[c] = c;
2320 register_chars[c] = c;
2321 operand_chars[c] = c;
2323 else if (ISLOWER (c))
2325 mnemonic_chars[c] = c;
2326 register_chars[c] = c;
2327 operand_chars[c] = c;
2329 else if (ISUPPER (c))
2331 mnemonic_chars[c] = TOLOWER (c);
2332 register_chars[c] = mnemonic_chars[c];
2333 operand_chars[c] = c;
2336 if (ISALPHA (c) || ISDIGIT (c))
2337 identifier_chars[c] = c;
2338 else if (c >= 128)
2340 identifier_chars[c] = c;
2341 operand_chars[c] = c;
2345 #ifdef LEX_AT
2346 identifier_chars['@'] = '@';
2347 #endif
2348 #ifdef LEX_QM
2349 identifier_chars['?'] = '?';
2350 operand_chars['?'] = '?';
2351 #endif
2352 digit_chars['-'] = '-';
2353 mnemonic_chars['_'] = '_';
2354 mnemonic_chars['-'] = '-';
2355 mnemonic_chars['.'] = '.';
2356 identifier_chars['_'] = '_';
2357 identifier_chars['.'] = '.';
2359 for (p = operand_special_chars; *p != '\0'; p++)
2360 operand_chars[(unsigned char) *p] = *p;
2363 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2364 if (IS_ELF)
2366 record_alignment (text_section, 2);
2367 record_alignment (data_section, 2);
2368 record_alignment (bss_section, 2);
2370 #endif
2372 if (flag_code == CODE_64BIT)
2374 #if defined (OBJ_COFF) && defined (TE_PE)
2375 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2376 ? 32 : 16);
2377 #else
2378 x86_dwarf2_return_column = 16;
2379 #endif
2380 x86_cie_data_alignment = -8;
2382 else
2384 x86_dwarf2_return_column = 8;
2385 x86_cie_data_alignment = -4;
2389 void
2390 i386_print_statistics (FILE *file)
2392 hash_print_statistics (file, "i386 opcode", op_hash);
2393 hash_print_statistics (file, "i386 register", reg_hash);
2396 #ifdef DEBUG386
2398 /* Debugging routines for md_assemble. */
2399 static void pte (insn_template *);
2400 static void pt (i386_operand_type);
2401 static void pe (expressionS *);
2402 static void ps (symbolS *);
2404 static void
2405 pi (char *line, i386_insn *x)
2407 unsigned int j;
2409 fprintf (stdout, "%s: template ", line);
2410 pte (&x->tm);
2411 fprintf (stdout, " address: base %s index %s scale %x\n",
2412 x->base_reg ? x->base_reg->reg_name : "none",
2413 x->index_reg ? x->index_reg->reg_name : "none",
2414 x->log2_scale_factor);
2415 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2416 x->rm.mode, x->rm.reg, x->rm.regmem);
2417 fprintf (stdout, " sib: base %x index %x scale %x\n",
2418 x->sib.base, x->sib.index, x->sib.scale);
2419 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2420 (x->rex & REX_W) != 0,
2421 (x->rex & REX_R) != 0,
2422 (x->rex & REX_X) != 0,
2423 (x->rex & REX_B) != 0);
2424 for (j = 0; j < x->operands; j++)
2426 fprintf (stdout, " #%d: ", j + 1);
2427 pt (x->types[j]);
2428 fprintf (stdout, "\n");
2429 if (x->types[j].bitfield.reg8
2430 || x->types[j].bitfield.reg16
2431 || x->types[j].bitfield.reg32
2432 || x->types[j].bitfield.reg64
2433 || x->types[j].bitfield.regmmx
2434 || x->types[j].bitfield.regxmm
2435 || x->types[j].bitfield.regymm
2436 || x->types[j].bitfield.sreg2
2437 || x->types[j].bitfield.sreg3
2438 || x->types[j].bitfield.control
2439 || x->types[j].bitfield.debug
2440 || x->types[j].bitfield.test)
2441 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2442 if (operand_type_check (x->types[j], imm))
2443 pe (x->op[j].imms);
2444 if (operand_type_check (x->types[j], disp))
2445 pe (x->op[j].disps);
2449 static void
2450 pte (insn_template *t)
2452 unsigned int j;
2453 fprintf (stdout, " %d operands ", t->operands);
2454 fprintf (stdout, "opcode %x ", t->base_opcode);
2455 if (t->extension_opcode != None)
2456 fprintf (stdout, "ext %x ", t->extension_opcode);
2457 if (t->opcode_modifier.d)
2458 fprintf (stdout, "D");
2459 if (t->opcode_modifier.w)
2460 fprintf (stdout, "W");
2461 fprintf (stdout, "\n");
2462 for (j = 0; j < t->operands; j++)
2464 fprintf (stdout, " #%d type ", j + 1);
2465 pt (t->operand_types[j]);
2466 fprintf (stdout, "\n");
2470 static void
2471 pe (expressionS *e)
2473 fprintf (stdout, " operation %d\n", e->X_op);
2474 fprintf (stdout, " add_number %ld (%lx)\n",
2475 (long) e->X_add_number, (long) e->X_add_number);
2476 if (e->X_add_symbol)
2478 fprintf (stdout, " add_symbol ");
2479 ps (e->X_add_symbol);
2480 fprintf (stdout, "\n");
2482 if (e->X_op_symbol)
2484 fprintf (stdout, " op_symbol ");
2485 ps (e->X_op_symbol);
2486 fprintf (stdout, "\n");
2490 static void
2491 ps (symbolS *s)
2493 fprintf (stdout, "%s type %s%s",
2494 S_GET_NAME (s),
2495 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2496 segment_name (S_GET_SEGMENT (s)));
2499 static struct type_name
2501 i386_operand_type mask;
2502 const char *name;
2504 const type_names[] =
2506 { OPERAND_TYPE_REG8, "r8" },
2507 { OPERAND_TYPE_REG16, "r16" },
2508 { OPERAND_TYPE_REG32, "r32" },
2509 { OPERAND_TYPE_REG64, "r64" },
2510 { OPERAND_TYPE_IMM8, "i8" },
2511 { OPERAND_TYPE_IMM8, "i8s" },
2512 { OPERAND_TYPE_IMM16, "i16" },
2513 { OPERAND_TYPE_IMM32, "i32" },
2514 { OPERAND_TYPE_IMM32S, "i32s" },
2515 { OPERAND_TYPE_IMM64, "i64" },
2516 { OPERAND_TYPE_IMM1, "i1" },
2517 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2518 { OPERAND_TYPE_DISP8, "d8" },
2519 { OPERAND_TYPE_DISP16, "d16" },
2520 { OPERAND_TYPE_DISP32, "d32" },
2521 { OPERAND_TYPE_DISP32S, "d32s" },
2522 { OPERAND_TYPE_DISP64, "d64" },
2523 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2524 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2525 { OPERAND_TYPE_CONTROL, "control reg" },
2526 { OPERAND_TYPE_TEST, "test reg" },
2527 { OPERAND_TYPE_DEBUG, "debug reg" },
2528 { OPERAND_TYPE_FLOATREG, "FReg" },
2529 { OPERAND_TYPE_FLOATACC, "FAcc" },
2530 { OPERAND_TYPE_SREG2, "SReg2" },
2531 { OPERAND_TYPE_SREG3, "SReg3" },
2532 { OPERAND_TYPE_ACC, "Acc" },
2533 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2534 { OPERAND_TYPE_REGMMX, "rMMX" },
2535 { OPERAND_TYPE_REGXMM, "rXMM" },
2536 { OPERAND_TYPE_REGYMM, "rYMM" },
2537 { OPERAND_TYPE_ESSEG, "es" },
2540 static void
2541 pt (i386_operand_type t)
2543 unsigned int j;
2544 i386_operand_type a;
2546 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2548 a = operand_type_and (t, type_names[j].mask);
2549 if (!operand_type_all_zero (&a))
2550 fprintf (stdout, "%s, ", type_names[j].name);
2552 fflush (stdout);
2555 #endif /* DEBUG386 */
2557 static bfd_reloc_code_real_type
2558 reloc (unsigned int size,
2559 int pcrel,
2560 int sign,
2561 bfd_reloc_code_real_type other)
2563 if (other != NO_RELOC)
2565 reloc_howto_type *rel;
2567 if (size == 8)
2568 switch (other)
2570 case BFD_RELOC_X86_64_GOT32:
2571 return BFD_RELOC_X86_64_GOT64;
2572 break;
2573 case BFD_RELOC_X86_64_PLTOFF64:
2574 return BFD_RELOC_X86_64_PLTOFF64;
2575 break;
2576 case BFD_RELOC_X86_64_GOTPC32:
2577 other = BFD_RELOC_X86_64_GOTPC64;
2578 break;
2579 case BFD_RELOC_X86_64_GOTPCREL:
2580 other = BFD_RELOC_X86_64_GOTPCREL64;
2581 break;
2582 case BFD_RELOC_X86_64_TPOFF32:
2583 other = BFD_RELOC_X86_64_TPOFF64;
2584 break;
2585 case BFD_RELOC_X86_64_DTPOFF32:
2586 other = BFD_RELOC_X86_64_DTPOFF64;
2587 break;
2588 default:
2589 break;
2592 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2593 if (size == 4 && flag_code != CODE_64BIT)
2594 sign = -1;
2596 rel = bfd_reloc_type_lookup (stdoutput, other);
2597 if (!rel)
2598 as_bad (_("unknown relocation (%u)"), other);
2599 else if (size != bfd_get_reloc_size (rel))
2600 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2601 bfd_get_reloc_size (rel),
2602 size);
2603 else if (pcrel && !rel->pc_relative)
2604 as_bad (_("non-pc-relative relocation for pc-relative field"));
2605 else if ((rel->complain_on_overflow == complain_overflow_signed
2606 && !sign)
2607 || (rel->complain_on_overflow == complain_overflow_unsigned
2608 && sign > 0))
2609 as_bad (_("relocated field and relocation type differ in signedness"));
2610 else
2611 return other;
2612 return NO_RELOC;
2615 if (pcrel)
2617 if (!sign)
2618 as_bad (_("there are no unsigned pc-relative relocations"));
2619 switch (size)
2621 case 1: return BFD_RELOC_8_PCREL;
2622 case 2: return BFD_RELOC_16_PCREL;
2623 case 4: return BFD_RELOC_32_PCREL;
2624 case 8: return BFD_RELOC_64_PCREL;
2626 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2628 else
2630 if (sign > 0)
2631 switch (size)
2633 case 4: return BFD_RELOC_X86_64_32S;
2635 else
2636 switch (size)
2638 case 1: return BFD_RELOC_8;
2639 case 2: return BFD_RELOC_16;
2640 case 4: return BFD_RELOC_32;
2641 case 8: return BFD_RELOC_64;
2643 as_bad (_("cannot do %s %u byte relocation"),
2644 sign > 0 ? "signed" : "unsigned", size);
2647 return NO_RELOC;
2650 /* Here we decide which fixups can be adjusted to make them relative to
2651 the beginning of the section instead of the symbol. Basically we need
2652 to make sure that the dynamic relocations are done correctly, so in
2653 some cases we force the original symbol to be used. */
2656 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2658 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2659 if (!IS_ELF)
2660 return 1;
2662 /* Don't adjust pc-relative references to merge sections in 64-bit
2663 mode. */
2664 if (use_rela_relocations
2665 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2666 && fixP->fx_pcrel)
2667 return 0;
2669 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2670 and changed later by validate_fix. */
2671 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2672 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2673 return 0;
2675 /* adjust_reloc_syms doesn't know about the GOT. */
2676 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2677 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2678 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2679 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2680 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2681 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2682 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2683 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2684 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2685 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2686 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2687 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2688 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2689 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2690 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2691 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2692 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2693 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2694 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2695 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2696 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2697 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2698 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2699 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2700 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2701 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2702 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2703 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2704 return 0;
2705 #endif
2706 return 1;
2709 static int
2710 intel_float_operand (const char *mnemonic)
2712 /* Note that the value returned is meaningful only for opcodes with (memory)
2713 operands, hence the code here is free to improperly handle opcodes that
2714 have no operands (for better performance and smaller code). */
2716 if (mnemonic[0] != 'f')
2717 return 0; /* non-math */
2719 switch (mnemonic[1])
2721 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2722 the fs segment override prefix not currently handled because no
2723 call path can make opcodes without operands get here */
2724 case 'i':
2725 return 2 /* integer op */;
2726 case 'l':
2727 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2728 return 3; /* fldcw/fldenv */
2729 break;
2730 case 'n':
2731 if (mnemonic[2] != 'o' /* fnop */)
2732 return 3; /* non-waiting control op */
2733 break;
2734 case 'r':
2735 if (mnemonic[2] == 's')
2736 return 3; /* frstor/frstpm */
2737 break;
2738 case 's':
2739 if (mnemonic[2] == 'a')
2740 return 3; /* fsave */
2741 if (mnemonic[2] == 't')
2743 switch (mnemonic[3])
2745 case 'c': /* fstcw */
2746 case 'd': /* fstdw */
2747 case 'e': /* fstenv */
2748 case 's': /* fsts[gw] */
2749 return 3;
2752 break;
2753 case 'x':
2754 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2755 return 0; /* fxsave/fxrstor are not really math ops */
2756 break;
2759 return 1;
2762 /* Build the VEX prefix. */
2764 static void
2765 build_vex_prefix (const insn_template *t)
2767 unsigned int register_specifier;
2768 unsigned int implied_prefix;
2769 unsigned int vector_length;
2771 /* Check register specifier. */
2772 if (i.vex.register_specifier)
2774 register_specifier = i.vex.register_specifier->reg_num;
2775 if ((i.vex.register_specifier->reg_flags & RegRex))
2776 register_specifier += 8;
2777 register_specifier = ~register_specifier & 0xf;
2779 else
2780 register_specifier = 0xf;
2782 /* Use 2-byte VEX prefix by swappping destination and source
2783 operand. */
2784 if (!i.swap_operand
2785 && i.operands == i.reg_operands
2786 && i.tm.opcode_modifier.vexopcode == VEX0F
2787 && i.tm.opcode_modifier.s
2788 && i.rex == REX_B)
2790 unsigned int xchg = i.operands - 1;
2791 union i386_op temp_op;
2792 i386_operand_type temp_type;
2794 temp_type = i.types[xchg];
2795 i.types[xchg] = i.types[0];
2796 i.types[0] = temp_type;
2797 temp_op = i.op[xchg];
2798 i.op[xchg] = i.op[0];
2799 i.op[0] = temp_op;
2801 gas_assert (i.rm.mode == 3);
2803 i.rex = REX_R;
2804 xchg = i.rm.regmem;
2805 i.rm.regmem = i.rm.reg;
2806 i.rm.reg = xchg;
2808 /* Use the next insn. */
2809 i.tm = t[1];
2812 if (i.tm.opcode_modifier.vex == VEXScalar)
2813 vector_length = avxscalar;
2814 else
2815 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
2817 switch ((i.tm.base_opcode >> 8) & 0xff)
2819 case 0:
2820 implied_prefix = 0;
2821 break;
2822 case DATA_PREFIX_OPCODE:
2823 implied_prefix = 1;
2824 break;
2825 case REPE_PREFIX_OPCODE:
2826 implied_prefix = 2;
2827 break;
2828 case REPNE_PREFIX_OPCODE:
2829 implied_prefix = 3;
2830 break;
2831 default:
2832 abort ();
2835 /* Use 2-byte VEX prefix if possible. */
2836 if (i.tm.opcode_modifier.vexopcode == VEX0F
2837 && i.tm.opcode_modifier.vexw != VEXW1
2838 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2840 /* 2-byte VEX prefix. */
2841 unsigned int r;
2843 i.vex.length = 2;
2844 i.vex.bytes[0] = 0xc5;
2846 /* Check the REX.R bit. */
2847 r = (i.rex & REX_R) ? 0 : 1;
2848 i.vex.bytes[1] = (r << 7
2849 | register_specifier << 3
2850 | vector_length << 2
2851 | implied_prefix);
2853 else
2855 /* 3-byte VEX prefix. */
2856 unsigned int m, w;
2858 i.vex.length = 3;
2860 switch (i.tm.opcode_modifier.vexopcode)
2862 case VEX0F:
2863 m = 0x1;
2864 i.vex.bytes[0] = 0xc4;
2865 break;
2866 case VEX0F38:
2867 m = 0x2;
2868 i.vex.bytes[0] = 0xc4;
2869 break;
2870 case VEX0F3A:
2871 m = 0x3;
2872 i.vex.bytes[0] = 0xc4;
2873 break;
2874 case XOP08:
2875 m = 0x8;
2876 i.vex.bytes[0] = 0x8f;
2877 break;
2878 case XOP09:
2879 m = 0x9;
2880 i.vex.bytes[0] = 0x8f;
2881 break;
2882 case XOP0A:
2883 m = 0xa;
2884 i.vex.bytes[0] = 0x8f;
2885 break;
2886 default:
2887 abort ();
2890 /* The high 3 bits of the second VEX byte are 1's compliment
2891 of RXB bits from REX. */
2892 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2894 /* Check the REX.W bit. */
2895 w = (i.rex & REX_W) ? 1 : 0;
2896 if (i.tm.opcode_modifier.vexw)
2898 if (w)
2899 abort ();
2901 if (i.tm.opcode_modifier.vexw == VEXW1)
2902 w = 1;
2905 i.vex.bytes[2] = (w << 7
2906 | register_specifier << 3
2907 | vector_length << 2
2908 | implied_prefix);
2912 static void
2913 process_immext (void)
2915 expressionS *exp;
2917 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2919 /* SSE3 Instructions have the fixed operands with an opcode
2920 suffix which is coded in the same place as an 8-bit immediate
2921 field would be. Here we check those operands and remove them
2922 afterwards. */
2923 unsigned int x;
2925 for (x = 0; x < i.operands; x++)
2926 if (i.op[x].regs->reg_num != x)
2927 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2928 register_prefix, i.op[x].regs->reg_name, x + 1,
2929 i.tm.name);
2931 i.operands = 0;
2934 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2935 which is coded in the same place as an 8-bit immediate field
2936 would be. Here we fake an 8-bit immediate operand from the
2937 opcode suffix stored in tm.extension_opcode.
2939 AVX instructions also use this encoding, for some of
2940 3 argument instructions. */
2942 gas_assert (i.imm_operands == 0
2943 && (i.operands <= 2
2944 || (i.tm.opcode_modifier.vex
2945 && i.operands <= 4)));
2947 exp = &im_expressions[i.imm_operands++];
2948 i.op[i.operands].imms = exp;
2949 i.types[i.operands] = imm8;
2950 i.operands++;
2951 exp->X_op = O_constant;
2952 exp->X_add_number = i.tm.extension_opcode;
2953 i.tm.extension_opcode = None;
2956 /* This is the guts of the machine-dependent assembler. LINE points to a
2957 machine dependent instruction. This function is supposed to emit
2958 the frags/bytes it assembles to. */
2960 void
2961 md_assemble (char *line)
2963 unsigned int j;
2964 char mnemonic[MAX_MNEM_SIZE];
2965 const insn_template *t;
2967 /* Initialize globals. */
2968 memset (&i, '\0', sizeof (i));
2969 for (j = 0; j < MAX_OPERANDS; j++)
2970 i.reloc[j] = NO_RELOC;
2971 memset (disp_expressions, '\0', sizeof (disp_expressions));
2972 memset (im_expressions, '\0', sizeof (im_expressions));
2973 save_stack_p = save_stack;
2975 /* First parse an instruction mnemonic & call i386_operand for the operands.
2976 We assume that the scrubber has arranged it so that line[0] is the valid
2977 start of a (possibly prefixed) mnemonic. */
2979 line = parse_insn (line, mnemonic);
2980 if (line == NULL)
2981 return;
2983 line = parse_operands (line, mnemonic);
2984 this_operand = -1;
2985 if (line == NULL)
2986 return;
2988 /* Now we've parsed the mnemonic into a set of templates, and have the
2989 operands at hand. */
2991 /* All intel opcodes have reversed operands except for "bound" and
2992 "enter". We also don't reverse intersegment "jmp" and "call"
2993 instructions with 2 immediate operands so that the immediate segment
2994 precedes the offset, as it does when in AT&T mode. */
2995 if (intel_syntax
2996 && i.operands > 1
2997 && (strcmp (mnemonic, "bound") != 0)
2998 && (strcmp (mnemonic, "invlpga") != 0)
2999 && !(operand_type_check (i.types[0], imm)
3000 && operand_type_check (i.types[1], imm)))
3001 swap_operands ();
3003 /* The order of the immediates should be reversed
3004 for 2 immediates extrq and insertq instructions */
3005 if (i.imm_operands == 2
3006 && (strcmp (mnemonic, "extrq") == 0
3007 || strcmp (mnemonic, "insertq") == 0))
3008 swap_2_operands (0, 1);
3010 if (i.imm_operands)
3011 optimize_imm ();
3013 /* Don't optimize displacement for movabs since it only takes 64bit
3014 displacement. */
3015 if (i.disp_operands
3016 && !i.disp32_encoding
3017 && (flag_code != CODE_64BIT
3018 || strcmp (mnemonic, "movabs") != 0))
3019 optimize_disp ();
3021 /* Next, we find a template that matches the given insn,
3022 making sure the overlap of the given operands types is consistent
3023 with the template operand types. */
3025 if (!(t = match_template ()))
3026 return;
3028 if (sse_check != sse_check_none
3029 && !i.tm.opcode_modifier.noavx
3030 && (i.tm.cpu_flags.bitfield.cpusse
3031 || i.tm.cpu_flags.bitfield.cpusse2
3032 || i.tm.cpu_flags.bitfield.cpusse3
3033 || i.tm.cpu_flags.bitfield.cpussse3
3034 || i.tm.cpu_flags.bitfield.cpusse4_1
3035 || i.tm.cpu_flags.bitfield.cpusse4_2))
3037 (sse_check == sse_check_warning
3038 ? as_warn
3039 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3042 /* Zap movzx and movsx suffix. The suffix has been set from
3043 "word ptr" or "byte ptr" on the source operand in Intel syntax
3044 or extracted from mnemonic in AT&T syntax. But we'll use
3045 the destination register to choose the suffix for encoding. */
3046 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3048 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3049 there is no suffix, the default will be byte extension. */
3050 if (i.reg_operands != 2
3051 && !i.suffix
3052 && intel_syntax)
3053 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3055 i.suffix = 0;
3058 if (i.tm.opcode_modifier.fwait)
3059 if (!add_prefix (FWAIT_OPCODE))
3060 return;
3062 /* Check for lock without a lockable instruction. Destination operand
3063 must be memory unless it is xchg (0x86). */
3064 if (i.prefix[LOCK_PREFIX]
3065 && (!i.tm.opcode_modifier.islockable
3066 || i.mem_operands == 0
3067 || (i.tm.base_opcode != 0x86
3068 && !operand_type_check (i.types[i.operands - 1], anymem))))
3070 as_bad (_("expecting lockable instruction after `lock'"));
3071 return;
3074 /* Check string instruction segment overrides. */
3075 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3077 if (!check_string ())
3078 return;
3079 i.disp_operands = 0;
3082 if (!process_suffix ())
3083 return;
3085 /* Update operand types. */
3086 for (j = 0; j < i.operands; j++)
3087 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3089 /* Make still unresolved immediate matches conform to size of immediate
3090 given in i.suffix. */
3091 if (!finalize_imm ())
3092 return;
3094 if (i.types[0].bitfield.imm1)
3095 i.imm_operands = 0; /* kludge for shift insns. */
3097 /* We only need to check those implicit registers for instructions
3098 with 3 operands or less. */
3099 if (i.operands <= 3)
3100 for (j = 0; j < i.operands; j++)
3101 if (i.types[j].bitfield.inoutportreg
3102 || i.types[j].bitfield.shiftcount
3103 || i.types[j].bitfield.acc
3104 || i.types[j].bitfield.floatacc)
3105 i.reg_operands--;
3107 /* ImmExt should be processed after SSE2AVX. */
3108 if (!i.tm.opcode_modifier.sse2avx
3109 && i.tm.opcode_modifier.immext)
3110 process_immext ();
3112 /* For insns with operands there are more diddles to do to the opcode. */
3113 if (i.operands)
3115 if (!process_operands ())
3116 return;
3118 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3120 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3121 as_warn (_("translating to `%sp'"), i.tm.name);
3124 if (i.tm.opcode_modifier.vex)
3125 build_vex_prefix (t);
3127 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3128 instructions may define INT_OPCODE as well, so avoid this corner
3129 case for those instructions that use MODRM. */
3130 if (i.tm.base_opcode == INT_OPCODE
3131 && !i.tm.opcode_modifier.modrm
3132 && i.op[0].imms->X_add_number == 3)
3134 i.tm.base_opcode = INT3_OPCODE;
3135 i.imm_operands = 0;
3138 if ((i.tm.opcode_modifier.jump
3139 || i.tm.opcode_modifier.jumpbyte
3140 || i.tm.opcode_modifier.jumpdword)
3141 && i.op[0].disps->X_op == O_constant)
3143 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3144 the absolute address given by the constant. Since ix86 jumps and
3145 calls are pc relative, we need to generate a reloc. */
3146 i.op[0].disps->X_add_symbol = &abs_symbol;
3147 i.op[0].disps->X_op = O_symbol;
3150 if (i.tm.opcode_modifier.rex64)
3151 i.rex |= REX_W;
3153 /* For 8 bit registers we need an empty rex prefix. Also if the
3154 instruction already has a prefix, we need to convert old
3155 registers to new ones. */
3157 if ((i.types[0].bitfield.reg8
3158 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3159 || (i.types[1].bitfield.reg8
3160 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3161 || ((i.types[0].bitfield.reg8
3162 || i.types[1].bitfield.reg8)
3163 && i.rex != 0))
3165 int x;
3167 i.rex |= REX_OPCODE;
3168 for (x = 0; x < 2; x++)
3170 /* Look for 8 bit operand that uses old registers. */
3171 if (i.types[x].bitfield.reg8
3172 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3174 /* In case it is "hi" register, give up. */
3175 if (i.op[x].regs->reg_num > 3)
3176 as_bad (_("can't encode register '%s%s' in an "
3177 "instruction requiring REX prefix."),
3178 register_prefix, i.op[x].regs->reg_name);
3180 /* Otherwise it is equivalent to the extended register.
3181 Since the encoding doesn't change this is merely
3182 cosmetic cleanup for debug output. */
3184 i.op[x].regs = i.op[x].regs + 8;
3189 if (i.rex != 0)
3190 add_prefix (REX_OPCODE | i.rex);
3192 /* We are ready to output the insn. */
3193 output_insn ();
3196 static char *
3197 parse_insn (char *line, char *mnemonic)
3199 char *l = line;
3200 char *token_start = l;
3201 char *mnem_p;
3202 int supported;
3203 const insn_template *t;
3204 char *dot_p = NULL;
3206 /* Non-zero if we found a prefix only acceptable with string insns. */
3207 const char *expecting_string_instruction = NULL;
3209 while (1)
3211 mnem_p = mnemonic;
3212 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3214 if (*mnem_p == '.')
3215 dot_p = mnem_p;
3216 mnem_p++;
3217 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3219 as_bad (_("no such instruction: `%s'"), token_start);
3220 return NULL;
3222 l++;
3224 if (!is_space_char (*l)
3225 && *l != END_OF_INSN
3226 && (intel_syntax
3227 || (*l != PREFIX_SEPARATOR
3228 && *l != ',')))
3230 as_bad (_("invalid character %s in mnemonic"),
3231 output_invalid (*l));
3232 return NULL;
3234 if (token_start == l)
3236 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3237 as_bad (_("expecting prefix; got nothing"));
3238 else
3239 as_bad (_("expecting mnemonic; got nothing"));
3240 return NULL;
3243 /* Look up instruction (or prefix) via hash table. */
3244 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3246 if (*l != END_OF_INSN
3247 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3248 && current_templates
3249 && current_templates->start->opcode_modifier.isprefix)
3251 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3253 as_bad ((flag_code != CODE_64BIT
3254 ? _("`%s' is only supported in 64-bit mode")
3255 : _("`%s' is not supported in 64-bit mode")),
3256 current_templates->start->name);
3257 return NULL;
3259 /* If we are in 16-bit mode, do not allow addr16 or data16.
3260 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3261 if ((current_templates->start->opcode_modifier.size16
3262 || current_templates->start->opcode_modifier.size32)
3263 && flag_code != CODE_64BIT
3264 && (current_templates->start->opcode_modifier.size32
3265 ^ (flag_code == CODE_16BIT)))
3267 as_bad (_("redundant %s prefix"),
3268 current_templates->start->name);
3269 return NULL;
3271 /* Add prefix, checking for repeated prefixes. */
3272 switch (add_prefix (current_templates->start->base_opcode))
3274 case PREFIX_EXIST:
3275 return NULL;
3276 case PREFIX_REP:
3277 expecting_string_instruction = current_templates->start->name;
3278 break;
3279 default:
3280 break;
3282 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3283 token_start = ++l;
3285 else
3286 break;
3289 if (!current_templates)
3291 /* Check if we should swap operand or force 32bit displacement in
3292 encoding. */
3293 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3294 i.swap_operand = 1;
3295 else if (mnem_p - 4 == dot_p
3296 && dot_p[1] == 'd'
3297 && dot_p[2] == '3'
3298 && dot_p[3] == '2')
3299 i.disp32_encoding = 1;
3300 else
3301 goto check_suffix;
3302 mnem_p = dot_p;
3303 *dot_p = '\0';
3304 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3307 if (!current_templates)
3309 check_suffix:
3310 /* See if we can get a match by trimming off a suffix. */
3311 switch (mnem_p[-1])
3313 case WORD_MNEM_SUFFIX:
3314 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3315 i.suffix = SHORT_MNEM_SUFFIX;
3316 else
3317 case BYTE_MNEM_SUFFIX:
3318 case QWORD_MNEM_SUFFIX:
3319 i.suffix = mnem_p[-1];
3320 mnem_p[-1] = '\0';
3321 current_templates = (const templates *) hash_find (op_hash,
3322 mnemonic);
3323 break;
3324 case SHORT_MNEM_SUFFIX:
3325 case LONG_MNEM_SUFFIX:
3326 if (!intel_syntax)
3328 i.suffix = mnem_p[-1];
3329 mnem_p[-1] = '\0';
3330 current_templates = (const templates *) hash_find (op_hash,
3331 mnemonic);
3333 break;
3335 /* Intel Syntax. */
3336 case 'd':
3337 if (intel_syntax)
3339 if (intel_float_operand (mnemonic) == 1)
3340 i.suffix = SHORT_MNEM_SUFFIX;
3341 else
3342 i.suffix = LONG_MNEM_SUFFIX;
3343 mnem_p[-1] = '\0';
3344 current_templates = (const templates *) hash_find (op_hash,
3345 mnemonic);
3347 break;
3349 if (!current_templates)
3351 as_bad (_("no such instruction: `%s'"), token_start);
3352 return NULL;
3356 if (current_templates->start->opcode_modifier.jump
3357 || current_templates->start->opcode_modifier.jumpbyte)
3359 /* Check for a branch hint. We allow ",pt" and ",pn" for
3360 predict taken and predict not taken respectively.
3361 I'm not sure that branch hints actually do anything on loop
3362 and jcxz insns (JumpByte) for current Pentium4 chips. They
3363 may work in the future and it doesn't hurt to accept them
3364 now. */
3365 if (l[0] == ',' && l[1] == 'p')
3367 if (l[2] == 't')
3369 if (!add_prefix (DS_PREFIX_OPCODE))
3370 return NULL;
3371 l += 3;
3373 else if (l[2] == 'n')
3375 if (!add_prefix (CS_PREFIX_OPCODE))
3376 return NULL;
3377 l += 3;
3381 /* Any other comma loses. */
3382 if (*l == ',')
3384 as_bad (_("invalid character %s in mnemonic"),
3385 output_invalid (*l));
3386 return NULL;
3389 /* Check if instruction is supported on specified architecture. */
3390 supported = 0;
3391 for (t = current_templates->start; t < current_templates->end; ++t)
3393 supported |= cpu_flags_match (t);
3394 if (supported == CPU_FLAGS_PERFECT_MATCH)
3395 goto skip;
3398 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3400 as_bad (flag_code == CODE_64BIT
3401 ? _("`%s' is not supported in 64-bit mode")
3402 : _("`%s' is only supported in 64-bit mode"),
3403 current_templates->start->name);
3404 return NULL;
3406 if (supported != CPU_FLAGS_PERFECT_MATCH)
3408 as_bad (_("`%s' is not supported on `%s%s'"),
3409 current_templates->start->name,
3410 cpu_arch_name ? cpu_arch_name : default_arch,
3411 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3412 return NULL;
3415 skip:
3416 if (!cpu_arch_flags.bitfield.cpui386
3417 && (flag_code != CODE_16BIT))
3419 as_warn (_("use .code16 to ensure correct addressing mode"));
3422 /* Check for rep/repne without a string instruction. */
3423 if (expecting_string_instruction)
3425 static templates override;
3427 for (t = current_templates->start; t < current_templates->end; ++t)
3428 if (t->opcode_modifier.isstring)
3429 break;
3430 if (t >= current_templates->end)
3432 as_bad (_("expecting string instruction after `%s'"),
3433 expecting_string_instruction);
3434 return NULL;
3436 for (override.start = t; t < current_templates->end; ++t)
3437 if (!t->opcode_modifier.isstring)
3438 break;
3439 override.end = t;
3440 current_templates = &override;
3443 return l;
3446 static char *
3447 parse_operands (char *l, const char *mnemonic)
3449 char *token_start;
3451 /* 1 if operand is pending after ','. */
3452 unsigned int expecting_operand = 0;
3454 /* Non-zero if operand parens not balanced. */
3455 unsigned int paren_not_balanced;
3457 while (*l != END_OF_INSN)
3459 /* Skip optional white space before operand. */
3460 if (is_space_char (*l))
3461 ++l;
3462 if (!is_operand_char (*l) && *l != END_OF_INSN)
3464 as_bad (_("invalid character %s before operand %d"),
3465 output_invalid (*l),
3466 i.operands + 1);
3467 return NULL;
3469 token_start = l; /* after white space */
3470 paren_not_balanced = 0;
3471 while (paren_not_balanced || *l != ',')
3473 if (*l == END_OF_INSN)
3475 if (paren_not_balanced)
3477 if (!intel_syntax)
3478 as_bad (_("unbalanced parenthesis in operand %d."),
3479 i.operands + 1);
3480 else
3481 as_bad (_("unbalanced brackets in operand %d."),
3482 i.operands + 1);
3483 return NULL;
3485 else
3486 break; /* we are done */
3488 else if (!is_operand_char (*l) && !is_space_char (*l))
3490 as_bad (_("invalid character %s in operand %d"),
3491 output_invalid (*l),
3492 i.operands + 1);
3493 return NULL;
3495 if (!intel_syntax)
3497 if (*l == '(')
3498 ++paren_not_balanced;
3499 if (*l == ')')
3500 --paren_not_balanced;
3502 else
3504 if (*l == '[')
3505 ++paren_not_balanced;
3506 if (*l == ']')
3507 --paren_not_balanced;
3509 l++;
3511 if (l != token_start)
3512 { /* Yes, we've read in another operand. */
3513 unsigned int operand_ok;
3514 this_operand = i.operands++;
3515 i.types[this_operand].bitfield.unspecified = 1;
3516 if (i.operands > MAX_OPERANDS)
3518 as_bad (_("spurious operands; (%d operands/instruction max)"),
3519 MAX_OPERANDS);
3520 return NULL;
3522 /* Now parse operand adding info to 'i' as we go along. */
3523 END_STRING_AND_SAVE (l);
3525 if (intel_syntax)
3526 operand_ok =
3527 i386_intel_operand (token_start,
3528 intel_float_operand (mnemonic));
3529 else
3530 operand_ok = i386_att_operand (token_start);
3532 RESTORE_END_STRING (l);
3533 if (!operand_ok)
3534 return NULL;
3536 else
3538 if (expecting_operand)
3540 expecting_operand_after_comma:
3541 as_bad (_("expecting operand after ','; got nothing"));
3542 return NULL;
3544 if (*l == ',')
3546 as_bad (_("expecting operand before ','; got nothing"));
3547 return NULL;
3551 /* Now *l must be either ',' or END_OF_INSN. */
3552 if (*l == ',')
3554 if (*++l == END_OF_INSN)
3556 /* Just skip it, if it's \n complain. */
3557 goto expecting_operand_after_comma;
3559 expecting_operand = 1;
3562 return l;
3565 static void
3566 swap_2_operands (int xchg1, int xchg2)
3568 union i386_op temp_op;
3569 i386_operand_type temp_type;
3570 enum bfd_reloc_code_real temp_reloc;
3572 temp_type = i.types[xchg2];
3573 i.types[xchg2] = i.types[xchg1];
3574 i.types[xchg1] = temp_type;
3575 temp_op = i.op[xchg2];
3576 i.op[xchg2] = i.op[xchg1];
3577 i.op[xchg1] = temp_op;
3578 temp_reloc = i.reloc[xchg2];
3579 i.reloc[xchg2] = i.reloc[xchg1];
3580 i.reloc[xchg1] = temp_reloc;
3583 static void
3584 swap_operands (void)
3586 switch (i.operands)
3588 case 5:
3589 case 4:
3590 swap_2_operands (1, i.operands - 2);
3591 case 3:
3592 case 2:
3593 swap_2_operands (0, i.operands - 1);
3594 break;
3595 default:
3596 abort ();
3599 if (i.mem_operands == 2)
3601 const seg_entry *temp_seg;
3602 temp_seg = i.seg[0];
3603 i.seg[0] = i.seg[1];
3604 i.seg[1] = temp_seg;
3608 /* Try to ensure constant immediates are represented in the smallest
3609 opcode possible. */
3610 static void
3611 optimize_imm (void)
3613 char guess_suffix = 0;
3614 int op;
3616 if (i.suffix)
3617 guess_suffix = i.suffix;
3618 else if (i.reg_operands)
3620 /* Figure out a suffix from the last register operand specified.
3621 We can't do this properly yet, ie. excluding InOutPortReg,
3622 but the following works for instructions with immediates.
3623 In any case, we can't set i.suffix yet. */
3624 for (op = i.operands; --op >= 0;)
3625 if (i.types[op].bitfield.reg8)
3627 guess_suffix = BYTE_MNEM_SUFFIX;
3628 break;
3630 else if (i.types[op].bitfield.reg16)
3632 guess_suffix = WORD_MNEM_SUFFIX;
3633 break;
3635 else if (i.types[op].bitfield.reg32)
3637 guess_suffix = LONG_MNEM_SUFFIX;
3638 break;
3640 else if (i.types[op].bitfield.reg64)
3642 guess_suffix = QWORD_MNEM_SUFFIX;
3643 break;
3646 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3647 guess_suffix = WORD_MNEM_SUFFIX;
3649 for (op = i.operands; --op >= 0;)
3650 if (operand_type_check (i.types[op], imm))
3652 switch (i.op[op].imms->X_op)
3654 case O_constant:
3655 /* If a suffix is given, this operand may be shortened. */
3656 switch (guess_suffix)
3658 case LONG_MNEM_SUFFIX:
3659 i.types[op].bitfield.imm32 = 1;
3660 i.types[op].bitfield.imm64 = 1;
3661 break;
3662 case WORD_MNEM_SUFFIX:
3663 i.types[op].bitfield.imm16 = 1;
3664 i.types[op].bitfield.imm32 = 1;
3665 i.types[op].bitfield.imm32s = 1;
3666 i.types[op].bitfield.imm64 = 1;
3667 break;
3668 case BYTE_MNEM_SUFFIX:
3669 i.types[op].bitfield.imm8 = 1;
3670 i.types[op].bitfield.imm8s = 1;
3671 i.types[op].bitfield.imm16 = 1;
3672 i.types[op].bitfield.imm32 = 1;
3673 i.types[op].bitfield.imm32s = 1;
3674 i.types[op].bitfield.imm64 = 1;
3675 break;
3678 /* If this operand is at most 16 bits, convert it
3679 to a signed 16 bit number before trying to see
3680 whether it will fit in an even smaller size.
3681 This allows a 16-bit operand such as $0xffe0 to
3682 be recognised as within Imm8S range. */
3683 if ((i.types[op].bitfield.imm16)
3684 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3686 i.op[op].imms->X_add_number =
3687 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3689 if ((i.types[op].bitfield.imm32)
3690 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3691 == 0))
3693 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3694 ^ ((offsetT) 1 << 31))
3695 - ((offsetT) 1 << 31));
3697 i.types[op]
3698 = operand_type_or (i.types[op],
3699 smallest_imm_type (i.op[op].imms->X_add_number));
3701 /* We must avoid matching of Imm32 templates when 64bit
3702 only immediate is available. */
3703 if (guess_suffix == QWORD_MNEM_SUFFIX)
3704 i.types[op].bitfield.imm32 = 0;
3705 break;
3707 case O_absent:
3708 case O_register:
3709 abort ();
3711 /* Symbols and expressions. */
3712 default:
3713 /* Convert symbolic operand to proper sizes for matching, but don't
3714 prevent matching a set of insns that only supports sizes other
3715 than those matching the insn suffix. */
3717 i386_operand_type mask, allowed;
3718 const insn_template *t;
3720 operand_type_set (&mask, 0);
3721 operand_type_set (&allowed, 0);
3723 for (t = current_templates->start;
3724 t < current_templates->end;
3725 ++t)
3726 allowed = operand_type_or (allowed,
3727 t->operand_types[op]);
3728 switch (guess_suffix)
3730 case QWORD_MNEM_SUFFIX:
3731 mask.bitfield.imm64 = 1;
3732 mask.bitfield.imm32s = 1;
3733 break;
3734 case LONG_MNEM_SUFFIX:
3735 mask.bitfield.imm32 = 1;
3736 break;
3737 case WORD_MNEM_SUFFIX:
3738 mask.bitfield.imm16 = 1;
3739 break;
3740 case BYTE_MNEM_SUFFIX:
3741 mask.bitfield.imm8 = 1;
3742 break;
3743 default:
3744 break;
3746 allowed = operand_type_and (mask, allowed);
3747 if (!operand_type_all_zero (&allowed))
3748 i.types[op] = operand_type_and (i.types[op], mask);
3750 break;
3755 /* Try to use the smallest displacement type too. */
3756 static void
3757 optimize_disp (void)
3759 int op;
3761 for (op = i.operands; --op >= 0;)
3762 if (operand_type_check (i.types[op], disp))
3764 if (i.op[op].disps->X_op == O_constant)
3766 offsetT op_disp = i.op[op].disps->X_add_number;
3768 if (i.types[op].bitfield.disp16
3769 && (op_disp & ~(offsetT) 0xffff) == 0)
3771 /* If this operand is at most 16 bits, convert
3772 to a signed 16 bit number and don't use 64bit
3773 displacement. */
3774 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
3775 i.types[op].bitfield.disp64 = 0;
3777 if (i.types[op].bitfield.disp32
3778 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3780 /* If this operand is at most 32 bits, convert
3781 to a signed 32 bit number and don't use 64bit
3782 displacement. */
3783 op_disp &= (((offsetT) 2 << 31) - 1);
3784 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3785 i.types[op].bitfield.disp64 = 0;
3787 if (!op_disp && i.types[op].bitfield.baseindex)
3789 i.types[op].bitfield.disp8 = 0;
3790 i.types[op].bitfield.disp16 = 0;
3791 i.types[op].bitfield.disp32 = 0;
3792 i.types[op].bitfield.disp32s = 0;
3793 i.types[op].bitfield.disp64 = 0;
3794 i.op[op].disps = 0;
3795 i.disp_operands--;
3797 else if (flag_code == CODE_64BIT)
3799 if (fits_in_signed_long (op_disp))
3801 i.types[op].bitfield.disp64 = 0;
3802 i.types[op].bitfield.disp32s = 1;
3804 if (i.prefix[ADDR_PREFIX]
3805 && fits_in_unsigned_long (op_disp))
3806 i.types[op].bitfield.disp32 = 1;
3808 if ((i.types[op].bitfield.disp32
3809 || i.types[op].bitfield.disp32s
3810 || i.types[op].bitfield.disp16)
3811 && fits_in_signed_byte (op_disp))
3812 i.types[op].bitfield.disp8 = 1;
3814 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3815 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3817 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3818 i.op[op].disps, 0, i.reloc[op]);
3819 i.types[op].bitfield.disp8 = 0;
3820 i.types[op].bitfield.disp16 = 0;
3821 i.types[op].bitfield.disp32 = 0;
3822 i.types[op].bitfield.disp32s = 0;
3823 i.types[op].bitfield.disp64 = 0;
3825 else
3826 /* We only support 64bit displacement on constants. */
3827 i.types[op].bitfield.disp64 = 0;
3831 /* Check if operands are valid for the instruction. Update VEX
3832 operand types. */
3834 static int
3835 VEX_check_operands (const insn_template *t)
3837 if (!t->opcode_modifier.vex)
3838 return 0;
3840 /* Only check VEX_Imm4, which must be the first operand. */
3841 if (t->operand_types[0].bitfield.vec_imm4)
3843 if (i.op[0].imms->X_op != O_constant
3844 || !fits_in_imm4 (i.op[0].imms->X_add_number))
3846 i.error = bad_imm4;
3847 return 1;
3850 /* Turn off Imm8 so that update_imm won't complain. */
3851 i.types[0] = vec_imm4;
3854 return 0;
3857 static const insn_template *
3858 match_template (void)
3860 /* Points to template once we've found it. */
3861 const insn_template *t;
3862 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3863 i386_operand_type overlap4;
3864 unsigned int found_reverse_match;
3865 i386_opcode_modifier suffix_check;
3866 i386_operand_type operand_types [MAX_OPERANDS];
3867 int addr_prefix_disp;
3868 unsigned int j;
3869 unsigned int found_cpu_match;
3870 unsigned int check_register;
3872 #if MAX_OPERANDS != 5
3873 # error "MAX_OPERANDS must be 5."
3874 #endif
3876 found_reverse_match = 0;
3877 addr_prefix_disp = -1;
3879 memset (&suffix_check, 0, sizeof (suffix_check));
3880 if (i.suffix == BYTE_MNEM_SUFFIX)
3881 suffix_check.no_bsuf = 1;
3882 else if (i.suffix == WORD_MNEM_SUFFIX)
3883 suffix_check.no_wsuf = 1;
3884 else if (i.suffix == SHORT_MNEM_SUFFIX)
3885 suffix_check.no_ssuf = 1;
3886 else if (i.suffix == LONG_MNEM_SUFFIX)
3887 suffix_check.no_lsuf = 1;
3888 else if (i.suffix == QWORD_MNEM_SUFFIX)
3889 suffix_check.no_qsuf = 1;
3890 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3891 suffix_check.no_ldsuf = 1;
3893 /* Must have right number of operands. */
3894 i.error = number_of_operands_mismatch;
3896 for (t = current_templates->start; t < current_templates->end; t++)
3898 addr_prefix_disp = -1;
3900 if (i.operands != t->operands)
3901 continue;
3903 /* Check processor support. */
3904 i.error = unsupported;
3905 found_cpu_match = (cpu_flags_match (t)
3906 == CPU_FLAGS_PERFECT_MATCH);
3907 if (!found_cpu_match)
3908 continue;
3910 /* Check old gcc support. */
3911 i.error = old_gcc_only;
3912 if (!old_gcc && t->opcode_modifier.oldgcc)
3913 continue;
3915 /* Check AT&T mnemonic. */
3916 i.error = unsupported_with_intel_mnemonic;
3917 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3918 continue;
3920 /* Check AT&T/Intel syntax. */
3921 i.error = unsupported_syntax;
3922 if ((intel_syntax && t->opcode_modifier.attsyntax)
3923 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3924 continue;
3926 /* Check the suffix, except for some instructions in intel mode. */
3927 i.error = invalid_instruction_suffix;
3928 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3929 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3930 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3931 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3932 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3933 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3934 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3935 continue;
3937 if (!operand_size_match (t))
3938 continue;
3940 for (j = 0; j < MAX_OPERANDS; j++)
3941 operand_types[j] = t->operand_types[j];
3943 /* In general, don't allow 64-bit operands in 32-bit mode. */
3944 if (i.suffix == QWORD_MNEM_SUFFIX
3945 && flag_code != CODE_64BIT
3946 && (intel_syntax
3947 ? (!t->opcode_modifier.ignoresize
3948 && !intel_float_operand (t->name))
3949 : intel_float_operand (t->name) != 2)
3950 && ((!operand_types[0].bitfield.regmmx
3951 && !operand_types[0].bitfield.regxmm
3952 && !operand_types[0].bitfield.regymm)
3953 || (!operand_types[t->operands > 1].bitfield.regmmx
3954 && !!operand_types[t->operands > 1].bitfield.regxmm
3955 && !!operand_types[t->operands > 1].bitfield.regymm))
3956 && (t->base_opcode != 0x0fc7
3957 || t->extension_opcode != 1 /* cmpxchg8b */))
3958 continue;
3960 /* In general, don't allow 32-bit operands on pre-386. */
3961 else if (i.suffix == LONG_MNEM_SUFFIX
3962 && !cpu_arch_flags.bitfield.cpui386
3963 && (intel_syntax
3964 ? (!t->opcode_modifier.ignoresize
3965 && !intel_float_operand (t->name))
3966 : intel_float_operand (t->name) != 2)
3967 && ((!operand_types[0].bitfield.regmmx
3968 && !operand_types[0].bitfield.regxmm)
3969 || (!operand_types[t->operands > 1].bitfield.regmmx
3970 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3971 continue;
3973 /* Do not verify operands when there are none. */
3974 else
3976 if (!t->operands)
3977 /* We've found a match; break out of loop. */
3978 break;
3981 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3982 into Disp32/Disp16/Disp32 operand. */
3983 if (i.prefix[ADDR_PREFIX] != 0)
3985 /* There should be only one Disp operand. */
3986 switch (flag_code)
3988 case CODE_16BIT:
3989 for (j = 0; j < MAX_OPERANDS; j++)
3991 if (operand_types[j].bitfield.disp16)
3993 addr_prefix_disp = j;
3994 operand_types[j].bitfield.disp32 = 1;
3995 operand_types[j].bitfield.disp16 = 0;
3996 break;
3999 break;
4000 case CODE_32BIT:
4001 for (j = 0; j < MAX_OPERANDS; j++)
4003 if (operand_types[j].bitfield.disp32)
4005 addr_prefix_disp = j;
4006 operand_types[j].bitfield.disp32 = 0;
4007 operand_types[j].bitfield.disp16 = 1;
4008 break;
4011 break;
4012 case CODE_64BIT:
4013 for (j = 0; j < MAX_OPERANDS; j++)
4015 if (operand_types[j].bitfield.disp64)
4017 addr_prefix_disp = j;
4018 operand_types[j].bitfield.disp64 = 0;
4019 operand_types[j].bitfield.disp32 = 1;
4020 break;
4023 break;
4027 /* We check register size if needed. */
4028 check_register = t->opcode_modifier.checkregsize;
4029 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4030 switch (t->operands)
4032 case 1:
4033 if (!operand_type_match (overlap0, i.types[0]))
4034 continue;
4035 break;
4036 case 2:
4037 /* xchg %eax, %eax is a special case. It is an aliase for nop
4038 only in 32bit mode and we can use opcode 0x90. In 64bit
4039 mode, we can't use 0x90 for xchg %eax, %eax since it should
4040 zero-extend %eax to %rax. */
4041 if (flag_code == CODE_64BIT
4042 && t->base_opcode == 0x90
4043 && operand_type_equal (&i.types [0], &acc32)
4044 && operand_type_equal (&i.types [1], &acc32))
4045 continue;
4046 if (i.swap_operand)
4048 /* If we swap operand in encoding, we either match
4049 the next one or reverse direction of operands. */
4050 if (t->opcode_modifier.s)
4051 continue;
4052 else if (t->opcode_modifier.d)
4053 goto check_reverse;
4056 case 3:
4057 /* If we swap operand in encoding, we match the next one. */
4058 if (i.swap_operand && t->opcode_modifier.s)
4059 continue;
4060 case 4:
4061 case 5:
4062 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4063 if (!operand_type_match (overlap0, i.types[0])
4064 || !operand_type_match (overlap1, i.types[1])
4065 || (check_register
4066 && !operand_type_register_match (overlap0, i.types[0],
4067 operand_types[0],
4068 overlap1, i.types[1],
4069 operand_types[1])))
4071 /* Check if other direction is valid ... */
4072 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4073 continue;
4075 check_reverse:
4076 /* Try reversing direction of operands. */
4077 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4078 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4079 if (!operand_type_match (overlap0, i.types[0])
4080 || !operand_type_match (overlap1, i.types[1])
4081 || (check_register
4082 && !operand_type_register_match (overlap0,
4083 i.types[0],
4084 operand_types[1],
4085 overlap1,
4086 i.types[1],
4087 operand_types[0])))
4089 /* Does not match either direction. */
4090 continue;
4092 /* found_reverse_match holds which of D or FloatDR
4093 we've found. */
4094 if (t->opcode_modifier.d)
4095 found_reverse_match = Opcode_D;
4096 else if (t->opcode_modifier.floatd)
4097 found_reverse_match = Opcode_FloatD;
4098 else
4099 found_reverse_match = 0;
4100 if (t->opcode_modifier.floatr)
4101 found_reverse_match |= Opcode_FloatR;
4103 else
4105 /* Found a forward 2 operand match here. */
4106 switch (t->operands)
4108 case 5:
4109 overlap4 = operand_type_and (i.types[4],
4110 operand_types[4]);
4111 case 4:
4112 overlap3 = operand_type_and (i.types[3],
4113 operand_types[3]);
4114 case 3:
4115 overlap2 = operand_type_and (i.types[2],
4116 operand_types[2]);
4117 break;
4120 switch (t->operands)
4122 case 5:
4123 if (!operand_type_match (overlap4, i.types[4])
4124 || !operand_type_register_match (overlap3,
4125 i.types[3],
4126 operand_types[3],
4127 overlap4,
4128 i.types[4],
4129 operand_types[4]))
4130 continue;
4131 case 4:
4132 if (!operand_type_match (overlap3, i.types[3])
4133 || (check_register
4134 && !operand_type_register_match (overlap2,
4135 i.types[2],
4136 operand_types[2],
4137 overlap3,
4138 i.types[3],
4139 operand_types[3])))
4140 continue;
4141 case 3:
4142 /* Here we make use of the fact that there are no
4143 reverse match 3 operand instructions, and all 3
4144 operand instructions only need to be checked for
4145 register consistency between operands 2 and 3. */
4146 if (!operand_type_match (overlap2, i.types[2])
4147 || (check_register
4148 && !operand_type_register_match (overlap1,
4149 i.types[1],
4150 operand_types[1],
4151 overlap2,
4152 i.types[2],
4153 operand_types[2])))
4154 continue;
4155 break;
4158 /* Found either forward/reverse 2, 3 or 4 operand match here:
4159 slip through to break. */
4161 if (!found_cpu_match)
4163 found_reverse_match = 0;
4164 continue;
4167 /* Check if VEX operands are valid. */
4168 if (VEX_check_operands (t))
4169 continue;
4171 /* We've found a match; break out of loop. */
4172 break;
4175 if (t == current_templates->end)
4177 /* We found no match. */
4178 const char *err_msg;
4179 switch (i.error)
4181 default:
4182 abort ();
4183 case operand_size_mismatch:
4184 err_msg = _("operand size mismatch");
4185 break;
4186 case operand_type_mismatch:
4187 err_msg = _("operand type mismatch");
4188 break;
4189 case register_type_mismatch:
4190 err_msg = _("register type mismatch");
4191 break;
4192 case number_of_operands_mismatch:
4193 err_msg = _("number of operands mismatch");
4194 break;
4195 case invalid_instruction_suffix:
4196 err_msg = _("invalid instruction suffix");
4197 break;
4198 case bad_imm4:
4199 err_msg = _("Imm4 isn't the first operand");
4200 break;
4201 case old_gcc_only:
4202 err_msg = _("only supported with old gcc");
4203 break;
4204 case unsupported_with_intel_mnemonic:
4205 err_msg = _("unsupported with Intel mnemonic");
4206 break;
4207 case unsupported_syntax:
4208 err_msg = _("unsupported syntax");
4209 break;
4210 case unsupported:
4211 err_msg = _("unsupported");
4212 break;
4214 as_bad (_("%s for `%s'"), err_msg,
4215 current_templates->start->name);
4216 return NULL;
4219 if (!quiet_warnings)
4221 if (!intel_syntax
4222 && (i.types[0].bitfield.jumpabsolute
4223 != operand_types[0].bitfield.jumpabsolute))
4225 as_warn (_("indirect %s without `*'"), t->name);
4228 if (t->opcode_modifier.isprefix
4229 && t->opcode_modifier.ignoresize)
4231 /* Warn them that a data or address size prefix doesn't
4232 affect assembly of the next line of code. */
4233 as_warn (_("stand-alone `%s' prefix"), t->name);
4237 /* Copy the template we found. */
4238 i.tm = *t;
4240 if (addr_prefix_disp != -1)
4241 i.tm.operand_types[addr_prefix_disp]
4242 = operand_types[addr_prefix_disp];
4244 if (found_reverse_match)
4246 /* If we found a reverse match we must alter the opcode
4247 direction bit. found_reverse_match holds bits to change
4248 (different for int & float insns). */
4250 i.tm.base_opcode ^= found_reverse_match;
4252 i.tm.operand_types[0] = operand_types[1];
4253 i.tm.operand_types[1] = operand_types[0];
4256 return t;
4259 static int
4260 check_string (void)
4262 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4263 if (i.tm.operand_types[mem_op].bitfield.esseg)
4265 if (i.seg[0] != NULL && i.seg[0] != &es)
4267 as_bad (_("`%s' operand %d must use `%ses' segment"),
4268 i.tm.name,
4269 mem_op + 1,
4270 register_prefix);
4271 return 0;
4273 /* There's only ever one segment override allowed per instruction.
4274 This instruction possibly has a legal segment override on the
4275 second operand, so copy the segment to where non-string
4276 instructions store it, allowing common code. */
4277 i.seg[0] = i.seg[1];
4279 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
4281 if (i.seg[1] != NULL && i.seg[1] != &es)
4283 as_bad (_("`%s' operand %d must use `%ses' segment"),
4284 i.tm.name,
4285 mem_op + 2,
4286 register_prefix);
4287 return 0;
4290 return 1;
4293 static int
4294 process_suffix (void)
4296 /* If matched instruction specifies an explicit instruction mnemonic
4297 suffix, use it. */
4298 if (i.tm.opcode_modifier.size16)
4299 i.suffix = WORD_MNEM_SUFFIX;
4300 else if (i.tm.opcode_modifier.size32)
4301 i.suffix = LONG_MNEM_SUFFIX;
4302 else if (i.tm.opcode_modifier.size64)
4303 i.suffix = QWORD_MNEM_SUFFIX;
4304 else if (i.reg_operands)
4306 /* If there's no instruction mnemonic suffix we try to invent one
4307 based on register operands. */
4308 if (!i.suffix)
4310 /* We take i.suffix from the last register operand specified,
4311 Destination register type is more significant than source
4312 register type. crc32 in SSE4.2 prefers source register
4313 type. */
4314 if (i.tm.base_opcode == 0xf20f38f1)
4316 if (i.types[0].bitfield.reg16)
4317 i.suffix = WORD_MNEM_SUFFIX;
4318 else if (i.types[0].bitfield.reg32)
4319 i.suffix = LONG_MNEM_SUFFIX;
4320 else if (i.types[0].bitfield.reg64)
4321 i.suffix = QWORD_MNEM_SUFFIX;
4323 else if (i.tm.base_opcode == 0xf20f38f0)
4325 if (i.types[0].bitfield.reg8)
4326 i.suffix = BYTE_MNEM_SUFFIX;
4329 if (!i.suffix)
4331 int op;
4333 if (i.tm.base_opcode == 0xf20f38f1
4334 || i.tm.base_opcode == 0xf20f38f0)
4336 /* We have to know the operand size for crc32. */
4337 as_bad (_("ambiguous memory operand size for `%s`"),
4338 i.tm.name);
4339 return 0;
4342 for (op = i.operands; --op >= 0;)
4343 if (!i.tm.operand_types[op].bitfield.inoutportreg)
4345 if (i.types[op].bitfield.reg8)
4347 i.suffix = BYTE_MNEM_SUFFIX;
4348 break;
4350 else if (i.types[op].bitfield.reg16)
4352 i.suffix = WORD_MNEM_SUFFIX;
4353 break;
4355 else if (i.types[op].bitfield.reg32)
4357 i.suffix = LONG_MNEM_SUFFIX;
4358 break;
4360 else if (i.types[op].bitfield.reg64)
4362 i.suffix = QWORD_MNEM_SUFFIX;
4363 break;
4368 else if (i.suffix == BYTE_MNEM_SUFFIX)
4370 if (intel_syntax
4371 && i.tm.opcode_modifier.ignoresize
4372 && i.tm.opcode_modifier.no_bsuf)
4373 i.suffix = 0;
4374 else if (!check_byte_reg ())
4375 return 0;
4377 else if (i.suffix == LONG_MNEM_SUFFIX)
4379 if (intel_syntax
4380 && i.tm.opcode_modifier.ignoresize
4381 && i.tm.opcode_modifier.no_lsuf)
4382 i.suffix = 0;
4383 else if (!check_long_reg ())
4384 return 0;
4386 else if (i.suffix == QWORD_MNEM_SUFFIX)
4388 if (intel_syntax
4389 && i.tm.opcode_modifier.ignoresize
4390 && i.tm.opcode_modifier.no_qsuf)
4391 i.suffix = 0;
4392 else if (!check_qword_reg ())
4393 return 0;
4395 else if (i.suffix == WORD_MNEM_SUFFIX)
4397 if (intel_syntax
4398 && i.tm.opcode_modifier.ignoresize
4399 && i.tm.opcode_modifier.no_wsuf)
4400 i.suffix = 0;
4401 else if (!check_word_reg ())
4402 return 0;
4404 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4405 || i.suffix == YMMWORD_MNEM_SUFFIX)
4407 /* Skip if the instruction has x/y suffix. match_template
4408 should check if it is a valid suffix. */
4410 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4411 /* Do nothing if the instruction is going to ignore the prefix. */
4413 else
4414 abort ();
4416 else if (i.tm.opcode_modifier.defaultsize
4417 && !i.suffix
4418 /* exclude fldenv/frstor/fsave/fstenv */
4419 && i.tm.opcode_modifier.no_ssuf)
4421 i.suffix = stackop_size;
4423 else if (intel_syntax
4424 && !i.suffix
4425 && (i.tm.operand_types[0].bitfield.jumpabsolute
4426 || i.tm.opcode_modifier.jumpbyte
4427 || i.tm.opcode_modifier.jumpintersegment
4428 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4429 && i.tm.extension_opcode <= 3)))
4431 switch (flag_code)
4433 case CODE_64BIT:
4434 if (!i.tm.opcode_modifier.no_qsuf)
4436 i.suffix = QWORD_MNEM_SUFFIX;
4437 break;
4439 case CODE_32BIT:
4440 if (!i.tm.opcode_modifier.no_lsuf)
4441 i.suffix = LONG_MNEM_SUFFIX;
4442 break;
4443 case CODE_16BIT:
4444 if (!i.tm.opcode_modifier.no_wsuf)
4445 i.suffix = WORD_MNEM_SUFFIX;
4446 break;
4450 if (!i.suffix)
4452 if (!intel_syntax)
4454 if (i.tm.opcode_modifier.w)
4456 as_bad (_("no instruction mnemonic suffix given and "
4457 "no register operands; can't size instruction"));
4458 return 0;
4461 else
4463 unsigned int suffixes;
4465 suffixes = !i.tm.opcode_modifier.no_bsuf;
4466 if (!i.tm.opcode_modifier.no_wsuf)
4467 suffixes |= 1 << 1;
4468 if (!i.tm.opcode_modifier.no_lsuf)
4469 suffixes |= 1 << 2;
4470 if (!i.tm.opcode_modifier.no_ldsuf)
4471 suffixes |= 1 << 3;
4472 if (!i.tm.opcode_modifier.no_ssuf)
4473 suffixes |= 1 << 4;
4474 if (!i.tm.opcode_modifier.no_qsuf)
4475 suffixes |= 1 << 5;
4477 /* There are more than suffix matches. */
4478 if (i.tm.opcode_modifier.w
4479 || ((suffixes & (suffixes - 1))
4480 && !i.tm.opcode_modifier.defaultsize
4481 && !i.tm.opcode_modifier.ignoresize))
4483 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4484 return 0;
4489 /* Change the opcode based on the operand size given by i.suffix;
4490 We don't need to change things for byte insns. */
4492 if (i.suffix
4493 && i.suffix != BYTE_MNEM_SUFFIX
4494 && i.suffix != XMMWORD_MNEM_SUFFIX
4495 && i.suffix != YMMWORD_MNEM_SUFFIX)
4497 /* It's not a byte, select word/dword operation. */
4498 if (i.tm.opcode_modifier.w)
4500 if (i.tm.opcode_modifier.shortform)
4501 i.tm.base_opcode |= 8;
4502 else
4503 i.tm.base_opcode |= 1;
4506 /* Now select between word & dword operations via the operand
4507 size prefix, except for instructions that will ignore this
4508 prefix anyway. */
4509 if (i.tm.opcode_modifier.addrprefixop0)
4511 /* The address size override prefix changes the size of the
4512 first operand. */
4513 if ((flag_code == CODE_32BIT
4514 && i.op->regs[0].reg_type.bitfield.reg16)
4515 || (flag_code != CODE_32BIT
4516 && i.op->regs[0].reg_type.bitfield.reg32))
4517 if (!add_prefix (ADDR_PREFIX_OPCODE))
4518 return 0;
4520 else if (i.suffix != QWORD_MNEM_SUFFIX
4521 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4522 && !i.tm.opcode_modifier.ignoresize
4523 && !i.tm.opcode_modifier.floatmf
4524 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4525 || (flag_code == CODE_64BIT
4526 && i.tm.opcode_modifier.jumpbyte)))
4528 unsigned int prefix = DATA_PREFIX_OPCODE;
4530 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4531 prefix = ADDR_PREFIX_OPCODE;
4533 if (!add_prefix (prefix))
4534 return 0;
4537 /* Set mode64 for an operand. */
4538 if (i.suffix == QWORD_MNEM_SUFFIX
4539 && flag_code == CODE_64BIT
4540 && !i.tm.opcode_modifier.norex64)
4542 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4543 need rex64. cmpxchg8b is also a special case. */
4544 if (! (i.operands == 2
4545 && i.tm.base_opcode == 0x90
4546 && i.tm.extension_opcode == None
4547 && operand_type_equal (&i.types [0], &acc64)
4548 && operand_type_equal (&i.types [1], &acc64))
4549 && ! (i.operands == 1
4550 && i.tm.base_opcode == 0xfc7
4551 && i.tm.extension_opcode == 1
4552 && !operand_type_check (i.types [0], reg)
4553 && operand_type_check (i.types [0], anymem)))
4554 i.rex |= REX_W;
4557 /* Size floating point instruction. */
4558 if (i.suffix == LONG_MNEM_SUFFIX)
4559 if (i.tm.opcode_modifier.floatmf)
4560 i.tm.base_opcode ^= 4;
4563 return 1;
4566 static int
4567 check_byte_reg (void)
4569 int op;
4571 for (op = i.operands; --op >= 0;)
4573 /* If this is an eight bit register, it's OK. If it's the 16 or
4574 32 bit version of an eight bit register, we will just use the
4575 low portion, and that's OK too. */
4576 if (i.types[op].bitfield.reg8)
4577 continue;
4579 /* crc32 doesn't generate this warning. */
4580 if (i.tm.base_opcode == 0xf20f38f0)
4581 continue;
4583 if ((i.types[op].bitfield.reg16
4584 || i.types[op].bitfield.reg32
4585 || i.types[op].bitfield.reg64)
4586 && i.op[op].regs->reg_num < 4)
4588 /* Prohibit these changes in the 64bit mode, since the
4589 lowering is more complicated. */
4590 if (flag_code == CODE_64BIT
4591 && !i.tm.operand_types[op].bitfield.inoutportreg)
4593 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4594 register_prefix, i.op[op].regs->reg_name,
4595 i.suffix);
4596 return 0;
4598 #if REGISTER_WARNINGS
4599 if (!quiet_warnings
4600 && !i.tm.operand_types[op].bitfield.inoutportreg)
4601 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4602 register_prefix,
4603 (i.op[op].regs + (i.types[op].bitfield.reg16
4604 ? REGNAM_AL - REGNAM_AX
4605 : REGNAM_AL - REGNAM_EAX))->reg_name,
4606 register_prefix,
4607 i.op[op].regs->reg_name,
4608 i.suffix);
4609 #endif
4610 continue;
4612 /* Any other register is bad. */
4613 if (i.types[op].bitfield.reg16
4614 || i.types[op].bitfield.reg32
4615 || i.types[op].bitfield.reg64
4616 || i.types[op].bitfield.regmmx
4617 || i.types[op].bitfield.regxmm
4618 || i.types[op].bitfield.regymm
4619 || i.types[op].bitfield.sreg2
4620 || i.types[op].bitfield.sreg3
4621 || i.types[op].bitfield.control
4622 || i.types[op].bitfield.debug
4623 || i.types[op].bitfield.test
4624 || i.types[op].bitfield.floatreg
4625 || i.types[op].bitfield.floatacc)
4627 as_bad (_("`%s%s' not allowed with `%s%c'"),
4628 register_prefix,
4629 i.op[op].regs->reg_name,
4630 i.tm.name,
4631 i.suffix);
4632 return 0;
4635 return 1;
4638 static int
4639 check_long_reg (void)
4641 int op;
4643 for (op = i.operands; --op >= 0;)
4644 /* Reject eight bit registers, except where the template requires
4645 them. (eg. movzb) */
4646 if (i.types[op].bitfield.reg8
4647 && (i.tm.operand_types[op].bitfield.reg16
4648 || i.tm.operand_types[op].bitfield.reg32
4649 || i.tm.operand_types[op].bitfield.acc))
4651 as_bad (_("`%s%s' not allowed with `%s%c'"),
4652 register_prefix,
4653 i.op[op].regs->reg_name,
4654 i.tm.name,
4655 i.suffix);
4656 return 0;
4658 /* Warn if the e prefix on a general reg is missing. */
4659 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4660 && i.types[op].bitfield.reg16
4661 && (i.tm.operand_types[op].bitfield.reg32
4662 || i.tm.operand_types[op].bitfield.acc))
4664 /* Prohibit these changes in the 64bit mode, since the
4665 lowering is more complicated. */
4666 if (flag_code == CODE_64BIT)
4668 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4669 register_prefix, i.op[op].regs->reg_name,
4670 i.suffix);
4671 return 0;
4673 #if REGISTER_WARNINGS
4674 else
4675 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4676 register_prefix,
4677 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4678 register_prefix,
4679 i.op[op].regs->reg_name,
4680 i.suffix);
4681 #endif
4683 /* Warn if the r prefix on a general reg is missing. */
4684 else if (i.types[op].bitfield.reg64
4685 && (i.tm.operand_types[op].bitfield.reg32
4686 || i.tm.operand_types[op].bitfield.acc))
4688 if (intel_syntax
4689 && i.tm.opcode_modifier.toqword
4690 && !i.types[0].bitfield.regxmm)
4692 /* Convert to QWORD. We want REX byte. */
4693 i.suffix = QWORD_MNEM_SUFFIX;
4695 else
4697 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4698 register_prefix, i.op[op].regs->reg_name,
4699 i.suffix);
4700 return 0;
4703 return 1;
4706 static int
4707 check_qword_reg (void)
4709 int op;
4711 for (op = i.operands; --op >= 0; )
4712 /* Reject eight bit registers, except where the template requires
4713 them. (eg. movzb) */
4714 if (i.types[op].bitfield.reg8
4715 && (i.tm.operand_types[op].bitfield.reg16
4716 || i.tm.operand_types[op].bitfield.reg32
4717 || i.tm.operand_types[op].bitfield.acc))
4719 as_bad (_("`%s%s' not allowed with `%s%c'"),
4720 register_prefix,
4721 i.op[op].regs->reg_name,
4722 i.tm.name,
4723 i.suffix);
4724 return 0;
4726 /* Warn if the e prefix on a general reg is missing. */
4727 else if ((i.types[op].bitfield.reg16
4728 || i.types[op].bitfield.reg32)
4729 && (i.tm.operand_types[op].bitfield.reg32
4730 || i.tm.operand_types[op].bitfield.acc))
4732 /* Prohibit these changes in the 64bit mode, since the
4733 lowering is more complicated. */
4734 if (intel_syntax
4735 && i.tm.opcode_modifier.todword
4736 && !i.types[0].bitfield.regxmm)
4738 /* Convert to DWORD. We don't want REX byte. */
4739 i.suffix = LONG_MNEM_SUFFIX;
4741 else
4743 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4744 register_prefix, i.op[op].regs->reg_name,
4745 i.suffix);
4746 return 0;
4749 return 1;
4752 static int
4753 check_word_reg (void)
4755 int op;
4756 for (op = i.operands; --op >= 0;)
4757 /* Reject eight bit registers, except where the template requires
4758 them. (eg. movzb) */
4759 if (i.types[op].bitfield.reg8
4760 && (i.tm.operand_types[op].bitfield.reg16
4761 || i.tm.operand_types[op].bitfield.reg32
4762 || i.tm.operand_types[op].bitfield.acc))
4764 as_bad (_("`%s%s' not allowed with `%s%c'"),
4765 register_prefix,
4766 i.op[op].regs->reg_name,
4767 i.tm.name,
4768 i.suffix);
4769 return 0;
4771 /* Warn if the e prefix on a general reg is present. */
4772 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4773 && i.types[op].bitfield.reg32
4774 && (i.tm.operand_types[op].bitfield.reg16
4775 || i.tm.operand_types[op].bitfield.acc))
4777 /* Prohibit these changes in the 64bit mode, since the
4778 lowering is more complicated. */
4779 if (flag_code == CODE_64BIT)
4781 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4782 register_prefix, i.op[op].regs->reg_name,
4783 i.suffix);
4784 return 0;
4786 else
4787 #if REGISTER_WARNINGS
4788 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4789 register_prefix,
4790 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4791 register_prefix,
4792 i.op[op].regs->reg_name,
4793 i.suffix);
4794 #endif
4796 return 1;
4799 static int
4800 update_imm (unsigned int j)
4802 i386_operand_type overlap = i.types[j];
4803 if ((overlap.bitfield.imm8
4804 || overlap.bitfield.imm8s
4805 || overlap.bitfield.imm16
4806 || overlap.bitfield.imm32
4807 || overlap.bitfield.imm32s
4808 || overlap.bitfield.imm64)
4809 && !operand_type_equal (&overlap, &imm8)
4810 && !operand_type_equal (&overlap, &imm8s)
4811 && !operand_type_equal (&overlap, &imm16)
4812 && !operand_type_equal (&overlap, &imm32)
4813 && !operand_type_equal (&overlap, &imm32s)
4814 && !operand_type_equal (&overlap, &imm64))
4816 if (i.suffix)
4818 i386_operand_type temp;
4820 operand_type_set (&temp, 0);
4821 if (i.suffix == BYTE_MNEM_SUFFIX)
4823 temp.bitfield.imm8 = overlap.bitfield.imm8;
4824 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4826 else if (i.suffix == WORD_MNEM_SUFFIX)
4827 temp.bitfield.imm16 = overlap.bitfield.imm16;
4828 else if (i.suffix == QWORD_MNEM_SUFFIX)
4830 temp.bitfield.imm64 = overlap.bitfield.imm64;
4831 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4833 else
4834 temp.bitfield.imm32 = overlap.bitfield.imm32;
4835 overlap = temp;
4837 else if (operand_type_equal (&overlap, &imm16_32_32s)
4838 || operand_type_equal (&overlap, &imm16_32)
4839 || operand_type_equal (&overlap, &imm16_32s))
4841 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4842 overlap = imm16;
4843 else
4844 overlap = imm32s;
4846 if (!operand_type_equal (&overlap, &imm8)
4847 && !operand_type_equal (&overlap, &imm8s)
4848 && !operand_type_equal (&overlap, &imm16)
4849 && !operand_type_equal (&overlap, &imm32)
4850 && !operand_type_equal (&overlap, &imm32s)
4851 && !operand_type_equal (&overlap, &imm64))
4853 as_bad (_("no instruction mnemonic suffix given; "
4854 "can't determine immediate size"));
4855 return 0;
4858 i.types[j] = overlap;
4860 return 1;
4863 static int
4864 finalize_imm (void)
4866 unsigned int j, n;
4868 /* Update the first 2 immediate operands. */
4869 n = i.operands > 2 ? 2 : i.operands;
4870 if (n)
4872 for (j = 0; j < n; j++)
4873 if (update_imm (j) == 0)
4874 return 0;
4876 /* The 3rd operand can't be immediate operand. */
4877 gas_assert (operand_type_check (i.types[2], imm) == 0);
4880 return 1;
4883 static int
4884 bad_implicit_operand (int xmm)
4886 const char *ireg = xmm ? "xmm0" : "ymm0";
4888 if (intel_syntax)
4889 as_bad (_("the last operand of `%s' must be `%s%s'"),
4890 i.tm.name, register_prefix, ireg);
4891 else
4892 as_bad (_("the first operand of `%s' must be `%s%s'"),
4893 i.tm.name, register_prefix, ireg);
4894 return 0;
4897 static int
4898 process_operands (void)
4900 /* Default segment register this instruction will use for memory
4901 accesses. 0 means unknown. This is only for optimizing out
4902 unnecessary segment overrides. */
4903 const seg_entry *default_seg = 0;
4905 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
4907 unsigned int dupl = i.operands;
4908 unsigned int dest = dupl - 1;
4909 unsigned int j;
4911 /* The destination must be an xmm register. */
4912 gas_assert (i.reg_operands
4913 && MAX_OPERANDS > dupl
4914 && operand_type_equal (&i.types[dest], &regxmm));
4916 if (i.tm.opcode_modifier.firstxmm0)
4918 /* The first operand is implicit and must be xmm0. */
4919 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4920 if (i.op[0].regs->reg_num != 0)
4921 return bad_implicit_operand (1);
4923 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4925 /* Keep xmm0 for instructions with VEX prefix and 3
4926 sources. */
4927 goto duplicate;
4929 else
4931 /* We remove the first xmm0 and keep the number of
4932 operands unchanged, which in fact duplicates the
4933 destination. */
4934 for (j = 1; j < i.operands; j++)
4936 i.op[j - 1] = i.op[j];
4937 i.types[j - 1] = i.types[j];
4938 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4942 else if (i.tm.opcode_modifier.implicit1stxmm0)
4944 gas_assert ((MAX_OPERANDS - 1) > dupl
4945 && (i.tm.opcode_modifier.vexsources
4946 == VEX3SOURCES));
4948 /* Add the implicit xmm0 for instructions with VEX prefix
4949 and 3 sources. */
4950 for (j = i.operands; j > 0; j--)
4952 i.op[j] = i.op[j - 1];
4953 i.types[j] = i.types[j - 1];
4954 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4956 i.op[0].regs
4957 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4958 i.types[0] = regxmm;
4959 i.tm.operand_types[0] = regxmm;
4961 i.operands += 2;
4962 i.reg_operands += 2;
4963 i.tm.operands += 2;
4965 dupl++;
4966 dest++;
4967 i.op[dupl] = i.op[dest];
4968 i.types[dupl] = i.types[dest];
4969 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
4971 else
4973 duplicate:
4974 i.operands++;
4975 i.reg_operands++;
4976 i.tm.operands++;
4978 i.op[dupl] = i.op[dest];
4979 i.types[dupl] = i.types[dest];
4980 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
4983 if (i.tm.opcode_modifier.immext)
4984 process_immext ();
4986 else if (i.tm.opcode_modifier.firstxmm0)
4988 unsigned int j;
4990 /* The first operand is implicit and must be xmm0/ymm0. */
4991 gas_assert (i.reg_operands
4992 && (operand_type_equal (&i.types[0], &regxmm)
4993 || operand_type_equal (&i.types[0], &regymm)));
4994 if (i.op[0].regs->reg_num != 0)
4995 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4997 for (j = 1; j < i.operands; j++)
4999 i.op[j - 1] = i.op[j];
5000 i.types[j - 1] = i.types[j];
5002 /* We need to adjust fields in i.tm since they are used by
5003 build_modrm_byte. */
5004 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5007 i.operands--;
5008 i.reg_operands--;
5009 i.tm.operands--;
5011 else if (i.tm.opcode_modifier.regkludge)
5013 /* The imul $imm, %reg instruction is converted into
5014 imul $imm, %reg, %reg, and the clr %reg instruction
5015 is converted into xor %reg, %reg. */
5017 unsigned int first_reg_op;
5019 if (operand_type_check (i.types[0], reg))
5020 first_reg_op = 0;
5021 else
5022 first_reg_op = 1;
5023 /* Pretend we saw the extra register operand. */
5024 gas_assert (i.reg_operands == 1
5025 && i.op[first_reg_op + 1].regs == 0);
5026 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5027 i.types[first_reg_op + 1] = i.types[first_reg_op];
5028 i.operands++;
5029 i.reg_operands++;
5032 if (i.tm.opcode_modifier.shortform)
5034 if (i.types[0].bitfield.sreg2
5035 || i.types[0].bitfield.sreg3)
5037 if (i.tm.base_opcode == POP_SEG_SHORT
5038 && i.op[0].regs->reg_num == 1)
5040 as_bad (_("you can't `pop %scs'"), register_prefix);
5041 return 0;
5043 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5044 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5045 i.rex |= REX_B;
5047 else
5049 /* The register or float register operand is in operand
5050 0 or 1. */
5051 unsigned int op;
5053 if (i.types[0].bitfield.floatreg
5054 || operand_type_check (i.types[0], reg))
5055 op = 0;
5056 else
5057 op = 1;
5058 /* Register goes in low 3 bits of opcode. */
5059 i.tm.base_opcode |= i.op[op].regs->reg_num;
5060 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5061 i.rex |= REX_B;
5062 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5064 /* Warn about some common errors, but press on regardless.
5065 The first case can be generated by gcc (<= 2.8.1). */
5066 if (i.operands == 2)
5068 /* Reversed arguments on faddp, fsubp, etc. */
5069 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5070 register_prefix, i.op[!intel_syntax].regs->reg_name,
5071 register_prefix, i.op[intel_syntax].regs->reg_name);
5073 else
5075 /* Extraneous `l' suffix on fp insn. */
5076 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5077 register_prefix, i.op[0].regs->reg_name);
5082 else if (i.tm.opcode_modifier.modrm)
5084 /* The opcode is completed (modulo i.tm.extension_opcode which
5085 must be put into the modrm byte). Now, we make the modrm and
5086 index base bytes based on all the info we've collected. */
5088 default_seg = build_modrm_byte ();
5090 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5092 default_seg = &ds;
5094 else if (i.tm.opcode_modifier.isstring)
5096 /* For the string instructions that allow a segment override
5097 on one of their operands, the default segment is ds. */
5098 default_seg = &ds;
5101 if (i.tm.base_opcode == 0x8d /* lea */
5102 && i.seg[0]
5103 && !quiet_warnings)
5104 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5106 /* If a segment was explicitly specified, and the specified segment
5107 is not the default, use an opcode prefix to select it. If we
5108 never figured out what the default segment is, then default_seg
5109 will be zero at this point, and the specified segment prefix will
5110 always be used. */
5111 if ((i.seg[0]) && (i.seg[0] != default_seg))
5113 if (!add_prefix (i.seg[0]->seg_prefix))
5114 return 0;
5116 return 1;
5119 static const seg_entry *
5120 build_modrm_byte (void)
5122 const seg_entry *default_seg = 0;
5123 unsigned int source, dest;
5124 int vex_3_sources;
5126 /* The first operand of instructions with VEX prefix and 3 sources
5127 must be VEX_Imm4. */
5128 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5129 if (vex_3_sources)
5131 unsigned int nds, reg_slot;
5132 expressionS *exp;
5134 if (i.tm.opcode_modifier.veximmext
5135 && i.tm.opcode_modifier.immext)
5137 dest = i.operands - 2;
5138 gas_assert (dest == 3);
5140 else
5141 dest = i.operands - 1;
5142 nds = dest - 1;
5144 /* There are 2 kinds of instructions:
5145 1. 5 operands: 4 register operands or 3 register operands
5146 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5147 VexW0 or VexW1. The destination must be either XMM or YMM
5148 register.
5149 2. 4 operands: 4 register operands or 3 register operands
5150 plus 1 memory operand, VexXDS, and VexImmExt */
5151 gas_assert ((i.reg_operands == 4
5152 || (i.reg_operands == 3 && i.mem_operands == 1))
5153 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5154 && (i.tm.opcode_modifier.veximmext
5155 || (i.imm_operands == 1
5156 && i.types[0].bitfield.vec_imm4
5157 && (i.tm.opcode_modifier.vexw == VEXW0
5158 || i.tm.opcode_modifier.vexw == VEXW1)
5159 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5160 || operand_type_equal (&i.tm.operand_types[dest], &regymm)))));
5162 if (i.imm_operands == 0)
5164 /* When there is no immediate operand, generate an 8bit
5165 immediate operand to encode the first operand. */
5166 exp = &im_expressions[i.imm_operands++];
5167 i.op[i.operands].imms = exp;
5168 i.types[i.operands] = imm8;
5169 i.operands++;
5170 /* If VexW1 is set, the first operand is the source and
5171 the second operand is encoded in the immediate operand. */
5172 if (i.tm.opcode_modifier.vexw == VEXW1)
5174 source = 0;
5175 reg_slot = 1;
5177 else
5179 source = 1;
5180 reg_slot = 0;
5183 /* FMA swaps REG and NDS. */
5184 if (i.tm.cpu_flags.bitfield.cpufma)
5186 unsigned int tmp;
5187 tmp = reg_slot;
5188 reg_slot = nds;
5189 nds = tmp;
5192 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5193 &regxmm)
5194 || operand_type_equal (&i.tm.operand_types[reg_slot],
5195 &regymm));
5196 exp->X_op = O_constant;
5197 exp->X_add_number
5198 = ((i.op[reg_slot].regs->reg_num
5199 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5200 << 4);
5202 else
5204 unsigned int imm_slot;
5206 if (i.tm.opcode_modifier.vexw == VEXW0)
5208 /* If VexW0 is set, the third operand is the source and
5209 the second operand is encoded in the immediate
5210 operand. */
5211 source = 2;
5212 reg_slot = 1;
5214 else
5216 /* VexW1 is set, the second operand is the source and
5217 the third operand is encoded in the immediate
5218 operand. */
5219 source = 1;
5220 reg_slot = 2;
5223 if (i.tm.opcode_modifier.immext)
5225 /* When ImmExt is set, the immdiate byte is the last
5226 operand. */
5227 imm_slot = i.operands - 1;
5228 source--;
5229 reg_slot--;
5231 else
5233 imm_slot = 0;
5235 /* Turn on Imm8 so that output_imm will generate it. */
5236 i.types[imm_slot].bitfield.imm8 = 1;
5239 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5240 &regxmm)
5241 || operand_type_equal (&i.tm.operand_types[reg_slot],
5242 &regymm));
5243 i.op[imm_slot].imms->X_add_number
5244 |= ((i.op[reg_slot].regs->reg_num
5245 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5246 << 4);
5249 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
5250 || operand_type_equal (&i.tm.operand_types[nds],
5251 &regymm));
5252 i.vex.register_specifier = i.op[nds].regs;
5254 else
5255 source = dest = 0;
5257 /* i.reg_operands MUST be the number of real register operands;
5258 implicit registers do not count. If there are 3 register
5259 operands, it must be a instruction with VexNDS. For a
5260 instruction with VexNDD, the destination register is encoded
5261 in VEX prefix. If there are 4 register operands, it must be
5262 a instruction with VEX prefix and 3 sources. */
5263 if (i.mem_operands == 0
5264 && ((i.reg_operands == 2
5265 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
5266 || (i.reg_operands == 3
5267 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
5268 || (i.reg_operands == 4 && vex_3_sources)))
5270 switch (i.operands)
5272 case 2:
5273 source = 0;
5274 break;
5275 case 3:
5276 /* When there are 3 operands, one of them may be immediate,
5277 which may be the first or the last operand. Otherwise,
5278 the first operand must be shift count register (cl) or it
5279 is an instruction with VexNDS. */
5280 gas_assert (i.imm_operands == 1
5281 || (i.imm_operands == 0
5282 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
5283 || i.types[0].bitfield.shiftcount)));
5284 if (operand_type_check (i.types[0], imm)
5285 || i.types[0].bitfield.shiftcount)
5286 source = 1;
5287 else
5288 source = 0;
5289 break;
5290 case 4:
5291 /* When there are 4 operands, the first two must be 8bit
5292 immediate operands. The source operand will be the 3rd
5293 one.
5295 For instructions with VexNDS, if the first operand
5296 an imm8, the source operand is the 2nd one. If the last
5297 operand is imm8, the source operand is the first one. */
5298 gas_assert ((i.imm_operands == 2
5299 && i.types[0].bitfield.imm8
5300 && i.types[1].bitfield.imm8)
5301 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
5302 && i.imm_operands == 1
5303 && (i.types[0].bitfield.imm8
5304 || i.types[i.operands - 1].bitfield.imm8)));
5305 if (i.imm_operands == 2)
5306 source = 2;
5307 else
5309 if (i.types[0].bitfield.imm8)
5310 source = 1;
5311 else
5312 source = 0;
5314 break;
5315 case 5:
5316 break;
5317 default:
5318 abort ();
5321 if (!vex_3_sources)
5323 dest = source + 1;
5325 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5327 /* For instructions with VexNDS, the register-only
5328 source operand must be 32/64bit integer, XMM or
5329 YMM register. It is encoded in VEX prefix. We
5330 need to clear RegMem bit before calling
5331 operand_type_equal. */
5333 i386_operand_type op;
5334 unsigned int vvvv;
5336 /* Check register-only source operand when two source
5337 operands are swapped. */
5338 if (!i.tm.operand_types[source].bitfield.baseindex
5339 && i.tm.operand_types[dest].bitfield.baseindex)
5341 vvvv = source;
5342 source = dest;
5344 else
5345 vvvv = dest;
5347 op = i.tm.operand_types[vvvv];
5348 op.bitfield.regmem = 0;
5349 if ((dest + 1) >= i.operands
5350 || (op.bitfield.reg32 != 1
5351 && !op.bitfield.reg64 != 1
5352 && !operand_type_equal (&op, &regxmm)
5353 && !operand_type_equal (&op, &regymm)))
5354 abort ();
5355 i.vex.register_specifier = i.op[vvvv].regs;
5356 dest++;
5360 i.rm.mode = 3;
5361 /* One of the register operands will be encoded in the i.tm.reg
5362 field, the other in the combined i.tm.mode and i.tm.regmem
5363 fields. If no form of this instruction supports a memory
5364 destination operand, then we assume the source operand may
5365 sometimes be a memory operand and so we need to store the
5366 destination in the i.rm.reg field. */
5367 if (!i.tm.operand_types[dest].bitfield.regmem
5368 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
5370 i.rm.reg = i.op[dest].regs->reg_num;
5371 i.rm.regmem = i.op[source].regs->reg_num;
5372 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5373 i.rex |= REX_R;
5374 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5375 i.rex |= REX_B;
5377 else
5379 i.rm.reg = i.op[source].regs->reg_num;
5380 i.rm.regmem = i.op[dest].regs->reg_num;
5381 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5382 i.rex |= REX_B;
5383 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5384 i.rex |= REX_R;
5386 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
5388 if (!i.types[0].bitfield.control
5389 && !i.types[1].bitfield.control)
5390 abort ();
5391 i.rex &= ~(REX_R | REX_B);
5392 add_prefix (LOCK_PREFIX_OPCODE);
5395 else
5396 { /* If it's not 2 reg operands... */
5397 unsigned int mem;
5399 if (i.mem_operands)
5401 unsigned int fake_zero_displacement = 0;
5402 unsigned int op;
5404 for (op = 0; op < i.operands; op++)
5405 if (operand_type_check (i.types[op], anymem))
5406 break;
5407 gas_assert (op < i.operands);
5409 default_seg = &ds;
5411 if (i.base_reg == 0)
5413 i.rm.mode = 0;
5414 if (!i.disp_operands)
5415 fake_zero_displacement = 1;
5416 if (i.index_reg == 0)
5418 /* Operand is just <disp> */
5419 if (flag_code == CODE_64BIT)
5421 /* 64bit mode overwrites the 32bit absolute
5422 addressing by RIP relative addressing and
5423 absolute addressing is encoded by one of the
5424 redundant SIB forms. */
5425 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5426 i.sib.base = NO_BASE_REGISTER;
5427 i.sib.index = NO_INDEX_REGISTER;
5428 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
5429 ? disp32s : disp32);
5431 else if ((flag_code == CODE_16BIT)
5432 ^ (i.prefix[ADDR_PREFIX] != 0))
5434 i.rm.regmem = NO_BASE_REGISTER_16;
5435 i.types[op] = disp16;
5437 else
5439 i.rm.regmem = NO_BASE_REGISTER;
5440 i.types[op] = disp32;
5443 else /* !i.base_reg && i.index_reg */
5445 if (i.index_reg->reg_num == RegEiz
5446 || i.index_reg->reg_num == RegRiz)
5447 i.sib.index = NO_INDEX_REGISTER;
5448 else
5449 i.sib.index = i.index_reg->reg_num;
5450 i.sib.base = NO_BASE_REGISTER;
5451 i.sib.scale = i.log2_scale_factor;
5452 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5453 i.types[op].bitfield.disp8 = 0;
5454 i.types[op].bitfield.disp16 = 0;
5455 i.types[op].bitfield.disp64 = 0;
5456 if (flag_code != CODE_64BIT)
5458 /* Must be 32 bit */
5459 i.types[op].bitfield.disp32 = 1;
5460 i.types[op].bitfield.disp32s = 0;
5462 else
5464 i.types[op].bitfield.disp32 = 0;
5465 i.types[op].bitfield.disp32s = 1;
5467 if ((i.index_reg->reg_flags & RegRex) != 0)
5468 i.rex |= REX_X;
5471 /* RIP addressing for 64bit mode. */
5472 else if (i.base_reg->reg_num == RegRip ||
5473 i.base_reg->reg_num == RegEip)
5475 i.rm.regmem = NO_BASE_REGISTER;
5476 i.types[op].bitfield.disp8 = 0;
5477 i.types[op].bitfield.disp16 = 0;
5478 i.types[op].bitfield.disp32 = 0;
5479 i.types[op].bitfield.disp32s = 1;
5480 i.types[op].bitfield.disp64 = 0;
5481 i.flags[op] |= Operand_PCrel;
5482 if (! i.disp_operands)
5483 fake_zero_displacement = 1;
5485 else if (i.base_reg->reg_type.bitfield.reg16)
5487 switch (i.base_reg->reg_num)
5489 case 3: /* (%bx) */
5490 if (i.index_reg == 0)
5491 i.rm.regmem = 7;
5492 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5493 i.rm.regmem = i.index_reg->reg_num - 6;
5494 break;
5495 case 5: /* (%bp) */
5496 default_seg = &ss;
5497 if (i.index_reg == 0)
5499 i.rm.regmem = 6;
5500 if (operand_type_check (i.types[op], disp) == 0)
5502 /* fake (%bp) into 0(%bp) */
5503 i.types[op].bitfield.disp8 = 1;
5504 fake_zero_displacement = 1;
5507 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5508 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5509 break;
5510 default: /* (%si) -> 4 or (%di) -> 5 */
5511 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5513 i.rm.mode = mode_from_disp_size (i.types[op]);
5515 else /* i.base_reg and 32/64 bit mode */
5517 if (flag_code == CODE_64BIT
5518 && operand_type_check (i.types[op], disp))
5520 i386_operand_type temp;
5521 operand_type_set (&temp, 0);
5522 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5523 i.types[op] = temp;
5524 if (i.prefix[ADDR_PREFIX] == 0)
5525 i.types[op].bitfield.disp32s = 1;
5526 else
5527 i.types[op].bitfield.disp32 = 1;
5530 i.rm.regmem = i.base_reg->reg_num;
5531 if ((i.base_reg->reg_flags & RegRex) != 0)
5532 i.rex |= REX_B;
5533 i.sib.base = i.base_reg->reg_num;
5534 /* x86-64 ignores REX prefix bit here to avoid decoder
5535 complications. */
5536 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5538 default_seg = &ss;
5539 if (i.disp_operands == 0)
5541 fake_zero_displacement = 1;
5542 i.types[op].bitfield.disp8 = 1;
5545 else if (i.base_reg->reg_num == ESP_REG_NUM)
5547 default_seg = &ss;
5549 i.sib.scale = i.log2_scale_factor;
5550 if (i.index_reg == 0)
5552 /* <disp>(%esp) becomes two byte modrm with no index
5553 register. We've already stored the code for esp
5554 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5555 Any base register besides %esp will not use the
5556 extra modrm byte. */
5557 i.sib.index = NO_INDEX_REGISTER;
5559 else
5561 if (i.index_reg->reg_num == RegEiz
5562 || i.index_reg->reg_num == RegRiz)
5563 i.sib.index = NO_INDEX_REGISTER;
5564 else
5565 i.sib.index = i.index_reg->reg_num;
5566 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5567 if ((i.index_reg->reg_flags & RegRex) != 0)
5568 i.rex |= REX_X;
5571 if (i.disp_operands
5572 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5573 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5574 i.rm.mode = 0;
5575 else
5576 i.rm.mode = mode_from_disp_size (i.types[op]);
5579 if (fake_zero_displacement)
5581 /* Fakes a zero displacement assuming that i.types[op]
5582 holds the correct displacement size. */
5583 expressionS *exp;
5585 gas_assert (i.op[op].disps == 0);
5586 exp = &disp_expressions[i.disp_operands++];
5587 i.op[op].disps = exp;
5588 exp->X_op = O_constant;
5589 exp->X_add_number = 0;
5590 exp->X_add_symbol = (symbolS *) 0;
5591 exp->X_op_symbol = (symbolS *) 0;
5594 mem = op;
5596 else
5597 mem = ~0;
5599 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5601 if (operand_type_check (i.types[0], imm))
5602 i.vex.register_specifier = NULL;
5603 else
5605 /* VEX.vvvv encodes one of the sources when the first
5606 operand is not an immediate. */
5607 if (i.tm.opcode_modifier.vexw == VEXW0)
5608 i.vex.register_specifier = i.op[0].regs;
5609 else
5610 i.vex.register_specifier = i.op[1].regs;
5613 /* Destination is a XMM register encoded in the ModRM.reg
5614 and VEX.R bit. */
5615 i.rm.reg = i.op[2].regs->reg_num;
5616 if ((i.op[2].regs->reg_flags & RegRex) != 0)
5617 i.rex |= REX_R;
5619 /* ModRM.rm and VEX.B encodes the other source. */
5620 if (!i.mem_operands)
5622 i.rm.mode = 3;
5624 if (i.tm.opcode_modifier.vexw == VEXW0)
5625 i.rm.regmem = i.op[1].regs->reg_num;
5626 else
5627 i.rm.regmem = i.op[0].regs->reg_num;
5629 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5630 i.rex |= REX_B;
5633 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
5635 i.vex.register_specifier = i.op[2].regs;
5636 if (!i.mem_operands)
5638 i.rm.mode = 3;
5639 i.rm.regmem = i.op[1].regs->reg_num;
5640 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5641 i.rex |= REX_B;
5644 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5645 (if any) based on i.tm.extension_opcode. Again, we must be
5646 careful to make sure that segment/control/debug/test/MMX
5647 registers are coded into the i.rm.reg field. */
5648 else if (i.reg_operands)
5650 unsigned int op;
5651 unsigned int vex_reg = ~0;
5653 for (op = 0; op < i.operands; op++)
5654 if (i.types[op].bitfield.reg8
5655 || i.types[op].bitfield.reg16
5656 || i.types[op].bitfield.reg32
5657 || i.types[op].bitfield.reg64
5658 || i.types[op].bitfield.regmmx
5659 || i.types[op].bitfield.regxmm
5660 || i.types[op].bitfield.regymm
5661 || i.types[op].bitfield.sreg2
5662 || i.types[op].bitfield.sreg3
5663 || i.types[op].bitfield.control
5664 || i.types[op].bitfield.debug
5665 || i.types[op].bitfield.test)
5666 break;
5668 if (vex_3_sources)
5669 op = dest;
5670 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5672 /* For instructions with VexNDS, the register-only
5673 source operand is encoded in VEX prefix. */
5674 gas_assert (mem != (unsigned int) ~0);
5676 if (op > mem)
5678 vex_reg = op++;
5679 gas_assert (op < i.operands);
5681 else
5683 /* Check register-only source operand when two source
5684 operands are swapped. */
5685 if (!i.tm.operand_types[op].bitfield.baseindex
5686 && i.tm.operand_types[op + 1].bitfield.baseindex)
5688 vex_reg = op;
5689 op += 2;
5690 gas_assert (mem == (vex_reg + 1)
5691 && op < i.operands);
5693 else
5695 vex_reg = op + 1;
5696 gas_assert (vex_reg < i.operands);
5700 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
5702 /* For instructions with VexNDD, the register destination
5703 is encoded in VEX prefix. */
5704 if (i.mem_operands == 0)
5706 /* There is no memory operand. */
5707 gas_assert ((op + 2) == i.operands);
5708 vex_reg = op + 1;
5710 else
5712 /* There are only 2 operands. */
5713 gas_assert (op < 2 && i.operands == 2);
5714 vex_reg = 1;
5717 else
5718 gas_assert (op < i.operands);
5720 if (vex_reg != (unsigned int) ~0)
5722 i386_operand_type *type = &i.tm.operand_types[vex_reg];
5724 if (type->bitfield.reg32 != 1
5725 && type->bitfield.reg64 != 1
5726 && !operand_type_equal (type, &regxmm)
5727 && !operand_type_equal (type, &regymm))
5728 abort ();
5730 i.vex.register_specifier = i.op[vex_reg].regs;
5733 /* Don't set OP operand twice. */
5734 if (vex_reg != op)
5736 /* If there is an extension opcode to put here, the
5737 register number must be put into the regmem field. */
5738 if (i.tm.extension_opcode != None)
5740 i.rm.regmem = i.op[op].regs->reg_num;
5741 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5742 i.rex |= REX_B;
5744 else
5746 i.rm.reg = i.op[op].regs->reg_num;
5747 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5748 i.rex |= REX_R;
5752 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5753 must set it to 3 to indicate this is a register operand
5754 in the regmem field. */
5755 if (!i.mem_operands)
5756 i.rm.mode = 3;
5759 /* Fill in i.rm.reg field with extension opcode (if any). */
5760 if (i.tm.extension_opcode != None)
5761 i.rm.reg = i.tm.extension_opcode;
5763 return default_seg;
5766 static void
5767 output_branch (void)
5769 char *p;
5770 int size;
5771 int code16;
5772 int prefix;
5773 relax_substateT subtype;
5774 symbolS *sym;
5775 offsetT off;
5777 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
5778 size = i.disp32_encoding ? BIG : SMALL;
5780 prefix = 0;
5781 if (i.prefix[DATA_PREFIX] != 0)
5783 prefix = 1;
5784 i.prefixes -= 1;
5785 code16 ^= CODE16;
5787 /* Pentium4 branch hints. */
5788 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5789 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5791 prefix++;
5792 i.prefixes--;
5794 if (i.prefix[REX_PREFIX] != 0)
5796 prefix++;
5797 i.prefixes--;
5800 if (i.prefixes != 0 && !intel_syntax)
5801 as_warn (_("skipping prefixes on this instruction"));
5803 /* It's always a symbol; End frag & setup for relax.
5804 Make sure there is enough room in this frag for the largest
5805 instruction we may generate in md_convert_frag. This is 2
5806 bytes for the opcode and room for the prefix and largest
5807 displacement. */
5808 frag_grow (prefix + 2 + 4);
5809 /* Prefix and 1 opcode byte go in fr_fix. */
5810 p = frag_more (prefix + 1);
5811 if (i.prefix[DATA_PREFIX] != 0)
5812 *p++ = DATA_PREFIX_OPCODE;
5813 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5814 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5815 *p++ = i.prefix[SEG_PREFIX];
5816 if (i.prefix[REX_PREFIX] != 0)
5817 *p++ = i.prefix[REX_PREFIX];
5818 *p = i.tm.base_opcode;
5820 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5821 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
5822 else if (cpu_arch_flags.bitfield.cpui386)
5823 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
5824 else
5825 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
5826 subtype |= code16;
5828 sym = i.op[0].disps->X_add_symbol;
5829 off = i.op[0].disps->X_add_number;
5831 if (i.op[0].disps->X_op != O_constant
5832 && i.op[0].disps->X_op != O_symbol)
5834 /* Handle complex expressions. */
5835 sym = make_expr_symbol (i.op[0].disps);
5836 off = 0;
5839 /* 1 possible extra opcode + 4 byte displacement go in var part.
5840 Pass reloc in fr_var. */
5841 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5844 static void
5845 output_jump (void)
5847 char *p;
5848 int size;
5849 fixS *fixP;
5851 if (i.tm.opcode_modifier.jumpbyte)
5853 /* This is a loop or jecxz type instruction. */
5854 size = 1;
5855 if (i.prefix[ADDR_PREFIX] != 0)
5857 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5858 i.prefixes -= 1;
5860 /* Pentium4 branch hints. */
5861 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5862 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5864 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5865 i.prefixes--;
5868 else
5870 int code16;
5872 code16 = 0;
5873 if (flag_code == CODE_16BIT)
5874 code16 = CODE16;
5876 if (i.prefix[DATA_PREFIX] != 0)
5878 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5879 i.prefixes -= 1;
5880 code16 ^= CODE16;
5883 size = 4;
5884 if (code16)
5885 size = 2;
5888 if (i.prefix[REX_PREFIX] != 0)
5890 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5891 i.prefixes -= 1;
5894 if (i.prefixes != 0 && !intel_syntax)
5895 as_warn (_("skipping prefixes on this instruction"));
5897 p = frag_more (1 + size);
5898 *p++ = i.tm.base_opcode;
5900 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5901 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5903 /* All jumps handled here are signed, but don't use a signed limit
5904 check for 32 and 16 bit jumps as we want to allow wrap around at
5905 4G and 64k respectively. */
5906 if (size == 1)
5907 fixP->fx_signed = 1;
5910 static void
5911 output_interseg_jump (void)
5913 char *p;
5914 int size;
5915 int prefix;
5916 int code16;
5918 code16 = 0;
5919 if (flag_code == CODE_16BIT)
5920 code16 = CODE16;
5922 prefix = 0;
5923 if (i.prefix[DATA_PREFIX] != 0)
5925 prefix = 1;
5926 i.prefixes -= 1;
5927 code16 ^= CODE16;
5929 if (i.prefix[REX_PREFIX] != 0)
5931 prefix++;
5932 i.prefixes -= 1;
5935 size = 4;
5936 if (code16)
5937 size = 2;
5939 if (i.prefixes != 0 && !intel_syntax)
5940 as_warn (_("skipping prefixes on this instruction"));
5942 /* 1 opcode; 2 segment; offset */
5943 p = frag_more (prefix + 1 + 2 + size);
5945 if (i.prefix[DATA_PREFIX] != 0)
5946 *p++ = DATA_PREFIX_OPCODE;
5948 if (i.prefix[REX_PREFIX] != 0)
5949 *p++ = i.prefix[REX_PREFIX];
5951 *p++ = i.tm.base_opcode;
5952 if (i.op[1].imms->X_op == O_constant)
5954 offsetT n = i.op[1].imms->X_add_number;
5956 if (size == 2
5957 && !fits_in_unsigned_word (n)
5958 && !fits_in_signed_word (n))
5960 as_bad (_("16-bit jump out of range"));
5961 return;
5963 md_number_to_chars (p, n, size);
5965 else
5966 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5967 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5968 if (i.op[0].imms->X_op != O_constant)
5969 as_bad (_("can't handle non absolute segment in `%s'"),
5970 i.tm.name);
5971 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5974 static void
5975 output_insn (void)
5977 fragS *insn_start_frag;
5978 offsetT insn_start_off;
5980 /* Tie dwarf2 debug info to the address at the start of the insn.
5981 We can't do this after the insn has been output as the current
5982 frag may have been closed off. eg. by frag_var. */
5983 dwarf2_emit_insn (0);
5985 insn_start_frag = frag_now;
5986 insn_start_off = frag_now_fix ();
5988 /* Output jumps. */
5989 if (i.tm.opcode_modifier.jump)
5990 output_branch ();
5991 else if (i.tm.opcode_modifier.jumpbyte
5992 || i.tm.opcode_modifier.jumpdword)
5993 output_jump ();
5994 else if (i.tm.opcode_modifier.jumpintersegment)
5995 output_interseg_jump ();
5996 else
5998 /* Output normal instructions here. */
5999 char *p;
6000 unsigned char *q;
6001 unsigned int j;
6002 unsigned int prefix;
6004 /* Since the VEX prefix contains the implicit prefix, we don't
6005 need the explicit prefix. */
6006 if (!i.tm.opcode_modifier.vex)
6008 switch (i.tm.opcode_length)
6010 case 3:
6011 if (i.tm.base_opcode & 0xff000000)
6013 prefix = (i.tm.base_opcode >> 24) & 0xff;
6014 goto check_prefix;
6016 break;
6017 case 2:
6018 if ((i.tm.base_opcode & 0xff0000) != 0)
6020 prefix = (i.tm.base_opcode >> 16) & 0xff;
6021 if (i.tm.cpu_flags.bitfield.cpupadlock)
6023 check_prefix:
6024 if (prefix != REPE_PREFIX_OPCODE
6025 || (i.prefix[REP_PREFIX]
6026 != REPE_PREFIX_OPCODE))
6027 add_prefix (prefix);
6029 else
6030 add_prefix (prefix);
6032 break;
6033 case 1:
6034 break;
6035 default:
6036 abort ();
6039 /* The prefix bytes. */
6040 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6041 if (*q)
6042 FRAG_APPEND_1_CHAR (*q);
6045 if (i.tm.opcode_modifier.vex)
6047 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6048 if (*q)
6049 switch (j)
6051 case REX_PREFIX:
6052 /* REX byte is encoded in VEX prefix. */
6053 break;
6054 case SEG_PREFIX:
6055 case ADDR_PREFIX:
6056 FRAG_APPEND_1_CHAR (*q);
6057 break;
6058 default:
6059 /* There should be no other prefixes for instructions
6060 with VEX prefix. */
6061 abort ();
6064 /* Now the VEX prefix. */
6065 p = frag_more (i.vex.length);
6066 for (j = 0; j < i.vex.length; j++)
6067 p[j] = i.vex.bytes[j];
6070 /* Now the opcode; be careful about word order here! */
6071 if (i.tm.opcode_length == 1)
6073 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6075 else
6077 switch (i.tm.opcode_length)
6079 case 3:
6080 p = frag_more (3);
6081 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6082 break;
6083 case 2:
6084 p = frag_more (2);
6085 break;
6086 default:
6087 abort ();
6088 break;
6091 /* Put out high byte first: can't use md_number_to_chars! */
6092 *p++ = (i.tm.base_opcode >> 8) & 0xff;
6093 *p = i.tm.base_opcode & 0xff;
6096 /* Now the modrm byte and sib byte (if present). */
6097 if (i.tm.opcode_modifier.modrm)
6099 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
6100 | i.rm.reg << 3
6101 | i.rm.mode << 6));
6102 /* If i.rm.regmem == ESP (4)
6103 && i.rm.mode != (Register mode)
6104 && not 16 bit
6105 ==> need second modrm byte. */
6106 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
6107 && i.rm.mode != 3
6108 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
6109 FRAG_APPEND_1_CHAR ((i.sib.base << 0
6110 | i.sib.index << 3
6111 | i.sib.scale << 6));
6114 if (i.disp_operands)
6115 output_disp (insn_start_frag, insn_start_off);
6117 if (i.imm_operands)
6118 output_imm (insn_start_frag, insn_start_off);
6121 #ifdef DEBUG386
6122 if (flag_debug)
6124 pi ("" /*line*/, &i);
6126 #endif /* DEBUG386 */
6129 /* Return the size of the displacement operand N. */
6131 static int
6132 disp_size (unsigned int n)
6134 int size = 4;
6135 if (i.types[n].bitfield.disp64)
6136 size = 8;
6137 else if (i.types[n].bitfield.disp8)
6138 size = 1;
6139 else if (i.types[n].bitfield.disp16)
6140 size = 2;
6141 return size;
6144 /* Return the size of the immediate operand N. */
6146 static int
6147 imm_size (unsigned int n)
6149 int size = 4;
6150 if (i.types[n].bitfield.imm64)
6151 size = 8;
6152 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
6153 size = 1;
6154 else if (i.types[n].bitfield.imm16)
6155 size = 2;
6156 return size;
6159 static void
6160 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
6162 char *p;
6163 unsigned int n;
6165 for (n = 0; n < i.operands; n++)
6167 if (operand_type_check (i.types[n], disp))
6169 if (i.op[n].disps->X_op == O_constant)
6171 int size = disp_size (n);
6172 offsetT val;
6174 val = offset_in_range (i.op[n].disps->X_add_number,
6175 size);
6176 p = frag_more (size);
6177 md_number_to_chars (p, val, size);
6179 else
6181 enum bfd_reloc_code_real reloc_type;
6182 int size = disp_size (n);
6183 int sign = i.types[n].bitfield.disp32s;
6184 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
6186 /* We can't have 8 bit displacement here. */
6187 gas_assert (!i.types[n].bitfield.disp8);
6189 /* The PC relative address is computed relative
6190 to the instruction boundary, so in case immediate
6191 fields follows, we need to adjust the value. */
6192 if (pcrel && i.imm_operands)
6194 unsigned int n1;
6195 int sz = 0;
6197 for (n1 = 0; n1 < i.operands; n1++)
6198 if (operand_type_check (i.types[n1], imm))
6200 /* Only one immediate is allowed for PC
6201 relative address. */
6202 gas_assert (sz == 0);
6203 sz = imm_size (n1);
6204 i.op[n].disps->X_add_number -= sz;
6206 /* We should find the immediate. */
6207 gas_assert (sz != 0);
6210 p = frag_more (size);
6211 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
6212 if (GOT_symbol
6213 && GOT_symbol == i.op[n].disps->X_add_symbol
6214 && (((reloc_type == BFD_RELOC_32
6215 || reloc_type == BFD_RELOC_X86_64_32S
6216 || (reloc_type == BFD_RELOC_64
6217 && object_64bit))
6218 && (i.op[n].disps->X_op == O_symbol
6219 || (i.op[n].disps->X_op == O_add
6220 && ((symbol_get_value_expression
6221 (i.op[n].disps->X_op_symbol)->X_op)
6222 == O_subtract))))
6223 || reloc_type == BFD_RELOC_32_PCREL))
6225 offsetT add;
6227 if (insn_start_frag == frag_now)
6228 add = (p - frag_now->fr_literal) - insn_start_off;
6229 else
6231 fragS *fr;
6233 add = insn_start_frag->fr_fix - insn_start_off;
6234 for (fr = insn_start_frag->fr_next;
6235 fr && fr != frag_now; fr = fr->fr_next)
6236 add += fr->fr_fix;
6237 add += p - frag_now->fr_literal;
6240 if (!object_64bit)
6242 reloc_type = BFD_RELOC_386_GOTPC;
6243 i.op[n].imms->X_add_number += add;
6245 else if (reloc_type == BFD_RELOC_64)
6246 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6247 else
6248 /* Don't do the adjustment for x86-64, as there
6249 the pcrel addressing is relative to the _next_
6250 insn, and that is taken care of in other code. */
6251 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6253 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6254 i.op[n].disps, pcrel, reloc_type);
6260 static void
6261 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
6263 char *p;
6264 unsigned int n;
6266 for (n = 0; n < i.operands; n++)
6268 if (operand_type_check (i.types[n], imm))
6270 if (i.op[n].imms->X_op == O_constant)
6272 int size = imm_size (n);
6273 offsetT val;
6275 val = offset_in_range (i.op[n].imms->X_add_number,
6276 size);
6277 p = frag_more (size);
6278 md_number_to_chars (p, val, size);
6280 else
6282 /* Not absolute_section.
6283 Need a 32-bit fixup (don't support 8bit
6284 non-absolute imms). Try to support other
6285 sizes ... */
6286 enum bfd_reloc_code_real reloc_type;
6287 int size = imm_size (n);
6288 int sign;
6290 if (i.types[n].bitfield.imm32s
6291 && (i.suffix == QWORD_MNEM_SUFFIX
6292 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
6293 sign = 1;
6294 else
6295 sign = 0;
6297 p = frag_more (size);
6298 reloc_type = reloc (size, 0, sign, i.reloc[n]);
6300 /* This is tough to explain. We end up with this one if we
6301 * have operands that look like
6302 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6303 * obtain the absolute address of the GOT, and it is strongly
6304 * preferable from a performance point of view to avoid using
6305 * a runtime relocation for this. The actual sequence of
6306 * instructions often look something like:
6308 * call .L66
6309 * .L66:
6310 * popl %ebx
6311 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6313 * The call and pop essentially return the absolute address
6314 * of the label .L66 and store it in %ebx. The linker itself
6315 * will ultimately change the first operand of the addl so
6316 * that %ebx points to the GOT, but to keep things simple, the
6317 * .o file must have this operand set so that it generates not
6318 * the absolute address of .L66, but the absolute address of
6319 * itself. This allows the linker itself simply treat a GOTPC
6320 * relocation as asking for a pcrel offset to the GOT to be
6321 * added in, and the addend of the relocation is stored in the
6322 * operand field for the instruction itself.
6324 * Our job here is to fix the operand so that it would add
6325 * the correct offset so that %ebx would point to itself. The
6326 * thing that is tricky is that .-.L66 will point to the
6327 * beginning of the instruction, so we need to further modify
6328 * the operand so that it will point to itself. There are
6329 * other cases where you have something like:
6331 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6333 * and here no correction would be required. Internally in
6334 * the assembler we treat operands of this form as not being
6335 * pcrel since the '.' is explicitly mentioned, and I wonder
6336 * whether it would simplify matters to do it this way. Who
6337 * knows. In earlier versions of the PIC patches, the
6338 * pcrel_adjust field was used to store the correction, but
6339 * since the expression is not pcrel, I felt it would be
6340 * confusing to do it this way. */
6342 if ((reloc_type == BFD_RELOC_32
6343 || reloc_type == BFD_RELOC_X86_64_32S
6344 || reloc_type == BFD_RELOC_64)
6345 && GOT_symbol
6346 && GOT_symbol == i.op[n].imms->X_add_symbol
6347 && (i.op[n].imms->X_op == O_symbol
6348 || (i.op[n].imms->X_op == O_add
6349 && ((symbol_get_value_expression
6350 (i.op[n].imms->X_op_symbol)->X_op)
6351 == O_subtract))))
6353 offsetT add;
6355 if (insn_start_frag == frag_now)
6356 add = (p - frag_now->fr_literal) - insn_start_off;
6357 else
6359 fragS *fr;
6361 add = insn_start_frag->fr_fix - insn_start_off;
6362 for (fr = insn_start_frag->fr_next;
6363 fr && fr != frag_now; fr = fr->fr_next)
6364 add += fr->fr_fix;
6365 add += p - frag_now->fr_literal;
6368 if (!object_64bit)
6369 reloc_type = BFD_RELOC_386_GOTPC;
6370 else if (size == 4)
6371 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6372 else if (size == 8)
6373 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6374 i.op[n].imms->X_add_number += add;
6376 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6377 i.op[n].imms, 0, reloc_type);
6383 /* x86_cons_fix_new is called via the expression parsing code when a
6384 reloc is needed. We use this hook to get the correct .got reloc. */
6385 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
6386 static int cons_sign = -1;
6388 void
6389 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
6390 expressionS *exp)
6392 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
6394 got_reloc = NO_RELOC;
6396 #ifdef TE_PE
6397 if (exp->X_op == O_secrel)
6399 exp->X_op = O_symbol;
6400 r = BFD_RELOC_32_SECREL;
6402 #endif
6404 fix_new_exp (frag, off, len, exp, 0, r);
6407 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
6408 # define lex_got(reloc, adjust, types) NULL
6409 #else
6410 /* Parse operands of the form
6411 <symbol>@GOTOFF+<nnn>
6412 and similar .plt or .got references.
6414 If we find one, set up the correct relocation in RELOC and copy the
6415 input string, minus the `@GOTOFF' into a malloc'd buffer for
6416 parsing by the calling routine. Return this buffer, and if ADJUST
6417 is non-null set it to the length of the string we removed from the
6418 input line. Otherwise return NULL. */
6419 static char *
6420 lex_got (enum bfd_reloc_code_real *rel,
6421 int *adjust,
6422 i386_operand_type *types)
6424 /* Some of the relocations depend on the size of what field is to
6425 be relocated. But in our callers i386_immediate and i386_displacement
6426 we don't yet know the operand size (this will be set by insn
6427 matching). Hence we record the word32 relocation here,
6428 and adjust the reloc according to the real size in reloc(). */
6429 static const struct {
6430 const char *str;
6431 int len;
6432 const enum bfd_reloc_code_real rel[2];
6433 const i386_operand_type types64;
6434 } gotrel[] = {
6435 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
6436 BFD_RELOC_X86_64_PLTOFF64 },
6437 OPERAND_TYPE_IMM64 },
6438 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
6439 BFD_RELOC_X86_64_PLT32 },
6440 OPERAND_TYPE_IMM32_32S_DISP32 },
6441 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
6442 BFD_RELOC_X86_64_GOTPLT64 },
6443 OPERAND_TYPE_IMM64_DISP64 },
6444 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
6445 BFD_RELOC_X86_64_GOTOFF64 },
6446 OPERAND_TYPE_IMM64_DISP64 },
6447 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
6448 BFD_RELOC_X86_64_GOTPCREL },
6449 OPERAND_TYPE_IMM32_32S_DISP32 },
6450 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
6451 BFD_RELOC_X86_64_TLSGD },
6452 OPERAND_TYPE_IMM32_32S_DISP32 },
6453 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
6454 _dummy_first_bfd_reloc_code_real },
6455 OPERAND_TYPE_NONE },
6456 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
6457 BFD_RELOC_X86_64_TLSLD },
6458 OPERAND_TYPE_IMM32_32S_DISP32 },
6459 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
6460 BFD_RELOC_X86_64_GOTTPOFF },
6461 OPERAND_TYPE_IMM32_32S_DISP32 },
6462 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
6463 BFD_RELOC_X86_64_TPOFF32 },
6464 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6465 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
6466 _dummy_first_bfd_reloc_code_real },
6467 OPERAND_TYPE_NONE },
6468 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
6469 BFD_RELOC_X86_64_DTPOFF32 },
6470 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6471 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
6472 _dummy_first_bfd_reloc_code_real },
6473 OPERAND_TYPE_NONE },
6474 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
6475 _dummy_first_bfd_reloc_code_real },
6476 OPERAND_TYPE_NONE },
6477 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
6478 BFD_RELOC_X86_64_GOT32 },
6479 OPERAND_TYPE_IMM32_32S_64_DISP32 },
6480 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
6481 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
6482 OPERAND_TYPE_IMM32_32S_DISP32 },
6483 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
6484 BFD_RELOC_X86_64_TLSDESC_CALL },
6485 OPERAND_TYPE_IMM32_32S_DISP32 },
6487 char *cp;
6488 unsigned int j;
6490 if (!IS_ELF)
6491 return NULL;
6493 for (cp = input_line_pointer; *cp != '@'; cp++)
6494 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6495 return NULL;
6497 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6499 int len = gotrel[j].len;
6500 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6502 if (gotrel[j].rel[object_64bit] != 0)
6504 int first, second;
6505 char *tmpbuf, *past_reloc;
6507 *rel = gotrel[j].rel[object_64bit];
6508 if (adjust)
6509 *adjust = len;
6511 if (types)
6513 if (flag_code != CODE_64BIT)
6515 types->bitfield.imm32 = 1;
6516 types->bitfield.disp32 = 1;
6518 else
6519 *types = gotrel[j].types64;
6522 if (GOT_symbol == NULL)
6523 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6525 /* The length of the first part of our input line. */
6526 first = cp - input_line_pointer;
6528 /* The second part goes from after the reloc token until
6529 (and including) an end_of_line char or comma. */
6530 past_reloc = cp + 1 + len;
6531 cp = past_reloc;
6532 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6533 ++cp;
6534 second = cp + 1 - past_reloc;
6536 /* Allocate and copy string. The trailing NUL shouldn't
6537 be necessary, but be safe. */
6538 tmpbuf = (char *) xmalloc (first + second + 2);
6539 memcpy (tmpbuf, input_line_pointer, first);
6540 if (second != 0 && *past_reloc != ' ')
6541 /* Replace the relocation token with ' ', so that
6542 errors like foo@GOTOFF1 will be detected. */
6543 tmpbuf[first++] = ' ';
6544 memcpy (tmpbuf + first, past_reloc, second);
6545 tmpbuf[first + second] = '\0';
6546 return tmpbuf;
6549 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6550 gotrel[j].str, 1 << (5 + object_64bit));
6551 return NULL;
6555 /* Might be a symbol version string. Don't as_bad here. */
6556 return NULL;
6559 void
6560 x86_cons (expressionS *exp, int size)
6562 intel_syntax = -intel_syntax;
6564 exp->X_md = 0;
6565 if (size == 4 || (object_64bit && size == 8))
6567 /* Handle @GOTOFF and the like in an expression. */
6568 char *save;
6569 char *gotfree_input_line;
6570 int adjust;
6572 save = input_line_pointer;
6573 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6574 if (gotfree_input_line)
6575 input_line_pointer = gotfree_input_line;
6577 expression (exp);
6579 if (gotfree_input_line)
6581 /* expression () has merrily parsed up to the end of line,
6582 or a comma - in the wrong buffer. Transfer how far
6583 input_line_pointer has moved to the right buffer. */
6584 input_line_pointer = (save
6585 + (input_line_pointer - gotfree_input_line)
6586 + adjust);
6587 free (gotfree_input_line);
6588 if (exp->X_op == O_constant
6589 || exp->X_op == O_absent
6590 || exp->X_op == O_illegal
6591 || exp->X_op == O_register
6592 || exp->X_op == O_big)
6594 char c = *input_line_pointer;
6595 *input_line_pointer = 0;
6596 as_bad (_("missing or invalid expression `%s'"), save);
6597 *input_line_pointer = c;
6601 else
6602 expression (exp);
6604 intel_syntax = -intel_syntax;
6606 if (intel_syntax)
6607 i386_intel_simplify (exp);
6609 #endif
6611 static void
6612 signed_cons (int size)
6614 if (flag_code == CODE_64BIT)
6615 cons_sign = 1;
6616 cons (size);
6617 cons_sign = -1;
6620 #ifdef TE_PE
6621 static void
6622 pe_directive_secrel (dummy)
6623 int dummy ATTRIBUTE_UNUSED;
6625 expressionS exp;
6629 expression (&exp);
6630 if (exp.X_op == O_symbol)
6631 exp.X_op = O_secrel;
6633 emit_expr (&exp, 4);
6635 while (*input_line_pointer++ == ',');
6637 input_line_pointer--;
6638 demand_empty_rest_of_line ();
6640 #endif
6642 static int
6643 i386_immediate (char *imm_start)
6645 char *save_input_line_pointer;
6646 char *gotfree_input_line;
6647 segT exp_seg = 0;
6648 expressionS *exp;
6649 i386_operand_type types;
6651 operand_type_set (&types, ~0);
6653 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6655 as_bad (_("at most %d immediate operands are allowed"),
6656 MAX_IMMEDIATE_OPERANDS);
6657 return 0;
6660 exp = &im_expressions[i.imm_operands++];
6661 i.op[this_operand].imms = exp;
6663 if (is_space_char (*imm_start))
6664 ++imm_start;
6666 save_input_line_pointer = input_line_pointer;
6667 input_line_pointer = imm_start;
6669 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6670 if (gotfree_input_line)
6671 input_line_pointer = gotfree_input_line;
6673 exp_seg = expression (exp);
6675 SKIP_WHITESPACE ();
6676 if (*input_line_pointer)
6677 as_bad (_("junk `%s' after expression"), input_line_pointer);
6679 input_line_pointer = save_input_line_pointer;
6680 if (gotfree_input_line)
6682 free (gotfree_input_line);
6684 if (exp->X_op == O_constant || exp->X_op == O_register)
6685 exp->X_op = O_illegal;
6688 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6691 static int
6692 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6693 i386_operand_type types, const char *imm_start)
6695 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6697 if (imm_start)
6698 as_bad (_("missing or invalid immediate expression `%s'"),
6699 imm_start);
6700 return 0;
6702 else if (exp->X_op == O_constant)
6704 /* Size it properly later. */
6705 i.types[this_operand].bitfield.imm64 = 1;
6706 /* If not 64bit, sign extend val. */
6707 if (flag_code != CODE_64BIT
6708 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6709 exp->X_add_number
6710 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6712 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6713 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6714 && exp_seg != absolute_section
6715 && exp_seg != text_section
6716 && exp_seg != data_section
6717 && exp_seg != bss_section
6718 && exp_seg != undefined_section
6719 && !bfd_is_com_section (exp_seg))
6721 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6722 return 0;
6724 #endif
6725 else if (!intel_syntax && exp->X_op == O_register)
6727 if (imm_start)
6728 as_bad (_("illegal immediate register operand %s"), imm_start);
6729 return 0;
6731 else
6733 /* This is an address. The size of the address will be
6734 determined later, depending on destination register,
6735 suffix, or the default for the section. */
6736 i.types[this_operand].bitfield.imm8 = 1;
6737 i.types[this_operand].bitfield.imm16 = 1;
6738 i.types[this_operand].bitfield.imm32 = 1;
6739 i.types[this_operand].bitfield.imm32s = 1;
6740 i.types[this_operand].bitfield.imm64 = 1;
6741 i.types[this_operand] = operand_type_and (i.types[this_operand],
6742 types);
6745 return 1;
6748 static char *
6749 i386_scale (char *scale)
6751 offsetT val;
6752 char *save = input_line_pointer;
6754 input_line_pointer = scale;
6755 val = get_absolute_expression ();
6757 switch (val)
6759 case 1:
6760 i.log2_scale_factor = 0;
6761 break;
6762 case 2:
6763 i.log2_scale_factor = 1;
6764 break;
6765 case 4:
6766 i.log2_scale_factor = 2;
6767 break;
6768 case 8:
6769 i.log2_scale_factor = 3;
6770 break;
6771 default:
6773 char sep = *input_line_pointer;
6775 *input_line_pointer = '\0';
6776 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6777 scale);
6778 *input_line_pointer = sep;
6779 input_line_pointer = save;
6780 return NULL;
6783 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6785 as_warn (_("scale factor of %d without an index register"),
6786 1 << i.log2_scale_factor);
6787 i.log2_scale_factor = 0;
6789 scale = input_line_pointer;
6790 input_line_pointer = save;
6791 return scale;
6794 static int
6795 i386_displacement (char *disp_start, char *disp_end)
6797 expressionS *exp;
6798 segT exp_seg = 0;
6799 char *save_input_line_pointer;
6800 char *gotfree_input_line;
6801 int override;
6802 i386_operand_type bigdisp, types = anydisp;
6803 int ret;
6805 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6807 as_bad (_("at most %d displacement operands are allowed"),
6808 MAX_MEMORY_OPERANDS);
6809 return 0;
6812 operand_type_set (&bigdisp, 0);
6813 if ((i.types[this_operand].bitfield.jumpabsolute)
6814 || (!current_templates->start->opcode_modifier.jump
6815 && !current_templates->start->opcode_modifier.jumpdword))
6817 bigdisp.bitfield.disp32 = 1;
6818 override = (i.prefix[ADDR_PREFIX] != 0);
6819 if (flag_code == CODE_64BIT)
6821 if (!override)
6823 bigdisp.bitfield.disp32s = 1;
6824 bigdisp.bitfield.disp64 = 1;
6827 else if ((flag_code == CODE_16BIT) ^ override)
6829 bigdisp.bitfield.disp32 = 0;
6830 bigdisp.bitfield.disp16 = 1;
6833 else
6835 /* For PC-relative branches, the width of the displacement
6836 is dependent upon data size, not address size. */
6837 override = (i.prefix[DATA_PREFIX] != 0);
6838 if (flag_code == CODE_64BIT)
6840 if (override || i.suffix == WORD_MNEM_SUFFIX)
6841 bigdisp.bitfield.disp16 = 1;
6842 else
6844 bigdisp.bitfield.disp32 = 1;
6845 bigdisp.bitfield.disp32s = 1;
6848 else
6850 if (!override)
6851 override = (i.suffix == (flag_code != CODE_16BIT
6852 ? WORD_MNEM_SUFFIX
6853 : LONG_MNEM_SUFFIX));
6854 bigdisp.bitfield.disp32 = 1;
6855 if ((flag_code == CODE_16BIT) ^ override)
6857 bigdisp.bitfield.disp32 = 0;
6858 bigdisp.bitfield.disp16 = 1;
6862 i.types[this_operand] = operand_type_or (i.types[this_operand],
6863 bigdisp);
6865 exp = &disp_expressions[i.disp_operands];
6866 i.op[this_operand].disps = exp;
6867 i.disp_operands++;
6868 save_input_line_pointer = input_line_pointer;
6869 input_line_pointer = disp_start;
6870 END_STRING_AND_SAVE (disp_end);
6872 #ifndef GCC_ASM_O_HACK
6873 #define GCC_ASM_O_HACK 0
6874 #endif
6875 #if GCC_ASM_O_HACK
6876 END_STRING_AND_SAVE (disp_end + 1);
6877 if (i.types[this_operand].bitfield.baseIndex
6878 && displacement_string_end[-1] == '+')
6880 /* This hack is to avoid a warning when using the "o"
6881 constraint within gcc asm statements.
6882 For instance:
6884 #define _set_tssldt_desc(n,addr,limit,type) \
6885 __asm__ __volatile__ ( \
6886 "movw %w2,%0\n\t" \
6887 "movw %w1,2+%0\n\t" \
6888 "rorl $16,%1\n\t" \
6889 "movb %b1,4+%0\n\t" \
6890 "movb %4,5+%0\n\t" \
6891 "movb $0,6+%0\n\t" \
6892 "movb %h1,7+%0\n\t" \
6893 "rorl $16,%1" \
6894 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6896 This works great except that the output assembler ends
6897 up looking a bit weird if it turns out that there is
6898 no offset. You end up producing code that looks like:
6900 #APP
6901 movw $235,(%eax)
6902 movw %dx,2+(%eax)
6903 rorl $16,%edx
6904 movb %dl,4+(%eax)
6905 movb $137,5+(%eax)
6906 movb $0,6+(%eax)
6907 movb %dh,7+(%eax)
6908 rorl $16,%edx
6909 #NO_APP
6911 So here we provide the missing zero. */
6913 *displacement_string_end = '0';
6915 #endif
6916 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6917 if (gotfree_input_line)
6918 input_line_pointer = gotfree_input_line;
6920 exp_seg = expression (exp);
6922 SKIP_WHITESPACE ();
6923 if (*input_line_pointer)
6924 as_bad (_("junk `%s' after expression"), input_line_pointer);
6925 #if GCC_ASM_O_HACK
6926 RESTORE_END_STRING (disp_end + 1);
6927 #endif
6928 input_line_pointer = save_input_line_pointer;
6929 if (gotfree_input_line)
6931 free (gotfree_input_line);
6933 if (exp->X_op == O_constant || exp->X_op == O_register)
6934 exp->X_op = O_illegal;
6937 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6939 RESTORE_END_STRING (disp_end);
6941 return ret;
6944 static int
6945 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6946 i386_operand_type types, const char *disp_start)
6948 i386_operand_type bigdisp;
6949 int ret = 1;
6951 /* We do this to make sure that the section symbol is in
6952 the symbol table. We will ultimately change the relocation
6953 to be relative to the beginning of the section. */
6954 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6955 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6956 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6958 if (exp->X_op != O_symbol)
6959 goto inv_disp;
6961 if (S_IS_LOCAL (exp->X_add_symbol)
6962 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
6963 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
6964 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6965 exp->X_op = O_subtract;
6966 exp->X_op_symbol = GOT_symbol;
6967 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6968 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6969 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6970 i.reloc[this_operand] = BFD_RELOC_64;
6971 else
6972 i.reloc[this_operand] = BFD_RELOC_32;
6975 else if (exp->X_op == O_absent
6976 || exp->X_op == O_illegal
6977 || exp->X_op == O_big)
6979 inv_disp:
6980 as_bad (_("missing or invalid displacement expression `%s'"),
6981 disp_start);
6982 ret = 0;
6985 else if (flag_code == CODE_64BIT
6986 && !i.prefix[ADDR_PREFIX]
6987 && exp->X_op == O_constant)
6989 /* Since displacement is signed extended to 64bit, don't allow
6990 disp32 and turn off disp32s if they are out of range. */
6991 i.types[this_operand].bitfield.disp32 = 0;
6992 if (!fits_in_signed_long (exp->X_add_number))
6994 i.types[this_operand].bitfield.disp32s = 0;
6995 if (i.types[this_operand].bitfield.baseindex)
6997 as_bad (_("0x%lx out range of signed 32bit displacement"),
6998 (long) exp->X_add_number);
6999 ret = 0;
7004 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7005 else if (exp->X_op != O_constant
7006 && OUTPUT_FLAVOR == bfd_target_aout_flavour
7007 && exp_seg != absolute_section
7008 && exp_seg != text_section
7009 && exp_seg != data_section
7010 && exp_seg != bss_section
7011 && exp_seg != undefined_section
7012 && !bfd_is_com_section (exp_seg))
7014 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7015 ret = 0;
7017 #endif
7019 /* Check if this is a displacement only operand. */
7020 bigdisp = i.types[this_operand];
7021 bigdisp.bitfield.disp8 = 0;
7022 bigdisp.bitfield.disp16 = 0;
7023 bigdisp.bitfield.disp32 = 0;
7024 bigdisp.bitfield.disp32s = 0;
7025 bigdisp.bitfield.disp64 = 0;
7026 if (operand_type_all_zero (&bigdisp))
7027 i.types[this_operand] = operand_type_and (i.types[this_operand],
7028 types);
7030 return ret;
7033 /* Make sure the memory operand we've been dealt is valid.
7034 Return 1 on success, 0 on a failure. */
7036 static int
7037 i386_index_check (const char *operand_string)
7039 int ok;
7040 const char *kind = "base/index";
7041 #if INFER_ADDR_PREFIX
7042 int fudged = 0;
7044 tryprefix:
7045 #endif
7046 ok = 1;
7047 if (current_templates->start->opcode_modifier.isstring
7048 && !current_templates->start->opcode_modifier.immext
7049 && (current_templates->end[-1].opcode_modifier.isstring
7050 || i.mem_operands))
7052 /* Memory operands of string insns are special in that they only allow
7053 a single register (rDI, rSI, or rBX) as their memory address. */
7054 unsigned int expected;
7056 kind = "string address";
7058 if (current_templates->start->opcode_modifier.w)
7060 i386_operand_type type = current_templates->end[-1].operand_types[0];
7062 if (!type.bitfield.baseindex
7063 || ((!i.mem_operands != !intel_syntax)
7064 && current_templates->end[-1].operand_types[1]
7065 .bitfield.baseindex))
7066 type = current_templates->end[-1].operand_types[1];
7067 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
7069 else
7070 expected = 3 /* rBX */;
7072 if (!i.base_reg || i.index_reg
7073 || operand_type_check (i.types[this_operand], disp))
7074 ok = -1;
7075 else if (!(flag_code == CODE_64BIT
7076 ? i.prefix[ADDR_PREFIX]
7077 ? i.base_reg->reg_type.bitfield.reg32
7078 : i.base_reg->reg_type.bitfield.reg64
7079 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7080 ? i.base_reg->reg_type.bitfield.reg32
7081 : i.base_reg->reg_type.bitfield.reg16))
7082 ok = 0;
7083 else if (i.base_reg->reg_num != expected)
7084 ok = -1;
7086 if (ok < 0)
7088 unsigned int j;
7090 for (j = 0; j < i386_regtab_size; ++j)
7091 if ((flag_code == CODE_64BIT
7092 ? i.prefix[ADDR_PREFIX]
7093 ? i386_regtab[j].reg_type.bitfield.reg32
7094 : i386_regtab[j].reg_type.bitfield.reg64
7095 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
7096 ? i386_regtab[j].reg_type.bitfield.reg32
7097 : i386_regtab[j].reg_type.bitfield.reg16)
7098 && i386_regtab[j].reg_num == expected)
7099 break;
7100 gas_assert (j < i386_regtab_size);
7101 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
7102 operand_string,
7103 intel_syntax ? '[' : '(',
7104 register_prefix,
7105 i386_regtab[j].reg_name,
7106 intel_syntax ? ']' : ')');
7107 ok = 1;
7110 else if (flag_code == CODE_64BIT)
7112 if ((i.base_reg
7113 && ((i.prefix[ADDR_PREFIX] == 0
7114 && !i.base_reg->reg_type.bitfield.reg64)
7115 || (i.prefix[ADDR_PREFIX]
7116 && !i.base_reg->reg_type.bitfield.reg32))
7117 && (i.index_reg
7118 || i.base_reg->reg_num !=
7119 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
7120 || (i.index_reg
7121 && (!i.index_reg->reg_type.bitfield.baseindex
7122 || (i.prefix[ADDR_PREFIX] == 0
7123 && i.index_reg->reg_num != RegRiz
7124 && !i.index_reg->reg_type.bitfield.reg64
7126 || (i.prefix[ADDR_PREFIX]
7127 && i.index_reg->reg_num != RegEiz
7128 && !i.index_reg->reg_type.bitfield.reg32))))
7129 ok = 0;
7131 else
7133 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
7135 /* 16bit checks. */
7136 if ((i.base_reg
7137 && (!i.base_reg->reg_type.bitfield.reg16
7138 || !i.base_reg->reg_type.bitfield.baseindex))
7139 || (i.index_reg
7140 && (!i.index_reg->reg_type.bitfield.reg16
7141 || !i.index_reg->reg_type.bitfield.baseindex
7142 || !(i.base_reg
7143 && i.base_reg->reg_num < 6
7144 && i.index_reg->reg_num >= 6
7145 && i.log2_scale_factor == 0))))
7146 ok = 0;
7148 else
7150 /* 32bit checks. */
7151 if ((i.base_reg
7152 && !i.base_reg->reg_type.bitfield.reg32)
7153 || (i.index_reg
7154 && ((!i.index_reg->reg_type.bitfield.reg32
7155 && i.index_reg->reg_num != RegEiz)
7156 || !i.index_reg->reg_type.bitfield.baseindex)))
7157 ok = 0;
7160 if (!ok)
7162 #if INFER_ADDR_PREFIX
7163 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
7165 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
7166 i.prefixes += 1;
7167 /* Change the size of any displacement too. At most one of
7168 Disp16 or Disp32 is set.
7169 FIXME. There doesn't seem to be any real need for separate
7170 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
7171 Removing them would probably clean up the code quite a lot. */
7172 if (flag_code != CODE_64BIT
7173 && (i.types[this_operand].bitfield.disp16
7174 || i.types[this_operand].bitfield.disp32))
7175 i.types[this_operand]
7176 = operand_type_xor (i.types[this_operand], disp16_32);
7177 fudged = 1;
7178 goto tryprefix;
7180 if (fudged)
7181 as_bad (_("`%s' is not a valid %s expression"),
7182 operand_string,
7183 kind);
7184 else
7185 #endif
7186 as_bad (_("`%s' is not a valid %s-bit %s expression"),
7187 operand_string,
7188 flag_code_names[i.prefix[ADDR_PREFIX]
7189 ? flag_code == CODE_32BIT
7190 ? CODE_16BIT
7191 : CODE_32BIT
7192 : flag_code],
7193 kind);
7195 return ok;
7198 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
7199 on error. */
7201 static int
7202 i386_att_operand (char *operand_string)
7204 const reg_entry *r;
7205 char *end_op;
7206 char *op_string = operand_string;
7208 if (is_space_char (*op_string))
7209 ++op_string;
7211 /* We check for an absolute prefix (differentiating,
7212 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
7213 if (*op_string == ABSOLUTE_PREFIX)
7215 ++op_string;
7216 if (is_space_char (*op_string))
7217 ++op_string;
7218 i.types[this_operand].bitfield.jumpabsolute = 1;
7221 /* Check if operand is a register. */
7222 if ((r = parse_register (op_string, &end_op)) != NULL)
7224 i386_operand_type temp;
7226 /* Check for a segment override by searching for ':' after a
7227 segment register. */
7228 op_string = end_op;
7229 if (is_space_char (*op_string))
7230 ++op_string;
7231 if (*op_string == ':'
7232 && (r->reg_type.bitfield.sreg2
7233 || r->reg_type.bitfield.sreg3))
7235 switch (r->reg_num)
7237 case 0:
7238 i.seg[i.mem_operands] = &es;
7239 break;
7240 case 1:
7241 i.seg[i.mem_operands] = &cs;
7242 break;
7243 case 2:
7244 i.seg[i.mem_operands] = &ss;
7245 break;
7246 case 3:
7247 i.seg[i.mem_operands] = &ds;
7248 break;
7249 case 4:
7250 i.seg[i.mem_operands] = &fs;
7251 break;
7252 case 5:
7253 i.seg[i.mem_operands] = &gs;
7254 break;
7257 /* Skip the ':' and whitespace. */
7258 ++op_string;
7259 if (is_space_char (*op_string))
7260 ++op_string;
7262 if (!is_digit_char (*op_string)
7263 && !is_identifier_char (*op_string)
7264 && *op_string != '('
7265 && *op_string != ABSOLUTE_PREFIX)
7267 as_bad (_("bad memory operand `%s'"), op_string);
7268 return 0;
7270 /* Handle case of %es:*foo. */
7271 if (*op_string == ABSOLUTE_PREFIX)
7273 ++op_string;
7274 if (is_space_char (*op_string))
7275 ++op_string;
7276 i.types[this_operand].bitfield.jumpabsolute = 1;
7278 goto do_memory_reference;
7280 if (*op_string)
7282 as_bad (_("junk `%s' after register"), op_string);
7283 return 0;
7285 temp = r->reg_type;
7286 temp.bitfield.baseindex = 0;
7287 i.types[this_operand] = operand_type_or (i.types[this_operand],
7288 temp);
7289 i.types[this_operand].bitfield.unspecified = 0;
7290 i.op[this_operand].regs = r;
7291 i.reg_operands++;
7293 else if (*op_string == REGISTER_PREFIX)
7295 as_bad (_("bad register name `%s'"), op_string);
7296 return 0;
7298 else if (*op_string == IMMEDIATE_PREFIX)
7300 ++op_string;
7301 if (i.types[this_operand].bitfield.jumpabsolute)
7303 as_bad (_("immediate operand illegal with absolute jump"));
7304 return 0;
7306 if (!i386_immediate (op_string))
7307 return 0;
7309 else if (is_digit_char (*op_string)
7310 || is_identifier_char (*op_string)
7311 || *op_string == '(')
7313 /* This is a memory reference of some sort. */
7314 char *base_string;
7316 /* Start and end of displacement string expression (if found). */
7317 char *displacement_string_start;
7318 char *displacement_string_end;
7320 do_memory_reference:
7321 if ((i.mem_operands == 1
7322 && !current_templates->start->opcode_modifier.isstring)
7323 || i.mem_operands == 2)
7325 as_bad (_("too many memory references for `%s'"),
7326 current_templates->start->name);
7327 return 0;
7330 /* Check for base index form. We detect the base index form by
7331 looking for an ')' at the end of the operand, searching
7332 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7333 after the '('. */
7334 base_string = op_string + strlen (op_string);
7336 --base_string;
7337 if (is_space_char (*base_string))
7338 --base_string;
7340 /* If we only have a displacement, set-up for it to be parsed later. */
7341 displacement_string_start = op_string;
7342 displacement_string_end = base_string + 1;
7344 if (*base_string == ')')
7346 char *temp_string;
7347 unsigned int parens_balanced = 1;
7348 /* We've already checked that the number of left & right ()'s are
7349 equal, so this loop will not be infinite. */
7352 base_string--;
7353 if (*base_string == ')')
7354 parens_balanced++;
7355 if (*base_string == '(')
7356 parens_balanced--;
7358 while (parens_balanced);
7360 temp_string = base_string;
7362 /* Skip past '(' and whitespace. */
7363 ++base_string;
7364 if (is_space_char (*base_string))
7365 ++base_string;
7367 if (*base_string == ','
7368 || ((i.base_reg = parse_register (base_string, &end_op))
7369 != NULL))
7371 displacement_string_end = temp_string;
7373 i.types[this_operand].bitfield.baseindex = 1;
7375 if (i.base_reg)
7377 base_string = end_op;
7378 if (is_space_char (*base_string))
7379 ++base_string;
7382 /* There may be an index reg or scale factor here. */
7383 if (*base_string == ',')
7385 ++base_string;
7386 if (is_space_char (*base_string))
7387 ++base_string;
7389 if ((i.index_reg = parse_register (base_string, &end_op))
7390 != NULL)
7392 base_string = end_op;
7393 if (is_space_char (*base_string))
7394 ++base_string;
7395 if (*base_string == ',')
7397 ++base_string;
7398 if (is_space_char (*base_string))
7399 ++base_string;
7401 else if (*base_string != ')')
7403 as_bad (_("expecting `,' or `)' "
7404 "after index register in `%s'"),
7405 operand_string);
7406 return 0;
7409 else if (*base_string == REGISTER_PREFIX)
7411 as_bad (_("bad register name `%s'"), base_string);
7412 return 0;
7415 /* Check for scale factor. */
7416 if (*base_string != ')')
7418 char *end_scale = i386_scale (base_string);
7420 if (!end_scale)
7421 return 0;
7423 base_string = end_scale;
7424 if (is_space_char (*base_string))
7425 ++base_string;
7426 if (*base_string != ')')
7428 as_bad (_("expecting `)' "
7429 "after scale factor in `%s'"),
7430 operand_string);
7431 return 0;
7434 else if (!i.index_reg)
7436 as_bad (_("expecting index register or scale factor "
7437 "after `,'; got '%c'"),
7438 *base_string);
7439 return 0;
7442 else if (*base_string != ')')
7444 as_bad (_("expecting `,' or `)' "
7445 "after base register in `%s'"),
7446 operand_string);
7447 return 0;
7450 else if (*base_string == REGISTER_PREFIX)
7452 as_bad (_("bad register name `%s'"), base_string);
7453 return 0;
7457 /* If there's an expression beginning the operand, parse it,
7458 assuming displacement_string_start and
7459 displacement_string_end are meaningful. */
7460 if (displacement_string_start != displacement_string_end)
7462 if (!i386_displacement (displacement_string_start,
7463 displacement_string_end))
7464 return 0;
7467 /* Special case for (%dx) while doing input/output op. */
7468 if (i.base_reg
7469 && operand_type_equal (&i.base_reg->reg_type,
7470 &reg16_inoutportreg)
7471 && i.index_reg == 0
7472 && i.log2_scale_factor == 0
7473 && i.seg[i.mem_operands] == 0
7474 && !operand_type_check (i.types[this_operand], disp))
7476 i.types[this_operand] = inoutportreg;
7477 return 1;
7480 if (i386_index_check (operand_string) == 0)
7481 return 0;
7482 i.types[this_operand].bitfield.mem = 1;
7483 i.mem_operands++;
7485 else
7487 /* It's not a memory operand; argh! */
7488 as_bad (_("invalid char %s beginning operand %d `%s'"),
7489 output_invalid (*op_string),
7490 this_operand + 1,
7491 op_string);
7492 return 0;
7494 return 1; /* Normal return. */
7497 /* md_estimate_size_before_relax()
7499 Called just before relax() for rs_machine_dependent frags. The x86
7500 assembler uses these frags to handle variable size jump
7501 instructions.
7503 Any symbol that is now undefined will not become defined.
7504 Return the correct fr_subtype in the frag.
7505 Return the initial "guess for variable size of frag" to caller.
7506 The guess is actually the growth beyond the fixed part. Whatever
7507 we do to grow the fixed or variable part contributes to our
7508 returned value. */
7511 md_estimate_size_before_relax (fragP, segment)
7512 fragS *fragP;
7513 segT segment;
7515 /* We've already got fragP->fr_subtype right; all we have to do is
7516 check for un-relaxable symbols. On an ELF system, we can't relax
7517 an externally visible symbol, because it may be overridden by a
7518 shared library. */
7519 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
7520 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7521 || (IS_ELF
7522 && (S_IS_EXTERNAL (fragP->fr_symbol)
7523 || S_IS_WEAK (fragP->fr_symbol)
7524 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7525 & BSF_GNU_INDIRECT_FUNCTION))))
7526 #endif
7527 #if defined (OBJ_COFF) && defined (TE_PE)
7528 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
7529 && S_IS_WEAK (fragP->fr_symbol))
7530 #endif
7533 /* Symbol is undefined in this segment, or we need to keep a
7534 reloc so that weak symbols can be overridden. */
7535 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7536 enum bfd_reloc_code_real reloc_type;
7537 unsigned char *opcode;
7538 int old_fr_fix;
7540 if (fragP->fr_var != NO_RELOC)
7541 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
7542 else if (size == 2)
7543 reloc_type = BFD_RELOC_16_PCREL;
7544 else
7545 reloc_type = BFD_RELOC_32_PCREL;
7547 old_fr_fix = fragP->fr_fix;
7548 opcode = (unsigned char *) fragP->fr_opcode;
7550 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7552 case UNCOND_JUMP:
7553 /* Make jmp (0xeb) a (d)word displacement jump. */
7554 opcode[0] = 0xe9;
7555 fragP->fr_fix += size;
7556 fix_new (fragP, old_fr_fix, size,
7557 fragP->fr_symbol,
7558 fragP->fr_offset, 1,
7559 reloc_type);
7560 break;
7562 case COND_JUMP86:
7563 if (size == 2
7564 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7566 /* Negate the condition, and branch past an
7567 unconditional jump. */
7568 opcode[0] ^= 1;
7569 opcode[1] = 3;
7570 /* Insert an unconditional jump. */
7571 opcode[2] = 0xe9;
7572 /* We added two extra opcode bytes, and have a two byte
7573 offset. */
7574 fragP->fr_fix += 2 + 2;
7575 fix_new (fragP, old_fr_fix + 2, 2,
7576 fragP->fr_symbol,
7577 fragP->fr_offset, 1,
7578 reloc_type);
7579 break;
7581 /* Fall through. */
7583 case COND_JUMP:
7584 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7586 fixS *fixP;
7588 fragP->fr_fix += 1;
7589 fixP = fix_new (fragP, old_fr_fix, 1,
7590 fragP->fr_symbol,
7591 fragP->fr_offset, 1,
7592 BFD_RELOC_8_PCREL);
7593 fixP->fx_signed = 1;
7594 break;
7597 /* This changes the byte-displacement jump 0x7N
7598 to the (d)word-displacement jump 0x0f,0x8N. */
7599 opcode[1] = opcode[0] + 0x10;
7600 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7601 /* We've added an opcode byte. */
7602 fragP->fr_fix += 1 + size;
7603 fix_new (fragP, old_fr_fix + 1, size,
7604 fragP->fr_symbol,
7605 fragP->fr_offset, 1,
7606 reloc_type);
7607 break;
7609 default:
7610 BAD_CASE (fragP->fr_subtype);
7611 break;
7613 frag_wane (fragP);
7614 return fragP->fr_fix - old_fr_fix;
7617 /* Guess size depending on current relax state. Initially the relax
7618 state will correspond to a short jump and we return 1, because
7619 the variable part of the frag (the branch offset) is one byte
7620 long. However, we can relax a section more than once and in that
7621 case we must either set fr_subtype back to the unrelaxed state,
7622 or return the value for the appropriate branch. */
7623 return md_relax_table[fragP->fr_subtype].rlx_length;
7626 /* Called after relax() is finished.
7628 In: Address of frag.
7629 fr_type == rs_machine_dependent.
7630 fr_subtype is what the address relaxed to.
7632 Out: Any fixSs and constants are set up.
7633 Caller will turn frag into a ".space 0". */
7635 void
7636 md_convert_frag (abfd, sec, fragP)
7637 bfd *abfd ATTRIBUTE_UNUSED;
7638 segT sec ATTRIBUTE_UNUSED;
7639 fragS *fragP;
7641 unsigned char *opcode;
7642 unsigned char *where_to_put_displacement = NULL;
7643 offsetT target_address;
7644 offsetT opcode_address;
7645 unsigned int extension = 0;
7646 offsetT displacement_from_opcode_start;
7648 opcode = (unsigned char *) fragP->fr_opcode;
7650 /* Address we want to reach in file space. */
7651 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7653 /* Address opcode resides at in file space. */
7654 opcode_address = fragP->fr_address + fragP->fr_fix;
7656 /* Displacement from opcode start to fill into instruction. */
7657 displacement_from_opcode_start = target_address - opcode_address;
7659 if ((fragP->fr_subtype & BIG) == 0)
7661 /* Don't have to change opcode. */
7662 extension = 1; /* 1 opcode + 1 displacement */
7663 where_to_put_displacement = &opcode[1];
7665 else
7667 if (no_cond_jump_promotion
7668 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7669 as_warn_where (fragP->fr_file, fragP->fr_line,
7670 _("long jump required"));
7672 switch (fragP->fr_subtype)
7674 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7675 extension = 4; /* 1 opcode + 4 displacement */
7676 opcode[0] = 0xe9;
7677 where_to_put_displacement = &opcode[1];
7678 break;
7680 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7681 extension = 2; /* 1 opcode + 2 displacement */
7682 opcode[0] = 0xe9;
7683 where_to_put_displacement = &opcode[1];
7684 break;
7686 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7687 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7688 extension = 5; /* 2 opcode + 4 displacement */
7689 opcode[1] = opcode[0] + 0x10;
7690 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7691 where_to_put_displacement = &opcode[2];
7692 break;
7694 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7695 extension = 3; /* 2 opcode + 2 displacement */
7696 opcode[1] = opcode[0] + 0x10;
7697 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7698 where_to_put_displacement = &opcode[2];
7699 break;
7701 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7702 extension = 4;
7703 opcode[0] ^= 1;
7704 opcode[1] = 3;
7705 opcode[2] = 0xe9;
7706 where_to_put_displacement = &opcode[3];
7707 break;
7709 default:
7710 BAD_CASE (fragP->fr_subtype);
7711 break;
7715 /* If size if less then four we are sure that the operand fits,
7716 but if it's 4, then it could be that the displacement is larger
7717 then -/+ 2GB. */
7718 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7719 && object_64bit
7720 && ((addressT) (displacement_from_opcode_start - extension
7721 + ((addressT) 1 << 31))
7722 > (((addressT) 2 << 31) - 1)))
7724 as_bad_where (fragP->fr_file, fragP->fr_line,
7725 _("jump target out of range"));
7726 /* Make us emit 0. */
7727 displacement_from_opcode_start = extension;
7729 /* Now put displacement after opcode. */
7730 md_number_to_chars ((char *) where_to_put_displacement,
7731 (valueT) (displacement_from_opcode_start - extension),
7732 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7733 fragP->fr_fix += extension;
7736 /* Apply a fixup (fixS) to segment data, once it has been determined
7737 by our caller that we have all the info we need to fix it up.
7739 On the 386, immediates, displacements, and data pointers are all in
7740 the same (little-endian) format, so we don't need to care about which
7741 we are handling. */
7743 void
7744 md_apply_fix (fixP, valP, seg)
7745 /* The fix we're to put in. */
7746 fixS *fixP;
7747 /* Pointer to the value of the bits. */
7748 valueT *valP;
7749 /* Segment fix is from. */
7750 segT seg ATTRIBUTE_UNUSED;
7752 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7753 valueT value = *valP;
7755 #if !defined (TE_Mach)
7756 if (fixP->fx_pcrel)
7758 switch (fixP->fx_r_type)
7760 default:
7761 break;
7763 case BFD_RELOC_64:
7764 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7765 break;
7766 case BFD_RELOC_32:
7767 case BFD_RELOC_X86_64_32S:
7768 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7769 break;
7770 case BFD_RELOC_16:
7771 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7772 break;
7773 case BFD_RELOC_8:
7774 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7775 break;
7779 if (fixP->fx_addsy != NULL
7780 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7781 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7782 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7783 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7784 && !use_rela_relocations)
7786 /* This is a hack. There should be a better way to handle this.
7787 This covers for the fact that bfd_install_relocation will
7788 subtract the current location (for partial_inplace, PC relative
7789 relocations); see more below. */
7790 #ifndef OBJ_AOUT
7791 if (IS_ELF
7792 #ifdef TE_PE
7793 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7794 #endif
7796 value += fixP->fx_where + fixP->fx_frag->fr_address;
7797 #endif
7798 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7799 if (IS_ELF)
7801 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7803 if ((sym_seg == seg
7804 || (symbol_section_p (fixP->fx_addsy)
7805 && sym_seg != absolute_section))
7806 && !generic_force_reloc (fixP))
7808 /* Yes, we add the values in twice. This is because
7809 bfd_install_relocation subtracts them out again. I think
7810 bfd_install_relocation is broken, but I don't dare change
7811 it. FIXME. */
7812 value += fixP->fx_where + fixP->fx_frag->fr_address;
7815 #endif
7816 #if defined (OBJ_COFF) && defined (TE_PE)
7817 /* For some reason, the PE format does not store a
7818 section address offset for a PC relative symbol. */
7819 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7820 || S_IS_WEAK (fixP->fx_addsy))
7821 value += md_pcrel_from (fixP);
7822 #endif
7824 #if defined (OBJ_COFF) && defined (TE_PE)
7825 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7827 value -= S_GET_VALUE (fixP->fx_addsy);
7829 #endif
7831 /* Fix a few things - the dynamic linker expects certain values here,
7832 and we must not disappoint it. */
7833 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7834 if (IS_ELF && fixP->fx_addsy)
7835 switch (fixP->fx_r_type)
7837 case BFD_RELOC_386_PLT32:
7838 case BFD_RELOC_X86_64_PLT32:
7839 /* Make the jump instruction point to the address of the operand. At
7840 runtime we merely add the offset to the actual PLT entry. */
7841 value = -4;
7842 break;
7844 case BFD_RELOC_386_TLS_GD:
7845 case BFD_RELOC_386_TLS_LDM:
7846 case BFD_RELOC_386_TLS_IE_32:
7847 case BFD_RELOC_386_TLS_IE:
7848 case BFD_RELOC_386_TLS_GOTIE:
7849 case BFD_RELOC_386_TLS_GOTDESC:
7850 case BFD_RELOC_X86_64_TLSGD:
7851 case BFD_RELOC_X86_64_TLSLD:
7852 case BFD_RELOC_X86_64_GOTTPOFF:
7853 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7854 value = 0; /* Fully resolved at runtime. No addend. */
7855 /* Fallthrough */
7856 case BFD_RELOC_386_TLS_LE:
7857 case BFD_RELOC_386_TLS_LDO_32:
7858 case BFD_RELOC_386_TLS_LE_32:
7859 case BFD_RELOC_X86_64_DTPOFF32:
7860 case BFD_RELOC_X86_64_DTPOFF64:
7861 case BFD_RELOC_X86_64_TPOFF32:
7862 case BFD_RELOC_X86_64_TPOFF64:
7863 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7864 break;
7866 case BFD_RELOC_386_TLS_DESC_CALL:
7867 case BFD_RELOC_X86_64_TLSDESC_CALL:
7868 value = 0; /* Fully resolved at runtime. No addend. */
7869 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7870 fixP->fx_done = 0;
7871 return;
7873 case BFD_RELOC_386_GOT32:
7874 case BFD_RELOC_X86_64_GOT32:
7875 value = 0; /* Fully resolved at runtime. No addend. */
7876 break;
7878 case BFD_RELOC_VTABLE_INHERIT:
7879 case BFD_RELOC_VTABLE_ENTRY:
7880 fixP->fx_done = 0;
7881 return;
7883 default:
7884 break;
7886 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7887 *valP = value;
7888 #endif /* !defined (TE_Mach) */
7890 /* Are we finished with this relocation now? */
7891 if (fixP->fx_addsy == NULL)
7892 fixP->fx_done = 1;
7893 #if defined (OBJ_COFF) && defined (TE_PE)
7894 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7896 fixP->fx_done = 0;
7897 /* Remember value for tc_gen_reloc. */
7898 fixP->fx_addnumber = value;
7899 /* Clear out the frag for now. */
7900 value = 0;
7902 #endif
7903 else if (use_rela_relocations)
7905 fixP->fx_no_overflow = 1;
7906 /* Remember value for tc_gen_reloc. */
7907 fixP->fx_addnumber = value;
7908 value = 0;
7911 md_number_to_chars (p, value, fixP->fx_size);
7914 char *
7915 md_atof (int type, char *litP, int *sizeP)
7917 /* This outputs the LITTLENUMs in REVERSE order;
7918 in accord with the bigendian 386. */
7919 return ieee_md_atof (type, litP, sizeP, FALSE);
7922 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7924 static char *
7925 output_invalid (int c)
7927 if (ISPRINT (c))
7928 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7929 "'%c'", c);
7930 else
7931 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7932 "(0x%x)", (unsigned char) c);
7933 return output_invalid_buf;
7936 /* REG_STRING starts *before* REGISTER_PREFIX. */
7938 static const reg_entry *
7939 parse_real_register (char *reg_string, char **end_op)
7941 char *s = reg_string;
7942 char *p;
7943 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7944 const reg_entry *r;
7946 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7947 if (*s == REGISTER_PREFIX)
7948 ++s;
7950 if (is_space_char (*s))
7951 ++s;
7953 p = reg_name_given;
7954 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7956 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7957 return (const reg_entry *) NULL;
7958 s++;
7961 /* For naked regs, make sure that we are not dealing with an identifier.
7962 This prevents confusing an identifier like `eax_var' with register
7963 `eax'. */
7964 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7965 return (const reg_entry *) NULL;
7967 *end_op = s;
7969 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7971 /* Handle floating point regs, allowing spaces in the (i) part. */
7972 if (r == i386_regtab /* %st is first entry of table */)
7974 if (is_space_char (*s))
7975 ++s;
7976 if (*s == '(')
7978 ++s;
7979 if (is_space_char (*s))
7980 ++s;
7981 if (*s >= '0' && *s <= '7')
7983 int fpr = *s - '0';
7984 ++s;
7985 if (is_space_char (*s))
7986 ++s;
7987 if (*s == ')')
7989 *end_op = s + 1;
7990 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
7991 know (r);
7992 return r + fpr;
7995 /* We have "%st(" then garbage. */
7996 return (const reg_entry *) NULL;
8000 if (r == NULL || allow_pseudo_reg)
8001 return r;
8003 if (operand_type_all_zero (&r->reg_type))
8004 return (const reg_entry *) NULL;
8006 if ((r->reg_type.bitfield.reg32
8007 || r->reg_type.bitfield.sreg3
8008 || r->reg_type.bitfield.control
8009 || r->reg_type.bitfield.debug
8010 || r->reg_type.bitfield.test)
8011 && !cpu_arch_flags.bitfield.cpui386)
8012 return (const reg_entry *) NULL;
8014 if (r->reg_type.bitfield.floatreg
8015 && !cpu_arch_flags.bitfield.cpu8087
8016 && !cpu_arch_flags.bitfield.cpu287
8017 && !cpu_arch_flags.bitfield.cpu387)
8018 return (const reg_entry *) NULL;
8020 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
8021 return (const reg_entry *) NULL;
8023 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
8024 return (const reg_entry *) NULL;
8026 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
8027 return (const reg_entry *) NULL;
8029 /* Don't allow fake index register unless allow_index_reg isn't 0. */
8030 if (!allow_index_reg
8031 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
8032 return (const reg_entry *) NULL;
8034 if (((r->reg_flags & (RegRex64 | RegRex))
8035 || r->reg_type.bitfield.reg64)
8036 && (!cpu_arch_flags.bitfield.cpulm
8037 || !operand_type_equal (&r->reg_type, &control))
8038 && flag_code != CODE_64BIT)
8039 return (const reg_entry *) NULL;
8041 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
8042 return (const reg_entry *) NULL;
8044 return r;
8047 /* REG_STRING starts *before* REGISTER_PREFIX. */
8049 static const reg_entry *
8050 parse_register (char *reg_string, char **end_op)
8052 const reg_entry *r;
8054 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
8055 r = parse_real_register (reg_string, end_op);
8056 else
8057 r = NULL;
8058 if (!r)
8060 char *save = input_line_pointer;
8061 char c;
8062 symbolS *symbolP;
8064 input_line_pointer = reg_string;
8065 c = get_symbol_end ();
8066 symbolP = symbol_find (reg_string);
8067 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
8069 const expressionS *e = symbol_get_value_expression (symbolP);
8071 know (e->X_op == O_register);
8072 know (e->X_add_number >= 0
8073 && (valueT) e->X_add_number < i386_regtab_size);
8074 r = i386_regtab + e->X_add_number;
8075 *end_op = input_line_pointer;
8077 *input_line_pointer = c;
8078 input_line_pointer = save;
8080 return r;
8084 i386_parse_name (char *name, expressionS *e, char *nextcharP)
8086 const reg_entry *r;
8087 char *end = input_line_pointer;
8089 *end = *nextcharP;
8090 r = parse_register (name, &input_line_pointer);
8091 if (r && end <= input_line_pointer)
8093 *nextcharP = *input_line_pointer;
8094 *input_line_pointer = 0;
8095 e->X_op = O_register;
8096 e->X_add_number = r - i386_regtab;
8097 return 1;
8099 input_line_pointer = end;
8100 *end = 0;
8101 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
8104 void
8105 md_operand (expressionS *e)
8107 char *end;
8108 const reg_entry *r;
8110 switch (*input_line_pointer)
8112 case REGISTER_PREFIX:
8113 r = parse_real_register (input_line_pointer, &end);
8114 if (r)
8116 e->X_op = O_register;
8117 e->X_add_number = r - i386_regtab;
8118 input_line_pointer = end;
8120 break;
8122 case '[':
8123 gas_assert (intel_syntax);
8124 end = input_line_pointer++;
8125 expression (e);
8126 if (*input_line_pointer == ']')
8128 ++input_line_pointer;
8129 e->X_op_symbol = make_expr_symbol (e);
8130 e->X_add_symbol = NULL;
8131 e->X_add_number = 0;
8132 e->X_op = O_index;
8134 else
8136 e->X_op = O_absent;
8137 input_line_pointer = end;
8139 break;
8144 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8145 const char *md_shortopts = "kVQ:sqn";
8146 #else
8147 const char *md_shortopts = "qn";
8148 #endif
8150 #define OPTION_32 (OPTION_MD_BASE + 0)
8151 #define OPTION_64 (OPTION_MD_BASE + 1)
8152 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
8153 #define OPTION_MARCH (OPTION_MD_BASE + 3)
8154 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
8155 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
8156 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
8157 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
8158 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
8159 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
8160 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
8161 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
8162 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 12)
8163 #define OPTION_X32 (OPTION_MD_BASE + 13)
8165 struct option md_longopts[] =
8167 {"32", no_argument, NULL, OPTION_32},
8168 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8169 || defined (TE_PE) || defined (TE_PEP))
8170 {"64", no_argument, NULL, OPTION_64},
8171 #endif
8172 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8173 {"x32", no_argument, NULL, OPTION_X32},
8174 #endif
8175 {"divide", no_argument, NULL, OPTION_DIVIDE},
8176 {"march", required_argument, NULL, OPTION_MARCH},
8177 {"mtune", required_argument, NULL, OPTION_MTUNE},
8178 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
8179 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
8180 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
8181 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
8182 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
8183 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
8184 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
8185 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
8186 {NULL, no_argument, NULL, 0}
8188 size_t md_longopts_size = sizeof (md_longopts);
8191 md_parse_option (int c, char *arg)
8193 unsigned int j;
8194 char *arch, *next;
8196 switch (c)
8198 case 'n':
8199 optimize_align_code = 0;
8200 break;
8202 case 'q':
8203 quiet_warnings = 1;
8204 break;
8206 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8207 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8208 should be emitted or not. FIXME: Not implemented. */
8209 case 'Q':
8210 break;
8212 /* -V: SVR4 argument to print version ID. */
8213 case 'V':
8214 print_version_id ();
8215 break;
8217 /* -k: Ignore for FreeBSD compatibility. */
8218 case 'k':
8219 break;
8221 case 's':
8222 /* -s: On i386 Solaris, this tells the native assembler to use
8223 .stab instead of .stab.excl. We always use .stab anyhow. */
8224 break;
8225 #endif
8226 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8227 || defined (TE_PE) || defined (TE_PEP))
8228 case OPTION_64:
8230 const char **list, **l;
8232 list = bfd_target_list ();
8233 for (l = list; *l != NULL; l++)
8234 if (CONST_STRNEQ (*l, "elf64-x86-64")
8235 || strcmp (*l, "coff-x86-64") == 0
8236 || strcmp (*l, "pe-x86-64") == 0
8237 || strcmp (*l, "pei-x86-64") == 0)
8239 default_arch = "x86_64";
8240 break;
8242 if (*l == NULL)
8243 as_fatal (_("No compiled in support for x86_64"));
8244 free (list);
8246 break;
8247 #endif
8249 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8250 case OPTION_X32:
8251 if (IS_ELF)
8253 const char **list, **l;
8255 list = bfd_target_list ();
8256 for (l = list; *l != NULL; l++)
8257 if (CONST_STRNEQ (*l, "elf32-x86-64"))
8259 default_arch = "x86_64:32";
8260 break;
8262 if (*l == NULL)
8263 as_fatal (_("No compiled in support for 32bit x86_64"));
8264 free (list);
8266 else
8267 as_fatal (_("32bit x86_64 is only supported for ELF"));
8268 break;
8269 #endif
8271 case OPTION_32:
8272 default_arch = "i386";
8273 break;
8275 case OPTION_DIVIDE:
8276 #ifdef SVR4_COMMENT_CHARS
8278 char *n, *t;
8279 const char *s;
8281 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
8282 t = n;
8283 for (s = i386_comment_chars; *s != '\0'; s++)
8284 if (*s != '/')
8285 *t++ = *s;
8286 *t = '\0';
8287 i386_comment_chars = n;
8289 #endif
8290 break;
8292 case OPTION_MARCH:
8293 arch = xstrdup (arg);
8296 if (*arch == '.')
8297 as_fatal (_("Invalid -march= option: `%s'"), arg);
8298 next = strchr (arch, '+');
8299 if (next)
8300 *next++ = '\0';
8301 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8303 if (strcmp (arch, cpu_arch [j].name) == 0)
8305 /* Processor. */
8306 if (! cpu_arch[j].flags.bitfield.cpui386)
8307 continue;
8309 cpu_arch_name = cpu_arch[j].name;
8310 cpu_sub_arch_name = NULL;
8311 cpu_arch_flags = cpu_arch[j].flags;
8312 cpu_arch_isa = cpu_arch[j].type;
8313 cpu_arch_isa_flags = cpu_arch[j].flags;
8314 if (!cpu_arch_tune_set)
8316 cpu_arch_tune = cpu_arch_isa;
8317 cpu_arch_tune_flags = cpu_arch_isa_flags;
8319 break;
8321 else if (*cpu_arch [j].name == '.'
8322 && strcmp (arch, cpu_arch [j].name + 1) == 0)
8324 /* ISA entension. */
8325 i386_cpu_flags flags;
8327 if (!cpu_arch[j].negated)
8328 flags = cpu_flags_or (cpu_arch_flags,
8329 cpu_arch[j].flags);
8330 else
8331 flags = cpu_flags_and_not (cpu_arch_flags,
8332 cpu_arch[j].flags);
8333 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
8335 if (cpu_sub_arch_name)
8337 char *name = cpu_sub_arch_name;
8338 cpu_sub_arch_name = concat (name,
8339 cpu_arch[j].name,
8340 (const char *) NULL);
8341 free (name);
8343 else
8344 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
8345 cpu_arch_flags = flags;
8347 break;
8351 if (j >= ARRAY_SIZE (cpu_arch))
8352 as_fatal (_("Invalid -march= option: `%s'"), arg);
8354 arch = next;
8356 while (next != NULL );
8357 break;
8359 case OPTION_MTUNE:
8360 if (*arg == '.')
8361 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
8362 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8364 if (strcmp (arg, cpu_arch [j].name) == 0)
8366 cpu_arch_tune_set = 1;
8367 cpu_arch_tune = cpu_arch [j].type;
8368 cpu_arch_tune_flags = cpu_arch[j].flags;
8369 break;
8372 if (j >= ARRAY_SIZE (cpu_arch))
8373 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
8374 break;
8376 case OPTION_MMNEMONIC:
8377 if (strcasecmp (arg, "att") == 0)
8378 intel_mnemonic = 0;
8379 else if (strcasecmp (arg, "intel") == 0)
8380 intel_mnemonic = 1;
8381 else
8382 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
8383 break;
8385 case OPTION_MSYNTAX:
8386 if (strcasecmp (arg, "att") == 0)
8387 intel_syntax = 0;
8388 else if (strcasecmp (arg, "intel") == 0)
8389 intel_syntax = 1;
8390 else
8391 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
8392 break;
8394 case OPTION_MINDEX_REG:
8395 allow_index_reg = 1;
8396 break;
8398 case OPTION_MNAKED_REG:
8399 allow_naked_reg = 1;
8400 break;
8402 case OPTION_MOLD_GCC:
8403 old_gcc = 1;
8404 break;
8406 case OPTION_MSSE2AVX:
8407 sse2avx = 1;
8408 break;
8410 case OPTION_MSSE_CHECK:
8411 if (strcasecmp (arg, "error") == 0)
8412 sse_check = sse_check_error;
8413 else if (strcasecmp (arg, "warning") == 0)
8414 sse_check = sse_check_warning;
8415 else if (strcasecmp (arg, "none") == 0)
8416 sse_check = sse_check_none;
8417 else
8418 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
8419 break;
8421 case OPTION_MAVXSCALAR:
8422 if (strcasecmp (arg, "128") == 0)
8423 avxscalar = vex128;
8424 else if (strcasecmp (arg, "256") == 0)
8425 avxscalar = vex256;
8426 else
8427 as_fatal (_("Invalid -mavxscalar= option: `%s'"), arg);
8428 break;
8430 default:
8431 return 0;
8433 return 1;
8436 #define MESSAGE_TEMPLATE \
8439 static void
8440 show_arch (FILE *stream, int ext, int check)
8442 static char message[] = MESSAGE_TEMPLATE;
8443 char *start = message + 27;
8444 char *p;
8445 int size = sizeof (MESSAGE_TEMPLATE);
8446 int left;
8447 const char *name;
8448 int len;
8449 unsigned int j;
8451 p = start;
8452 left = size - (start - message);
8453 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8455 /* Should it be skipped? */
8456 if (cpu_arch [j].skip)
8457 continue;
8459 name = cpu_arch [j].name;
8460 len = cpu_arch [j].len;
8461 if (*name == '.')
8463 /* It is an extension. Skip if we aren't asked to show it. */
8464 if (ext)
8466 name++;
8467 len--;
8469 else
8470 continue;
8472 else if (ext)
8474 /* It is an processor. Skip if we show only extension. */
8475 continue;
8477 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
8479 /* It is an impossible processor - skip. */
8480 continue;
8483 /* Reserve 2 spaces for ", " or ",\0" */
8484 left -= len + 2;
8486 /* Check if there is any room. */
8487 if (left >= 0)
8489 if (p != start)
8491 *p++ = ',';
8492 *p++ = ' ';
8494 p = mempcpy (p, name, len);
8496 else
8498 /* Output the current message now and start a new one. */
8499 *p++ = ',';
8500 *p = '\0';
8501 fprintf (stream, "%s\n", message);
8502 p = start;
8503 left = size - (start - message) - len - 2;
8505 gas_assert (left >= 0);
8507 p = mempcpy (p, name, len);
8511 *p = '\0';
8512 fprintf (stream, "%s\n", message);
8515 void
8516 md_show_usage (FILE *stream)
8518 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8519 fprintf (stream, _("\
8520 -Q ignored\n\
8521 -V print assembler version number\n\
8522 -k ignored\n"));
8523 #endif
8524 fprintf (stream, _("\
8525 -n Do not optimize code alignment\n\
8526 -q quieten some warnings\n"));
8527 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8528 fprintf (stream, _("\
8529 -s ignored\n"));
8530 #endif
8531 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8532 || defined (TE_PE) || defined (TE_PEP))
8533 fprintf (stream, _("\
8534 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
8535 #endif
8536 #ifdef SVR4_COMMENT_CHARS
8537 fprintf (stream, _("\
8538 --divide do not treat `/' as a comment character\n"));
8539 #else
8540 fprintf (stream, _("\
8541 --divide ignored\n"));
8542 #endif
8543 fprintf (stream, _("\
8544 -march=CPU[,+EXTENSION...]\n\
8545 generate code for CPU and EXTENSION, CPU is one of:\n"));
8546 show_arch (stream, 0, 1);
8547 fprintf (stream, _("\
8548 EXTENSION is combination of:\n"));
8549 show_arch (stream, 1, 0);
8550 fprintf (stream, _("\
8551 -mtune=CPU optimize for CPU, CPU is one of:\n"));
8552 show_arch (stream, 0, 0);
8553 fprintf (stream, _("\
8554 -msse2avx encode SSE instructions with VEX prefix\n"));
8555 fprintf (stream, _("\
8556 -msse-check=[none|error|warning]\n\
8557 check SSE instructions\n"));
8558 fprintf (stream, _("\
8559 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
8560 length\n"));
8561 fprintf (stream, _("\
8562 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8563 fprintf (stream, _("\
8564 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8565 fprintf (stream, _("\
8566 -mindex-reg support pseudo index registers\n"));
8567 fprintf (stream, _("\
8568 -mnaked-reg don't require `%%' prefix for registers\n"));
8569 fprintf (stream, _("\
8570 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8573 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8574 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8575 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8577 /* Pick the target format to use. */
8579 const char *
8580 i386_target_format (void)
8582 if (!strncmp (default_arch, "x86_64", 6))
8584 update_code_flag (CODE_64BIT, 1);
8585 if (default_arch[6] == '\0')
8586 x86_elf_abi = X86_64_ABI;
8587 else
8588 x86_elf_abi = X86_64_X32_ABI;
8590 else if (!strcmp (default_arch, "i386"))
8591 update_code_flag (CODE_32BIT, 1);
8592 else
8593 as_fatal (_("Unknown architecture"));
8595 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8596 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8597 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8598 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
8600 switch (OUTPUT_FLAVOR)
8602 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
8603 case bfd_target_aout_flavour:
8604 return AOUT_TARGET_FORMAT;
8605 #endif
8606 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
8607 # if defined (TE_PE) || defined (TE_PEP)
8608 case bfd_target_coff_flavour:
8609 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
8610 # elif defined (TE_GO32)
8611 case bfd_target_coff_flavour:
8612 return "coff-go32";
8613 # else
8614 case bfd_target_coff_flavour:
8615 return "coff-i386";
8616 # endif
8617 #endif
8618 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8619 case bfd_target_elf_flavour:
8621 const char *format;
8623 switch (x86_elf_abi)
8625 default:
8626 format = ELF_TARGET_FORMAT;
8627 break;
8628 case X86_64_ABI:
8629 use_rela_relocations = 1;
8630 object_64bit = 1;
8631 format = ELF_TARGET_FORMAT64;
8632 break;
8633 case X86_64_X32_ABI:
8634 use_rela_relocations = 1;
8635 object_64bit = 1;
8636 disallow_64bit_reloc = 1;
8637 format = ELF_TARGET_FORMAT32;
8638 break;
8640 if (cpu_arch_isa == PROCESSOR_L1OM)
8642 if (x86_elf_abi != X86_64_ABI)
8643 as_fatal (_("Intel L1OM is 64bit only"));
8644 return ELF_TARGET_L1OM_FORMAT;
8646 else
8647 return format;
8649 #endif
8650 #if defined (OBJ_MACH_O)
8651 case bfd_target_mach_o_flavour:
8652 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
8653 #endif
8654 default:
8655 abort ();
8656 return NULL;
8660 #endif /* OBJ_MAYBE_ more than one */
8662 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8663 void
8664 i386_elf_emit_arch_note (void)
8666 if (IS_ELF && cpu_arch_name != NULL)
8668 char *p;
8669 asection *seg = now_seg;
8670 subsegT subseg = now_subseg;
8671 Elf_Internal_Note i_note;
8672 Elf_External_Note e_note;
8673 asection *note_secp;
8674 int len;
8676 /* Create the .note section. */
8677 note_secp = subseg_new (".note", 0);
8678 bfd_set_section_flags (stdoutput,
8679 note_secp,
8680 SEC_HAS_CONTENTS | SEC_READONLY);
8682 /* Process the arch string. */
8683 len = strlen (cpu_arch_name);
8685 i_note.namesz = len + 1;
8686 i_note.descsz = 0;
8687 i_note.type = NT_ARCH;
8688 p = frag_more (sizeof (e_note.namesz));
8689 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8690 p = frag_more (sizeof (e_note.descsz));
8691 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8692 p = frag_more (sizeof (e_note.type));
8693 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8694 p = frag_more (len + 1);
8695 strcpy (p, cpu_arch_name);
8697 frag_align (2, 0, 0);
8699 subseg_set (seg, subseg);
8702 #endif
8704 symbolS *
8705 md_undefined_symbol (name)
8706 char *name;
8708 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8709 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8710 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8711 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8713 if (!GOT_symbol)
8715 if (symbol_find (name))
8716 as_bad (_("GOT already in symbol table"));
8717 GOT_symbol = symbol_new (name, undefined_section,
8718 (valueT) 0, &zero_address_frag);
8720 return GOT_symbol;
8722 return 0;
8725 /* Round up a section size to the appropriate boundary. */
8727 valueT
8728 md_section_align (segment, size)
8729 segT segment ATTRIBUTE_UNUSED;
8730 valueT size;
8732 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8733 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8735 /* For a.out, force the section size to be aligned. If we don't do
8736 this, BFD will align it for us, but it will not write out the
8737 final bytes of the section. This may be a bug in BFD, but it is
8738 easier to fix it here since that is how the other a.out targets
8739 work. */
8740 int align;
8742 align = bfd_get_section_alignment (stdoutput, segment);
8743 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8745 #endif
8747 return size;
8750 /* On the i386, PC-relative offsets are relative to the start of the
8751 next instruction. That is, the address of the offset, plus its
8752 size, since the offset is always the last part of the insn. */
8754 long
8755 md_pcrel_from (fixS *fixP)
8757 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8760 #ifndef I386COFF
8762 static void
8763 s_bss (int ignore ATTRIBUTE_UNUSED)
8765 int temp;
8767 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8768 if (IS_ELF)
8769 obj_elf_section_change_hook ();
8770 #endif
8771 temp = get_absolute_expression ();
8772 subseg_set (bss_section, (subsegT) temp);
8773 demand_empty_rest_of_line ();
8776 #endif
8778 void
8779 i386_validate_fix (fixS *fixp)
8781 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8783 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8785 if (!object_64bit)
8786 abort ();
8787 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8789 else
8791 if (!object_64bit)
8792 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8793 else
8794 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8796 fixp->fx_subsy = 0;
8800 arelent *
8801 tc_gen_reloc (section, fixp)
8802 asection *section ATTRIBUTE_UNUSED;
8803 fixS *fixp;
8805 arelent *rel;
8806 bfd_reloc_code_real_type code;
8808 switch (fixp->fx_r_type)
8810 case BFD_RELOC_X86_64_PLT32:
8811 case BFD_RELOC_X86_64_GOT32:
8812 case BFD_RELOC_X86_64_GOTPCREL:
8813 case BFD_RELOC_386_PLT32:
8814 case BFD_RELOC_386_GOT32:
8815 case BFD_RELOC_386_GOTOFF:
8816 case BFD_RELOC_386_GOTPC:
8817 case BFD_RELOC_386_TLS_GD:
8818 case BFD_RELOC_386_TLS_LDM:
8819 case BFD_RELOC_386_TLS_LDO_32:
8820 case BFD_RELOC_386_TLS_IE_32:
8821 case BFD_RELOC_386_TLS_IE:
8822 case BFD_RELOC_386_TLS_GOTIE:
8823 case BFD_RELOC_386_TLS_LE_32:
8824 case BFD_RELOC_386_TLS_LE:
8825 case BFD_RELOC_386_TLS_GOTDESC:
8826 case BFD_RELOC_386_TLS_DESC_CALL:
8827 case BFD_RELOC_X86_64_TLSGD:
8828 case BFD_RELOC_X86_64_TLSLD:
8829 case BFD_RELOC_X86_64_DTPOFF32:
8830 case BFD_RELOC_X86_64_DTPOFF64:
8831 case BFD_RELOC_X86_64_GOTTPOFF:
8832 case BFD_RELOC_X86_64_TPOFF32:
8833 case BFD_RELOC_X86_64_TPOFF64:
8834 case BFD_RELOC_X86_64_GOTOFF64:
8835 case BFD_RELOC_X86_64_GOTPC32:
8836 case BFD_RELOC_X86_64_GOT64:
8837 case BFD_RELOC_X86_64_GOTPCREL64:
8838 case BFD_RELOC_X86_64_GOTPC64:
8839 case BFD_RELOC_X86_64_GOTPLT64:
8840 case BFD_RELOC_X86_64_PLTOFF64:
8841 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8842 case BFD_RELOC_X86_64_TLSDESC_CALL:
8843 case BFD_RELOC_RVA:
8844 case BFD_RELOC_VTABLE_ENTRY:
8845 case BFD_RELOC_VTABLE_INHERIT:
8846 #ifdef TE_PE
8847 case BFD_RELOC_32_SECREL:
8848 #endif
8849 code = fixp->fx_r_type;
8850 break;
8851 case BFD_RELOC_X86_64_32S:
8852 if (!fixp->fx_pcrel)
8854 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8855 code = fixp->fx_r_type;
8856 break;
8858 default:
8859 if (fixp->fx_pcrel)
8861 switch (fixp->fx_size)
8863 default:
8864 as_bad_where (fixp->fx_file, fixp->fx_line,
8865 _("can not do %d byte pc-relative relocation"),
8866 fixp->fx_size);
8867 code = BFD_RELOC_32_PCREL;
8868 break;
8869 case 1: code = BFD_RELOC_8_PCREL; break;
8870 case 2: code = BFD_RELOC_16_PCREL; break;
8871 case 4: code = BFD_RELOC_32_PCREL; break;
8872 #ifdef BFD64
8873 case 8: code = BFD_RELOC_64_PCREL; break;
8874 #endif
8877 else
8879 switch (fixp->fx_size)
8881 default:
8882 as_bad_where (fixp->fx_file, fixp->fx_line,
8883 _("can not do %d byte relocation"),
8884 fixp->fx_size);
8885 code = BFD_RELOC_32;
8886 break;
8887 case 1: code = BFD_RELOC_8; break;
8888 case 2: code = BFD_RELOC_16; break;
8889 case 4: code = BFD_RELOC_32; break;
8890 #ifdef BFD64
8891 case 8: code = BFD_RELOC_64; break;
8892 #endif
8895 break;
8898 if ((code == BFD_RELOC_32
8899 || code == BFD_RELOC_32_PCREL
8900 || code == BFD_RELOC_X86_64_32S)
8901 && GOT_symbol
8902 && fixp->fx_addsy == GOT_symbol)
8904 if (!object_64bit)
8905 code = BFD_RELOC_386_GOTPC;
8906 else
8907 code = BFD_RELOC_X86_64_GOTPC32;
8909 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8910 && GOT_symbol
8911 && fixp->fx_addsy == GOT_symbol)
8913 code = BFD_RELOC_X86_64_GOTPC64;
8916 rel = (arelent *) xmalloc (sizeof (arelent));
8917 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8918 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8920 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8922 if (!use_rela_relocations)
8924 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8925 vtable entry to be used in the relocation's section offset. */
8926 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8927 rel->address = fixp->fx_offset;
8928 #if defined (OBJ_COFF) && defined (TE_PE)
8929 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8930 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8931 else
8932 #endif
8933 rel->addend = 0;
8935 /* Use the rela in 64bit mode. */
8936 else
8938 if (disallow_64bit_reloc)
8939 switch (code)
8941 case BFD_RELOC_64:
8942 case BFD_RELOC_X86_64_DTPOFF64:
8943 case BFD_RELOC_X86_64_TPOFF64:
8944 case BFD_RELOC_64_PCREL:
8945 case BFD_RELOC_X86_64_GOTOFF64:
8946 case BFD_RELOC_X86_64_GOT64:
8947 case BFD_RELOC_X86_64_GOTPCREL64:
8948 case BFD_RELOC_X86_64_GOTPC64:
8949 case BFD_RELOC_X86_64_GOTPLT64:
8950 case BFD_RELOC_X86_64_PLTOFF64:
8951 as_bad_where (fixp->fx_file, fixp->fx_line,
8952 _("cannot represent relocation type %s in x32 mode"),
8953 bfd_get_reloc_code_name (code));
8954 break;
8955 default:
8956 break;
8959 if (!fixp->fx_pcrel)
8960 rel->addend = fixp->fx_offset;
8961 else
8962 switch (code)
8964 case BFD_RELOC_X86_64_PLT32:
8965 case BFD_RELOC_X86_64_GOT32:
8966 case BFD_RELOC_X86_64_GOTPCREL:
8967 case BFD_RELOC_X86_64_TLSGD:
8968 case BFD_RELOC_X86_64_TLSLD:
8969 case BFD_RELOC_X86_64_GOTTPOFF:
8970 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8971 case BFD_RELOC_X86_64_TLSDESC_CALL:
8972 rel->addend = fixp->fx_offset - fixp->fx_size;
8973 break;
8974 default:
8975 rel->addend = (section->vma
8976 - fixp->fx_size
8977 + fixp->fx_addnumber
8978 + md_pcrel_from (fixp));
8979 break;
8983 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8984 if (rel->howto == NULL)
8986 as_bad_where (fixp->fx_file, fixp->fx_line,
8987 _("cannot represent relocation type %s"),
8988 bfd_get_reloc_code_name (code));
8989 /* Set howto to a garbage value so that we can keep going. */
8990 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8991 gas_assert (rel->howto != NULL);
8994 return rel;
8997 #include "tc-i386-intel.c"
8999 void
9000 tc_x86_parse_to_dw2regnum (expressionS *exp)
9002 int saved_naked_reg;
9003 char saved_register_dot;
9005 saved_naked_reg = allow_naked_reg;
9006 allow_naked_reg = 1;
9007 saved_register_dot = register_chars['.'];
9008 register_chars['.'] = '.';
9009 allow_pseudo_reg = 1;
9010 expression_and_evaluate (exp);
9011 allow_pseudo_reg = 0;
9012 register_chars['.'] = saved_register_dot;
9013 allow_naked_reg = saved_naked_reg;
9015 if (exp->X_op == O_register && exp->X_add_number >= 0)
9017 if ((addressT) exp->X_add_number < i386_regtab_size)
9019 exp->X_op = O_constant;
9020 exp->X_add_number = i386_regtab[exp->X_add_number]
9021 .dw2_regnum[flag_code >> 1];
9023 else
9024 exp->X_op = O_illegal;
9028 void
9029 tc_x86_frame_initial_instructions (void)
9031 static unsigned int sp_regno[2];
9033 if (!sp_regno[flag_code >> 1])
9035 char *saved_input = input_line_pointer;
9036 char sp[][4] = {"esp", "rsp"};
9037 expressionS exp;
9039 input_line_pointer = sp[flag_code >> 1];
9040 tc_x86_parse_to_dw2regnum (&exp);
9041 gas_assert (exp.X_op == O_constant);
9042 sp_regno[flag_code >> 1] = exp.X_add_number;
9043 input_line_pointer = saved_input;
9046 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
9047 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
9051 i386_elf_section_type (const char *str, size_t len)
9053 if (flag_code == CODE_64BIT
9054 && len == sizeof ("unwind") - 1
9055 && strncmp (str, "unwind", 6) == 0)
9056 return SHT_X86_64_UNWIND;
9058 return -1;
9061 #ifdef TE_SOLARIS
9062 void
9063 i386_solaris_fix_up_eh_frame (segT sec)
9065 if (flag_code == CODE_64BIT)
9066 elf_section_type (sec) = SHT_X86_64_UNWIND;
9068 #endif
9070 #ifdef TE_PE
9071 void
9072 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
9074 expressionS exp;
9076 exp.X_op = O_secrel;
9077 exp.X_add_symbol = symbol;
9078 exp.X_add_number = 0;
9079 emit_expr (&exp, size);
9081 #endif
9083 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9084 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
9086 bfd_vma
9087 x86_64_section_letter (int letter, char **ptr_msg)
9089 if (flag_code == CODE_64BIT)
9091 if (letter == 'l')
9092 return SHF_X86_64_LARGE;
9094 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
9096 else
9097 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
9098 return -1;
9101 bfd_vma
9102 x86_64_section_word (char *str, size_t len)
9104 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
9105 return SHF_X86_64_LARGE;
9107 return -1;
9110 static void
9111 handle_large_common (int small ATTRIBUTE_UNUSED)
9113 if (flag_code != CODE_64BIT)
9115 s_comm_internal (0, elf_common_parse);
9116 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
9118 else
9120 static segT lbss_section;
9121 asection *saved_com_section_ptr = elf_com_section_ptr;
9122 asection *saved_bss_section = bss_section;
9124 if (lbss_section == NULL)
9126 flagword applicable;
9127 segT seg = now_seg;
9128 subsegT subseg = now_subseg;
9130 /* The .lbss section is for local .largecomm symbols. */
9131 lbss_section = subseg_new (".lbss", 0);
9132 applicable = bfd_applicable_section_flags (stdoutput);
9133 bfd_set_section_flags (stdoutput, lbss_section,
9134 applicable & SEC_ALLOC);
9135 seg_info (lbss_section)->bss = 1;
9137 subseg_set (seg, subseg);
9140 elf_com_section_ptr = &_bfd_elf_large_com_section;
9141 bss_section = lbss_section;
9143 s_comm_internal (0, elf_common_parse);
9145 elf_com_section_ptr = saved_com_section_ptr;
9146 bss_section = saved_bss_section;
9149 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */