Reformat build_modrm_byte.
[binutils.git] / gas / config / tc-i386.c
blob9e804c6cd6fbee1f627114cf41dc2a70310eded8
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
62 REP_PREFIX, LOCK_PREFIX. */
63 #define WAIT_PREFIX 0
64 #define SEG_PREFIX 1
65 #define ADDR_PREFIX 2
66 #define DATA_PREFIX 3
67 #define REP_PREFIX 4
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 /* Intel Syntax. Use a non-ascii letter since since it never appears
87 in instructions. */
88 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90 #define END_OF_INSN '\0'
93 'templates' is for grouping together 'template' structures for opcodes
94 of the same name. This is only used for storing the insns in the grand
95 ole hash table of insns.
96 The templates themselves start at START and range up to (but not including)
97 END.
99 typedef struct
101 const insn_template *start;
102 const insn_template *end;
104 templates;
106 /* 386 operand encoding bytes: see 386 book for details of this. */
107 typedef struct
109 unsigned int regmem; /* codes register or memory operand */
110 unsigned int reg; /* codes register operand (or extended opcode) */
111 unsigned int mode; /* how to interpret regmem & reg */
113 modrm_byte;
115 /* x86-64 extension prefix. */
116 typedef int rex_byte;
118 /* 386 opcode byte to code indirect addressing. */
119 typedef struct
121 unsigned base;
122 unsigned index;
123 unsigned scale;
125 sib_byte;
127 /* x86 arch names, types and features */
128 typedef struct
130 const char *name; /* arch name */
131 unsigned int len; /* arch string length */
132 enum processor_type type; /* arch type */
133 i386_cpu_flags flags; /* cpu feature flags */
134 unsigned int skip; /* show_arch should skip this. */
136 arch_entry;
138 static void set_code_flag (int);
139 static void set_16bit_gcc_code_flag (int);
140 static void set_intel_syntax (int);
141 static void set_intel_mnemonic (int);
142 static void set_allow_index_reg (int);
143 static void set_sse_check (int);
144 static void set_cpu_arch (int);
145 #ifdef TE_PE
146 static void pe_directive_secrel (int);
147 #endif
148 static void signed_cons (int);
149 static char *output_invalid (int c);
150 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
151 const char *);
152 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
153 const char *);
154 static int i386_att_operand (char *);
155 static int i386_intel_operand (char *, int);
156 static int i386_intel_simplify (expressionS *);
157 static int i386_intel_parse_name (const char *, expressionS *);
158 static const reg_entry *parse_register (char *, char **);
159 static char *parse_insn (char *, char *);
160 static char *parse_operands (char *, const char *);
161 static void swap_operands (void);
162 static void swap_2_operands (int, int);
163 static void optimize_imm (void);
164 static void optimize_disp (void);
165 static const insn_template *match_template (void);
166 static int check_string (void);
167 static int process_suffix (void);
168 static int check_byte_reg (void);
169 static int check_long_reg (void);
170 static int check_qword_reg (void);
171 static int check_word_reg (void);
172 static int finalize_imm (void);
173 static int process_operands (void);
174 static const seg_entry *build_modrm_byte (void);
175 static void output_insn (void);
176 static void output_imm (fragS *, offsetT);
177 static void output_disp (fragS *, offsetT);
178 #ifndef I386COFF
179 static void s_bss (int);
180 #endif
181 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
182 static void handle_large_common (int small ATTRIBUTE_UNUSED);
183 #endif
185 static const char *default_arch = DEFAULT_ARCH;
187 /* VEX prefix. */
188 typedef struct
190 /* VEX prefix is either 2 byte or 3 byte. */
191 unsigned char bytes[3];
192 unsigned int length;
193 /* Destination or source register specifier. */
194 const reg_entry *register_specifier;
195 } vex_prefix;
197 /* 'md_assemble ()' gathers together information and puts it into a
198 i386_insn. */
200 union i386_op
202 expressionS *disps;
203 expressionS *imms;
204 const reg_entry *regs;
207 struct _i386_insn
209 /* TM holds the template for the insn were currently assembling. */
210 insn_template tm;
212 /* SUFFIX holds the instruction size suffix for byte, word, dword
213 or qword, if given. */
214 char suffix;
216 /* OPERANDS gives the number of given operands. */
217 unsigned int operands;
219 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
220 of given register, displacement, memory operands and immediate
221 operands. */
222 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
224 /* TYPES [i] is the type (see above #defines) which tells us how to
225 use OP[i] for the corresponding operand. */
226 i386_operand_type types[MAX_OPERANDS];
228 /* Displacement expression, immediate expression, or register for each
229 operand. */
230 union i386_op op[MAX_OPERANDS];
232 /* Flags for operands. */
233 unsigned int flags[MAX_OPERANDS];
234 #define Operand_PCrel 1
236 /* Relocation type for operand */
237 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
239 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
240 the base index byte below. */
241 const reg_entry *base_reg;
242 const reg_entry *index_reg;
243 unsigned int log2_scale_factor;
245 /* SEG gives the seg_entries of this insn. They are zero unless
246 explicit segment overrides are given. */
247 const seg_entry *seg[2];
249 /* PREFIX holds all the given prefix opcodes (usually null).
250 PREFIXES is the number of prefix opcodes. */
251 unsigned int prefixes;
252 unsigned char prefix[MAX_PREFIXES];
254 /* RM and SIB are the modrm byte and the sib byte where the
255 addressing modes of this insn are encoded. */
256 modrm_byte rm;
257 rex_byte rex;
258 sib_byte sib;
259 vex_prefix vex;
261 /* Swap operand in encoding. */
262 unsigned int swap_operand;
265 typedef struct _i386_insn i386_insn;
267 /* List of chars besides those in app.c:symbol_chars that can start an
268 operand. Used to prevent the scrubber eating vital white-space. */
269 const char extra_symbol_chars[] = "*%-(["
270 #ifdef LEX_AT
272 #endif
273 #ifdef LEX_QM
275 #endif
278 #if (defined (TE_I386AIX) \
279 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
280 && !defined (TE_GNU) \
281 && !defined (TE_LINUX) \
282 && !defined (TE_NETWARE) \
283 && !defined (TE_FreeBSD) \
284 && !defined (TE_NetBSD)))
285 /* This array holds the chars that always start a comment. If the
286 pre-processor is disabled, these aren't very useful. The option
287 --divide will remove '/' from this list. */
288 const char *i386_comment_chars = "#/";
289 #define SVR4_COMMENT_CHARS 1
290 #define PREFIX_SEPARATOR '\\'
292 #else
293 const char *i386_comment_chars = "#";
294 #define PREFIX_SEPARATOR '/'
295 #endif
297 /* This array holds the chars that only start a comment at the beginning of
298 a line. If the line seems to have the form '# 123 filename'
299 .line and .file directives will appear in the pre-processed output.
300 Note that input_file.c hand checks for '#' at the beginning of the
301 first line of the input file. This is because the compiler outputs
302 #NO_APP at the beginning of its output.
303 Also note that comments started like this one will always work if
304 '/' isn't otherwise defined. */
305 const char line_comment_chars[] = "#/";
307 const char line_separator_chars[] = ";";
309 /* Chars that can be used to separate mant from exp in floating point
310 nums. */
311 const char EXP_CHARS[] = "eE";
313 /* Chars that mean this number is a floating point constant
314 As in 0f12.456
315 or 0d1.2345e12. */
316 const char FLT_CHARS[] = "fFdDxX";
318 /* Tables for lexical analysis. */
319 static char mnemonic_chars[256];
320 static char register_chars[256];
321 static char operand_chars[256];
322 static char identifier_chars[256];
323 static char digit_chars[256];
325 /* Lexical macros. */
326 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
327 #define is_operand_char(x) (operand_chars[(unsigned char) x])
328 #define is_register_char(x) (register_chars[(unsigned char) x])
329 #define is_space_char(x) ((x) == ' ')
330 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
331 #define is_digit_char(x) (digit_chars[(unsigned char) x])
333 /* All non-digit non-letter characters that may occur in an operand. */
334 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
336 /* md_assemble() always leaves the strings it's passed unaltered. To
337 effect this we maintain a stack of saved characters that we've smashed
338 with '\0's (indicating end of strings for various sub-fields of the
339 assembler instruction). */
340 static char save_stack[32];
341 static char *save_stack_p;
342 #define END_STRING_AND_SAVE(s) \
343 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
344 #define RESTORE_END_STRING(s) \
345 do { *(s) = *--save_stack_p; } while (0)
347 /* The instruction we're assembling. */
348 static i386_insn i;
350 /* Possible templates for current insn. */
351 static const templates *current_templates;
353 /* Per instruction expressionS buffers: max displacements & immediates. */
354 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
355 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
357 /* Current operand we are working on. */
358 static int this_operand = -1;
360 /* We support four different modes. FLAG_CODE variable is used to distinguish
361 these. */
363 enum flag_code {
364 CODE_32BIT,
365 CODE_16BIT,
366 CODE_64BIT };
368 static enum flag_code flag_code;
369 static unsigned int object_64bit;
370 static int use_rela_relocations = 0;
372 /* The names used to print error messages. */
373 static const char *flag_code_names[] =
375 "32",
376 "16",
377 "64"
380 /* 1 for intel syntax,
381 0 if att syntax. */
382 static int intel_syntax = 0;
384 /* 1 for intel mnemonic,
385 0 if att mnemonic. */
386 static int intel_mnemonic = !SYSV386_COMPAT;
388 /* 1 if support old (<= 2.8.1) versions of gcc. */
389 static int old_gcc = OLDGCC_COMPAT;
391 /* 1 if pseudo registers are permitted. */
392 static int allow_pseudo_reg = 0;
394 /* 1 if register prefix % not required. */
395 static int allow_naked_reg = 0;
397 /* 1 if pseudo index register, eiz/riz, is allowed . */
398 static int allow_index_reg = 0;
400 static enum
402 sse_check_none = 0,
403 sse_check_warning,
404 sse_check_error
406 sse_check;
408 /* Register prefix used for error message. */
409 static const char *register_prefix = "%";
411 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
412 leave, push, and pop instructions so that gcc has the same stack
413 frame as in 32 bit mode. */
414 static char stackop_size = '\0';
416 /* Non-zero to optimize code alignment. */
417 int optimize_align_code = 1;
419 /* Non-zero to quieten some warnings. */
420 static int quiet_warnings = 0;
422 /* CPU name. */
423 static const char *cpu_arch_name = NULL;
424 static char *cpu_sub_arch_name = NULL;
426 /* CPU feature flags. */
427 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
429 /* If we have selected a cpu we are generating instructions for. */
430 static int cpu_arch_tune_set = 0;
432 /* Cpu we are generating instructions for. */
433 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
435 /* CPU feature flags of cpu we are generating instructions for. */
436 static i386_cpu_flags cpu_arch_tune_flags;
438 /* CPU instruction set architecture used. */
439 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
441 /* CPU feature flags of instruction set architecture used. */
442 i386_cpu_flags cpu_arch_isa_flags;
444 /* If set, conditional jumps are not automatically promoted to handle
445 larger than a byte offset. */
446 static unsigned int no_cond_jump_promotion = 0;
448 /* Encode SSE instructions with VEX prefix. */
449 static unsigned int sse2avx;
451 /* Encode scalar AVX instructions with specific vector length. */
452 static enum
454 vex128 = 0,
455 vex256
456 } avxscalar;
458 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
459 static symbolS *GOT_symbol;
461 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
462 unsigned int x86_dwarf2_return_column;
464 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
465 int x86_cie_data_alignment;
467 /* Interface to relax_segment.
468 There are 3 major relax states for 386 jump insns because the
469 different types of jumps add different sizes to frags when we're
470 figuring out what sort of jump to choose to reach a given label. */
472 /* Types. */
473 #define UNCOND_JUMP 0
474 #define COND_JUMP 1
475 #define COND_JUMP86 2
477 /* Sizes. */
478 #define CODE16 1
479 #define SMALL 0
480 #define SMALL16 (SMALL | CODE16)
481 #define BIG 2
482 #define BIG16 (BIG | CODE16)
484 #ifndef INLINE
485 #ifdef __GNUC__
486 #define INLINE __inline__
487 #else
488 #define INLINE
489 #endif
490 #endif
492 #define ENCODE_RELAX_STATE(type, size) \
493 ((relax_substateT) (((type) << 2) | (size)))
494 #define TYPE_FROM_RELAX_STATE(s) \
495 ((s) >> 2)
496 #define DISP_SIZE_FROM_RELAX_STATE(s) \
497 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
499 /* This table is used by relax_frag to promote short jumps to long
500 ones where necessary. SMALL (short) jumps may be promoted to BIG
501 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
502 don't allow a short jump in a 32 bit code segment to be promoted to
503 a 16 bit offset jump because it's slower (requires data size
504 prefix), and doesn't work, unless the destination is in the bottom
505 64k of the code segment (The top 16 bits of eip are zeroed). */
507 const relax_typeS md_relax_table[] =
509 /* The fields are:
510 1) most positive reach of this state,
511 2) most negative reach of this state,
512 3) how many bytes this mode will have in the variable part of the frag
513 4) which index into the table to try if we can't fit into this one. */
515 /* UNCOND_JUMP states. */
516 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
517 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
518 /* dword jmp adds 4 bytes to frag:
519 0 extra opcode bytes, 4 displacement bytes. */
520 {0, 0, 4, 0},
521 /* word jmp adds 2 byte2 to frag:
522 0 extra opcode bytes, 2 displacement bytes. */
523 {0, 0, 2, 0},
525 /* COND_JUMP states. */
526 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
527 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
528 /* dword conditionals adds 5 bytes to frag:
529 1 extra opcode byte, 4 displacement bytes. */
530 {0, 0, 5, 0},
531 /* word conditionals add 3 bytes to frag:
532 1 extra opcode byte, 2 displacement bytes. */
533 {0, 0, 3, 0},
535 /* COND_JUMP86 states. */
536 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
537 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
538 /* dword conditionals adds 5 bytes to frag:
539 1 extra opcode byte, 4 displacement bytes. */
540 {0, 0, 5, 0},
541 /* word conditionals add 4 bytes to frag:
542 1 displacement byte and a 3 byte long branch insn. */
543 {0, 0, 4, 0}
546 static const arch_entry cpu_arch[] =
548 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
549 CPU_GENERIC32_FLAGS, 0 },
550 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
551 CPU_GENERIC64_FLAGS, 0 },
552 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
553 CPU_NONE_FLAGS, 0 },
554 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
555 CPU_I186_FLAGS, 0 },
556 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
557 CPU_I286_FLAGS, 0 },
558 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
559 CPU_I386_FLAGS, 0 },
560 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
561 CPU_I486_FLAGS, 0 },
562 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
563 CPU_I586_FLAGS, 0 },
564 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
565 CPU_I686_FLAGS, 0 },
566 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
567 CPU_I586_FLAGS, 0 },
568 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
569 CPU_I686_FLAGS, 0 },
570 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
571 CPU_P2_FLAGS, 0 },
572 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
573 CPU_P3_FLAGS, 0 },
574 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
575 CPU_P4_FLAGS, 0 },
576 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
577 CPU_CORE_FLAGS, 0 },
578 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
579 CPU_NOCONA_FLAGS, 0 },
580 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
581 CPU_CORE_FLAGS, 1 },
582 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
583 CPU_CORE_FLAGS, 0 },
584 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
585 CPU_CORE2_FLAGS, 1 },
586 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
587 CPU_CORE2_FLAGS, 0 },
588 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
589 CPU_COREI7_FLAGS, 0 },
590 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
591 CPU_L1OM_FLAGS, 0 },
592 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
593 CPU_K6_FLAGS, 0 },
594 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
595 CPU_K6_2_FLAGS, 0 },
596 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
597 CPU_ATHLON_FLAGS, 0 },
598 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
599 CPU_K8_FLAGS, 1 },
600 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
601 CPU_K8_FLAGS, 0 },
602 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
603 CPU_K8_FLAGS, 0 },
604 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
605 CPU_AMDFAM10_FLAGS, 0 },
606 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BDVER1,
607 CPU_BDVER1_FLAGS, 0 },
608 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
609 CPU_8087_FLAGS, 0 },
610 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
611 CPU_287_FLAGS, 0 },
612 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
613 CPU_387_FLAGS, 0 },
614 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
615 CPU_ANY87_FLAGS, 0 },
616 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
617 CPU_MMX_FLAGS, 0 },
618 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
619 CPU_3DNOWA_FLAGS, 0 },
620 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
621 CPU_SSE_FLAGS, 0 },
622 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
623 CPU_SSE2_FLAGS, 0 },
624 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
625 CPU_SSE3_FLAGS, 0 },
626 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
627 CPU_SSSE3_FLAGS, 0 },
628 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
629 CPU_SSE4_1_FLAGS, 0 },
630 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
631 CPU_SSE4_2_FLAGS, 0 },
632 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
633 CPU_SSE4_2_FLAGS, 0 },
634 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
635 CPU_ANY_SSE_FLAGS, 0 },
636 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
637 CPU_AVX_FLAGS, 0 },
638 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
639 CPU_ANY_AVX_FLAGS, 0 },
640 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
641 CPU_VMX_FLAGS, 0 },
642 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
643 CPU_SMX_FLAGS, 0 },
644 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
645 CPU_XSAVE_FLAGS, 0 },
646 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
647 CPU_AES_FLAGS, 0 },
648 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
649 CPU_PCLMUL_FLAGS, 0 },
650 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
651 CPU_PCLMUL_FLAGS, 1 },
652 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
653 CPU_FMA_FLAGS, 0 },
654 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
655 CPU_FMA4_FLAGS, 0 },
656 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
657 CPU_XOP_FLAGS, 0 },
658 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
659 CPU_LWP_FLAGS, 0 },
660 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
661 CPU_MOVBE_FLAGS, 0 },
662 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
663 CPU_EPT_FLAGS, 0 },
664 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
665 CPU_CLFLUSH_FLAGS, 0 },
666 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
667 CPU_SYSCALL_FLAGS, 0 },
668 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
669 CPU_RDTSCP_FLAGS, 0 },
670 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
671 CPU_3DNOW_FLAGS, 0 },
672 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
673 CPU_3DNOWA_FLAGS, 0 },
674 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
675 CPU_PADLOCK_FLAGS, 0 },
676 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
677 CPU_SVME_FLAGS, 1 },
678 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
679 CPU_SVME_FLAGS, 0 },
680 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
681 CPU_SSE4A_FLAGS, 0 },
682 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
683 CPU_ABM_FLAGS, 0 },
686 #ifdef I386COFF
687 /* Like s_lcomm_internal in gas/read.c but the alignment string
688 is allowed to be optional. */
690 static symbolS *
691 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
693 addressT align = 0;
695 SKIP_WHITESPACE ();
697 if (needs_align
698 && *input_line_pointer == ',')
700 align = parse_align (needs_align - 1);
702 if (align == (addressT) -1)
703 return NULL;
705 else
707 if (size >= 8)
708 align = 3;
709 else if (size >= 4)
710 align = 2;
711 else if (size >= 2)
712 align = 1;
713 else
714 align = 0;
717 bss_alloc (symbolP, size, align);
718 return symbolP;
721 static void
722 pe_lcomm (int needs_align)
724 s_comm_internal (needs_align * 2, pe_lcomm_internal);
726 #endif
728 const pseudo_typeS md_pseudo_table[] =
730 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
731 {"align", s_align_bytes, 0},
732 #else
733 {"align", s_align_ptwo, 0},
734 #endif
735 {"arch", set_cpu_arch, 0},
736 #ifndef I386COFF
737 {"bss", s_bss, 0},
738 #else
739 {"lcomm", pe_lcomm, 1},
740 #endif
741 {"ffloat", float_cons, 'f'},
742 {"dfloat", float_cons, 'd'},
743 {"tfloat", float_cons, 'x'},
744 {"value", cons, 2},
745 {"slong", signed_cons, 4},
746 {"noopt", s_ignore, 0},
747 {"optim", s_ignore, 0},
748 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
749 {"code16", set_code_flag, CODE_16BIT},
750 {"code32", set_code_flag, CODE_32BIT},
751 {"code64", set_code_flag, CODE_64BIT},
752 {"intel_syntax", set_intel_syntax, 1},
753 {"att_syntax", set_intel_syntax, 0},
754 {"intel_mnemonic", set_intel_mnemonic, 1},
755 {"att_mnemonic", set_intel_mnemonic, 0},
756 {"allow_index_reg", set_allow_index_reg, 1},
757 {"disallow_index_reg", set_allow_index_reg, 0},
758 {"sse_check", set_sse_check, 0},
759 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
760 {"largecomm", handle_large_common, 0},
761 #else
762 {"file", (void (*) (int)) dwarf2_directive_file, 0},
763 {"loc", dwarf2_directive_loc, 0},
764 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
765 #endif
766 #ifdef TE_PE
767 {"secrel32", pe_directive_secrel, 0},
768 #endif
769 {0, 0, 0}
772 /* For interface with expression (). */
773 extern char *input_line_pointer;
775 /* Hash table for instruction mnemonic lookup. */
776 static struct hash_control *op_hash;
778 /* Hash table for register lookup. */
779 static struct hash_control *reg_hash;
781 void
782 i386_align_code (fragS *fragP, int count)
784 /* Various efficient no-op patterns for aligning code labels.
785 Note: Don't try to assemble the instructions in the comments.
786 0L and 0w are not legal. */
787 static const char f32_1[] =
788 {0x90}; /* nop */
789 static const char f32_2[] =
790 {0x66,0x90}; /* xchg %ax,%ax */
791 static const char f32_3[] =
792 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
793 static const char f32_4[] =
794 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
795 static const char f32_5[] =
796 {0x90, /* nop */
797 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
798 static const char f32_6[] =
799 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
800 static const char f32_7[] =
801 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
802 static const char f32_8[] =
803 {0x90, /* nop */
804 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
805 static const char f32_9[] =
806 {0x89,0xf6, /* movl %esi,%esi */
807 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
808 static const char f32_10[] =
809 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
810 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
811 static const char f32_11[] =
812 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
813 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
814 static const char f32_12[] =
815 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
816 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
817 static const char f32_13[] =
818 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
819 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
820 static const char f32_14[] =
821 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
822 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
823 static const char f16_3[] =
824 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
825 static const char f16_4[] =
826 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
827 static const char f16_5[] =
828 {0x90, /* nop */
829 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
830 static const char f16_6[] =
831 {0x89,0xf6, /* mov %si,%si */
832 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
833 static const char f16_7[] =
834 {0x8d,0x74,0x00, /* lea 0(%si),%si */
835 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
836 static const char f16_8[] =
837 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
838 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
839 static const char jump_31[] =
840 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
841 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
842 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
843 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
844 static const char *const f32_patt[] = {
845 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
846 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
848 static const char *const f16_patt[] = {
849 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
851 /* nopl (%[re]ax) */
852 static const char alt_3[] =
853 {0x0f,0x1f,0x00};
854 /* nopl 0(%[re]ax) */
855 static const char alt_4[] =
856 {0x0f,0x1f,0x40,0x00};
857 /* nopl 0(%[re]ax,%[re]ax,1) */
858 static const char alt_5[] =
859 {0x0f,0x1f,0x44,0x00,0x00};
860 /* nopw 0(%[re]ax,%[re]ax,1) */
861 static const char alt_6[] =
862 {0x66,0x0f,0x1f,0x44,0x00,0x00};
863 /* nopl 0L(%[re]ax) */
864 static const char alt_7[] =
865 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
866 /* nopl 0L(%[re]ax,%[re]ax,1) */
867 static const char alt_8[] =
868 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
869 /* nopw 0L(%[re]ax,%[re]ax,1) */
870 static const char alt_9[] =
871 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
872 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
873 static const char alt_10[] =
874 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
875 /* data16
876 nopw %cs:0L(%[re]ax,%[re]ax,1) */
877 static const char alt_long_11[] =
878 {0x66,
879 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
880 /* data16
881 data16
882 nopw %cs:0L(%[re]ax,%[re]ax,1) */
883 static const char alt_long_12[] =
884 {0x66,
885 0x66,
886 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
887 /* data16
888 data16
889 data16
890 nopw %cs:0L(%[re]ax,%[re]ax,1) */
891 static const char alt_long_13[] =
892 {0x66,
893 0x66,
894 0x66,
895 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
896 /* data16
897 data16
898 data16
899 data16
900 nopw %cs:0L(%[re]ax,%[re]ax,1) */
901 static const char alt_long_14[] =
902 {0x66,
903 0x66,
904 0x66,
905 0x66,
906 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
907 /* data16
908 data16
909 data16
910 data16
911 data16
912 nopw %cs:0L(%[re]ax,%[re]ax,1) */
913 static const char alt_long_15[] =
914 {0x66,
915 0x66,
916 0x66,
917 0x66,
918 0x66,
919 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
920 /* nopl 0(%[re]ax,%[re]ax,1)
921 nopw 0(%[re]ax,%[re]ax,1) */
922 static const char alt_short_11[] =
923 {0x0f,0x1f,0x44,0x00,0x00,
924 0x66,0x0f,0x1f,0x44,0x00,0x00};
925 /* nopw 0(%[re]ax,%[re]ax,1)
926 nopw 0(%[re]ax,%[re]ax,1) */
927 static const char alt_short_12[] =
928 {0x66,0x0f,0x1f,0x44,0x00,0x00,
929 0x66,0x0f,0x1f,0x44,0x00,0x00};
930 /* nopw 0(%[re]ax,%[re]ax,1)
931 nopl 0L(%[re]ax) */
932 static const char alt_short_13[] =
933 {0x66,0x0f,0x1f,0x44,0x00,0x00,
934 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
935 /* nopl 0L(%[re]ax)
936 nopl 0L(%[re]ax) */
937 static const char alt_short_14[] =
938 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
939 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
940 /* nopl 0L(%[re]ax)
941 nopl 0L(%[re]ax,%[re]ax,1) */
942 static const char alt_short_15[] =
943 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
944 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
945 static const char *const alt_short_patt[] = {
946 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
947 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
948 alt_short_14, alt_short_15
950 static const char *const alt_long_patt[] = {
951 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
952 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
953 alt_long_14, alt_long_15
956 /* Only align for at least a positive non-zero boundary. */
957 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
958 return;
960 /* We need to decide which NOP sequence to use for 32bit and
961 64bit. When -mtune= is used:
963 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
964 PROCESSOR_GENERIC32, f32_patt will be used.
965 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
966 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
967 PROCESSOR_GENERIC64, alt_long_patt will be used.
968 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
969 PROCESSOR_AMDFAM10, and PROCESSOR_BDVER1, alt_short_patt
970 will be used.
972 When -mtune= isn't used, alt_long_patt will be used if
973 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
974 be used.
976 When -march= or .arch is used, we can't use anything beyond
977 cpu_arch_isa_flags. */
979 if (flag_code == CODE_16BIT)
981 if (count > 8)
983 memcpy (fragP->fr_literal + fragP->fr_fix,
984 jump_31, count);
985 /* Adjust jump offset. */
986 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
988 else
989 memcpy (fragP->fr_literal + fragP->fr_fix,
990 f16_patt[count - 1], count);
992 else
994 const char *const *patt = NULL;
996 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
998 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
999 switch (cpu_arch_tune)
1001 case PROCESSOR_UNKNOWN:
1002 /* We use cpu_arch_isa_flags to check if we SHOULD
1003 optimize for Cpu686. */
1004 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1005 patt = alt_long_patt;
1006 else
1007 patt = f32_patt;
1008 break;
1009 case PROCESSOR_PENTIUMPRO:
1010 case PROCESSOR_PENTIUM4:
1011 case PROCESSOR_NOCONA:
1012 case PROCESSOR_CORE:
1013 case PROCESSOR_CORE2:
1014 case PROCESSOR_COREI7:
1015 case PROCESSOR_L1OM:
1016 case PROCESSOR_GENERIC64:
1017 patt = alt_long_patt;
1018 break;
1019 case PROCESSOR_K6:
1020 case PROCESSOR_ATHLON:
1021 case PROCESSOR_K8:
1022 case PROCESSOR_AMDFAM10:
1023 case PROCESSOR_BDVER1:
1024 patt = alt_short_patt;
1025 break;
1026 case PROCESSOR_I386:
1027 case PROCESSOR_I486:
1028 case PROCESSOR_PENTIUM:
1029 case PROCESSOR_GENERIC32:
1030 patt = f32_patt;
1031 break;
1034 else
1036 switch (fragP->tc_frag_data.tune)
1038 case PROCESSOR_UNKNOWN:
1039 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1040 PROCESSOR_UNKNOWN. */
1041 abort ();
1042 break;
1044 case PROCESSOR_I386:
1045 case PROCESSOR_I486:
1046 case PROCESSOR_PENTIUM:
1047 case PROCESSOR_K6:
1048 case PROCESSOR_ATHLON:
1049 case PROCESSOR_K8:
1050 case PROCESSOR_AMDFAM10:
1051 case PROCESSOR_BDVER1:
1052 case PROCESSOR_GENERIC32:
1053 /* We use cpu_arch_isa_flags to check if we CAN optimize
1054 for Cpu686. */
1055 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1056 patt = alt_short_patt;
1057 else
1058 patt = f32_patt;
1059 break;
1060 case PROCESSOR_PENTIUMPRO:
1061 case PROCESSOR_PENTIUM4:
1062 case PROCESSOR_NOCONA:
1063 case PROCESSOR_CORE:
1064 case PROCESSOR_CORE2:
1065 case PROCESSOR_COREI7:
1066 case PROCESSOR_L1OM:
1067 if (fragP->tc_frag_data.isa_flags.bitfield.cpui686)
1068 patt = alt_long_patt;
1069 else
1070 patt = f32_patt;
1071 break;
1072 case PROCESSOR_GENERIC64:
1073 patt = alt_long_patt;
1074 break;
1078 if (patt == f32_patt)
1080 /* If the padding is less than 15 bytes, we use the normal
1081 ones. Otherwise, we use a jump instruction and adjust
1082 its offset. */
1083 int limit;
1085 /* For 64bit, the limit is 3 bytes. */
1086 if (flag_code == CODE_64BIT
1087 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1088 limit = 3;
1089 else
1090 limit = 15;
1091 if (count < limit)
1092 memcpy (fragP->fr_literal + fragP->fr_fix,
1093 patt[count - 1], count);
1094 else
1096 memcpy (fragP->fr_literal + fragP->fr_fix,
1097 jump_31, count);
1098 /* Adjust jump offset. */
1099 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1102 else
1104 /* Maximum length of an instruction is 15 byte. If the
1105 padding is greater than 15 bytes and we don't use jump,
1106 we have to break it into smaller pieces. */
1107 int padding = count;
1108 while (padding > 15)
1110 padding -= 15;
1111 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1112 patt [14], 15);
1115 if (padding)
1116 memcpy (fragP->fr_literal + fragP->fr_fix,
1117 patt [padding - 1], padding);
1120 fragP->fr_var = count;
1123 static INLINE int
1124 operand_type_all_zero (const union i386_operand_type *x)
1126 switch (ARRAY_SIZE(x->array))
1128 case 3:
1129 if (x->array[2])
1130 return 0;
1131 case 2:
1132 if (x->array[1])
1133 return 0;
1134 case 1:
1135 return !x->array[0];
1136 default:
1137 abort ();
1141 static INLINE void
1142 operand_type_set (union i386_operand_type *x, unsigned int v)
1144 switch (ARRAY_SIZE(x->array))
1146 case 3:
1147 x->array[2] = v;
1148 case 2:
1149 x->array[1] = v;
1150 case 1:
1151 x->array[0] = v;
1152 break;
1153 default:
1154 abort ();
1158 static INLINE int
1159 operand_type_equal (const union i386_operand_type *x,
1160 const union i386_operand_type *y)
1162 switch (ARRAY_SIZE(x->array))
1164 case 3:
1165 if (x->array[2] != y->array[2])
1166 return 0;
1167 case 2:
1168 if (x->array[1] != y->array[1])
1169 return 0;
1170 case 1:
1171 return x->array[0] == y->array[0];
1172 break;
1173 default:
1174 abort ();
1178 static INLINE int
1179 cpu_flags_all_zero (const union i386_cpu_flags *x)
1181 switch (ARRAY_SIZE(x->array))
1183 case 3:
1184 if (x->array[2])
1185 return 0;
1186 case 2:
1187 if (x->array[1])
1188 return 0;
1189 case 1:
1190 return !x->array[0];
1191 default:
1192 abort ();
1196 static INLINE void
1197 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1199 switch (ARRAY_SIZE(x->array))
1201 case 3:
1202 x->array[2] = v;
1203 case 2:
1204 x->array[1] = v;
1205 case 1:
1206 x->array[0] = v;
1207 break;
1208 default:
1209 abort ();
1213 static INLINE int
1214 cpu_flags_equal (const union i386_cpu_flags *x,
1215 const union i386_cpu_flags *y)
1217 switch (ARRAY_SIZE(x->array))
1219 case 3:
1220 if (x->array[2] != y->array[2])
1221 return 0;
1222 case 2:
1223 if (x->array[1] != y->array[1])
1224 return 0;
1225 case 1:
1226 return x->array[0] == y->array[0];
1227 break;
1228 default:
1229 abort ();
1233 static INLINE int
1234 cpu_flags_check_cpu64 (i386_cpu_flags f)
1236 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1237 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1240 static INLINE i386_cpu_flags
1241 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1243 switch (ARRAY_SIZE (x.array))
1245 case 3:
1246 x.array [2] &= y.array [2];
1247 case 2:
1248 x.array [1] &= y.array [1];
1249 case 1:
1250 x.array [0] &= y.array [0];
1251 break;
1252 default:
1253 abort ();
1255 return x;
1258 static INLINE i386_cpu_flags
1259 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1261 switch (ARRAY_SIZE (x.array))
1263 case 3:
1264 x.array [2] |= y.array [2];
1265 case 2:
1266 x.array [1] |= y.array [1];
1267 case 1:
1268 x.array [0] |= y.array [0];
1269 break;
1270 default:
1271 abort ();
1273 return x;
1276 static INLINE i386_cpu_flags
1277 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1279 switch (ARRAY_SIZE (x.array))
1281 case 3:
1282 x.array [2] &= ~y.array [2];
1283 case 2:
1284 x.array [1] &= ~y.array [1];
1285 case 1:
1286 x.array [0] &= ~y.array [0];
1287 break;
1288 default:
1289 abort ();
1291 return x;
1294 #define CPU_FLAGS_ARCH_MATCH 0x1
1295 #define CPU_FLAGS_64BIT_MATCH 0x2
1296 #define CPU_FLAGS_AES_MATCH 0x4
1297 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1298 #define CPU_FLAGS_AVX_MATCH 0x10
1300 #define CPU_FLAGS_32BIT_MATCH \
1301 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1302 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1303 #define CPU_FLAGS_PERFECT_MATCH \
1304 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1306 /* Return CPU flags match bits. */
1308 static int
1309 cpu_flags_match (const insn_template *t)
1311 i386_cpu_flags x = t->cpu_flags;
1312 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1314 x.bitfield.cpu64 = 0;
1315 x.bitfield.cpuno64 = 0;
1317 if (cpu_flags_all_zero (&x))
1319 /* This instruction is available on all archs. */
1320 match |= CPU_FLAGS_32BIT_MATCH;
1322 else
1324 /* This instruction is available only on some archs. */
1325 i386_cpu_flags cpu = cpu_arch_flags;
1327 cpu.bitfield.cpu64 = 0;
1328 cpu.bitfield.cpuno64 = 0;
1329 cpu = cpu_flags_and (x, cpu);
1330 if (!cpu_flags_all_zero (&cpu))
1332 if (x.bitfield.cpuavx)
1334 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1335 if (cpu.bitfield.cpuavx)
1337 /* Check SSE2AVX. */
1338 if (!t->opcode_modifier.sse2avx|| sse2avx)
1340 match |= (CPU_FLAGS_ARCH_MATCH
1341 | CPU_FLAGS_AVX_MATCH);
1342 /* Check AES. */
1343 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1344 match |= CPU_FLAGS_AES_MATCH;
1345 /* Check PCLMUL. */
1346 if (!x.bitfield.cpupclmul
1347 || cpu.bitfield.cpupclmul)
1348 match |= CPU_FLAGS_PCLMUL_MATCH;
1351 else
1352 match |= CPU_FLAGS_ARCH_MATCH;
1354 else
1355 match |= CPU_FLAGS_32BIT_MATCH;
1358 return match;
1361 static INLINE i386_operand_type
1362 operand_type_and (i386_operand_type x, i386_operand_type y)
1364 switch (ARRAY_SIZE (x.array))
1366 case 3:
1367 x.array [2] &= y.array [2];
1368 case 2:
1369 x.array [1] &= y.array [1];
1370 case 1:
1371 x.array [0] &= y.array [0];
1372 break;
1373 default:
1374 abort ();
1376 return x;
1379 static INLINE i386_operand_type
1380 operand_type_or (i386_operand_type x, i386_operand_type y)
1382 switch (ARRAY_SIZE (x.array))
1384 case 3:
1385 x.array [2] |= y.array [2];
1386 case 2:
1387 x.array [1] |= y.array [1];
1388 case 1:
1389 x.array [0] |= y.array [0];
1390 break;
1391 default:
1392 abort ();
1394 return x;
1397 static INLINE i386_operand_type
1398 operand_type_xor (i386_operand_type x, i386_operand_type y)
1400 switch (ARRAY_SIZE (x.array))
1402 case 3:
1403 x.array [2] ^= y.array [2];
1404 case 2:
1405 x.array [1] ^= y.array [1];
1406 case 1:
1407 x.array [0] ^= y.array [0];
1408 break;
1409 default:
1410 abort ();
1412 return x;
1415 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1416 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1417 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1418 static const i386_operand_type inoutportreg
1419 = OPERAND_TYPE_INOUTPORTREG;
1420 static const i386_operand_type reg16_inoutportreg
1421 = OPERAND_TYPE_REG16_INOUTPORTREG;
1422 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1423 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1424 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1425 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1426 static const i386_operand_type anydisp
1427 = OPERAND_TYPE_ANYDISP;
1428 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1429 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1430 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1431 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1432 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1433 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1434 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1435 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1436 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1437 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1438 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1439 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1441 enum operand_type
1443 reg,
1444 imm,
1445 disp,
1446 anymem
1449 static INLINE int
1450 operand_type_check (i386_operand_type t, enum operand_type c)
1452 switch (c)
1454 case reg:
1455 return (t.bitfield.reg8
1456 || t.bitfield.reg16
1457 || t.bitfield.reg32
1458 || t.bitfield.reg64);
1460 case imm:
1461 return (t.bitfield.imm8
1462 || t.bitfield.imm8s
1463 || t.bitfield.imm16
1464 || t.bitfield.imm32
1465 || t.bitfield.imm32s
1466 || t.bitfield.imm64);
1468 case disp:
1469 return (t.bitfield.disp8
1470 || t.bitfield.disp16
1471 || t.bitfield.disp32
1472 || t.bitfield.disp32s
1473 || t.bitfield.disp64);
1475 case anymem:
1476 return (t.bitfield.disp8
1477 || t.bitfield.disp16
1478 || t.bitfield.disp32
1479 || t.bitfield.disp32s
1480 || t.bitfield.disp64
1481 || t.bitfield.baseindex);
1483 default:
1484 abort ();
1487 return 0;
1490 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1491 operand J for instruction template T. */
1493 static INLINE int
1494 match_reg_size (const insn_template *t, unsigned int j)
1496 return !((i.types[j].bitfield.byte
1497 && !t->operand_types[j].bitfield.byte)
1498 || (i.types[j].bitfield.word
1499 && !t->operand_types[j].bitfield.word)
1500 || (i.types[j].bitfield.dword
1501 && !t->operand_types[j].bitfield.dword)
1502 || (i.types[j].bitfield.qword
1503 && !t->operand_types[j].bitfield.qword));
1506 /* Return 1 if there is no conflict in any size on operand J for
1507 instruction template T. */
1509 static INLINE int
1510 match_mem_size (const insn_template *t, unsigned int j)
1512 return (match_reg_size (t, j)
1513 && !((i.types[j].bitfield.unspecified
1514 && !t->operand_types[j].bitfield.unspecified)
1515 || (i.types[j].bitfield.fword
1516 && !t->operand_types[j].bitfield.fword)
1517 || (i.types[j].bitfield.tbyte
1518 && !t->operand_types[j].bitfield.tbyte)
1519 || (i.types[j].bitfield.xmmword
1520 && !t->operand_types[j].bitfield.xmmword)
1521 || (i.types[j].bitfield.ymmword
1522 && !t->operand_types[j].bitfield.ymmword)));
1525 /* Return 1 if there is no size conflict on any operands for
1526 instruction template T. */
1528 static INLINE int
1529 operand_size_match (const insn_template *t)
1531 unsigned int j;
1532 int match = 1;
1534 /* Don't check jump instructions. */
1535 if (t->opcode_modifier.jump
1536 || t->opcode_modifier.jumpbyte
1537 || t->opcode_modifier.jumpdword
1538 || t->opcode_modifier.jumpintersegment)
1539 return match;
1541 /* Check memory and accumulator operand size. */
1542 for (j = 0; j < i.operands; j++)
1544 if (t->operand_types[j].bitfield.anysize)
1545 continue;
1547 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1549 match = 0;
1550 break;
1553 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1555 match = 0;
1556 break;
1560 if (match
1561 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1562 return match;
1564 /* Check reverse. */
1565 gas_assert (i.operands == 2);
1567 match = 1;
1568 for (j = 0; j < 2; j++)
1570 if (t->operand_types[j].bitfield.acc
1571 && !match_reg_size (t, j ? 0 : 1))
1573 match = 0;
1574 break;
1577 if (i.types[j].bitfield.mem
1578 && !match_mem_size (t, j ? 0 : 1))
1580 match = 0;
1581 break;
1585 return match;
1588 static INLINE int
1589 operand_type_match (i386_operand_type overlap,
1590 i386_operand_type given)
1592 i386_operand_type temp = overlap;
1594 temp.bitfield.jumpabsolute = 0;
1595 temp.bitfield.unspecified = 0;
1596 temp.bitfield.byte = 0;
1597 temp.bitfield.word = 0;
1598 temp.bitfield.dword = 0;
1599 temp.bitfield.fword = 0;
1600 temp.bitfield.qword = 0;
1601 temp.bitfield.tbyte = 0;
1602 temp.bitfield.xmmword = 0;
1603 temp.bitfield.ymmword = 0;
1604 if (operand_type_all_zero (&temp))
1605 return 0;
1607 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1608 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1611 /* If given types g0 and g1 are registers they must be of the same type
1612 unless the expected operand type register overlap is null.
1613 Note that Acc in a template matches every size of reg. */
1615 static INLINE int
1616 operand_type_register_match (i386_operand_type m0,
1617 i386_operand_type g0,
1618 i386_operand_type t0,
1619 i386_operand_type m1,
1620 i386_operand_type g1,
1621 i386_operand_type t1)
1623 if (!operand_type_check (g0, reg))
1624 return 1;
1626 if (!operand_type_check (g1, reg))
1627 return 1;
1629 if (g0.bitfield.reg8 == g1.bitfield.reg8
1630 && g0.bitfield.reg16 == g1.bitfield.reg16
1631 && g0.bitfield.reg32 == g1.bitfield.reg32
1632 && g0.bitfield.reg64 == g1.bitfield.reg64)
1633 return 1;
1635 if (m0.bitfield.acc)
1637 t0.bitfield.reg8 = 1;
1638 t0.bitfield.reg16 = 1;
1639 t0.bitfield.reg32 = 1;
1640 t0.bitfield.reg64 = 1;
1643 if (m1.bitfield.acc)
1645 t1.bitfield.reg8 = 1;
1646 t1.bitfield.reg16 = 1;
1647 t1.bitfield.reg32 = 1;
1648 t1.bitfield.reg64 = 1;
1651 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1652 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1653 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1654 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1657 static INLINE unsigned int
1658 mode_from_disp_size (i386_operand_type t)
1660 if (t.bitfield.disp8)
1661 return 1;
1662 else if (t.bitfield.disp16
1663 || t.bitfield.disp32
1664 || t.bitfield.disp32s)
1665 return 2;
1666 else
1667 return 0;
1670 static INLINE int
1671 fits_in_signed_byte (offsetT num)
1673 return (num >= -128) && (num <= 127);
1676 static INLINE int
1677 fits_in_unsigned_byte (offsetT num)
1679 return (num & 0xff) == num;
1682 static INLINE int
1683 fits_in_unsigned_word (offsetT num)
1685 return (num & 0xffff) == num;
1688 static INLINE int
1689 fits_in_signed_word (offsetT num)
1691 return (-32768 <= num) && (num <= 32767);
1694 static INLINE int
1695 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1697 #ifndef BFD64
1698 return 1;
1699 #else
1700 return (!(((offsetT) -1 << 31) & num)
1701 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1702 #endif
1703 } /* fits_in_signed_long() */
1705 static INLINE int
1706 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1708 #ifndef BFD64
1709 return 1;
1710 #else
1711 return (num & (((offsetT) 2 << 31) - 1)) == num;
1712 #endif
1713 } /* fits_in_unsigned_long() */
1715 static INLINE int
1716 fits_in_imm4 (offsetT num)
1718 return (num & 0xf) == num;
1721 static i386_operand_type
1722 smallest_imm_type (offsetT num)
1724 i386_operand_type t;
1726 operand_type_set (&t, 0);
1727 t.bitfield.imm64 = 1;
1729 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1731 /* This code is disabled on the 486 because all the Imm1 forms
1732 in the opcode table are slower on the i486. They're the
1733 versions with the implicitly specified single-position
1734 displacement, which has another syntax if you really want to
1735 use that form. */
1736 t.bitfield.imm1 = 1;
1737 t.bitfield.imm8 = 1;
1738 t.bitfield.imm8s = 1;
1739 t.bitfield.imm16 = 1;
1740 t.bitfield.imm32 = 1;
1741 t.bitfield.imm32s = 1;
1743 else if (fits_in_signed_byte (num))
1745 t.bitfield.imm8 = 1;
1746 t.bitfield.imm8s = 1;
1747 t.bitfield.imm16 = 1;
1748 t.bitfield.imm32 = 1;
1749 t.bitfield.imm32s = 1;
1751 else if (fits_in_unsigned_byte (num))
1753 t.bitfield.imm8 = 1;
1754 t.bitfield.imm16 = 1;
1755 t.bitfield.imm32 = 1;
1756 t.bitfield.imm32s = 1;
1758 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1760 t.bitfield.imm16 = 1;
1761 t.bitfield.imm32 = 1;
1762 t.bitfield.imm32s = 1;
1764 else if (fits_in_signed_long (num))
1766 t.bitfield.imm32 = 1;
1767 t.bitfield.imm32s = 1;
1769 else if (fits_in_unsigned_long (num))
1770 t.bitfield.imm32 = 1;
1772 return t;
1775 static offsetT
1776 offset_in_range (offsetT val, int size)
1778 addressT mask;
1780 switch (size)
1782 case 1: mask = ((addressT) 1 << 8) - 1; break;
1783 case 2: mask = ((addressT) 1 << 16) - 1; break;
1784 case 4: mask = ((addressT) 2 << 31) - 1; break;
1785 #ifdef BFD64
1786 case 8: mask = ((addressT) 2 << 63) - 1; break;
1787 #endif
1788 default: abort ();
1791 #ifdef BFD64
1792 /* If BFD64, sign extend val for 32bit address mode. */
1793 if (flag_code != CODE_64BIT
1794 || i.prefix[ADDR_PREFIX])
1795 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1796 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1797 #endif
1799 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1801 char buf1[40], buf2[40];
1803 sprint_value (buf1, val);
1804 sprint_value (buf2, val & mask);
1805 as_warn (_("%s shortened to %s"), buf1, buf2);
1807 return val & mask;
1810 enum PREFIX_GROUP
1812 PREFIX_EXIST = 0,
1813 PREFIX_LOCK,
1814 PREFIX_REP,
1815 PREFIX_OTHER
1818 /* Returns
1819 a. PREFIX_EXIST if attempting to add a prefix where one from the
1820 same class already exists.
1821 b. PREFIX_LOCK if lock prefix is added.
1822 c. PREFIX_REP if rep/repne prefix is added.
1823 d. PREFIX_OTHER if other prefix is added.
1826 static enum PREFIX_GROUP
1827 add_prefix (unsigned int prefix)
1829 enum PREFIX_GROUP ret = PREFIX_OTHER;
1830 unsigned int q;
1832 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1833 && flag_code == CODE_64BIT)
1835 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1836 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1837 && (prefix & (REX_R | REX_X | REX_B))))
1838 ret = PREFIX_EXIST;
1839 q = REX_PREFIX;
1841 else
1843 switch (prefix)
1845 default:
1846 abort ();
1848 case CS_PREFIX_OPCODE:
1849 case DS_PREFIX_OPCODE:
1850 case ES_PREFIX_OPCODE:
1851 case FS_PREFIX_OPCODE:
1852 case GS_PREFIX_OPCODE:
1853 case SS_PREFIX_OPCODE:
1854 q = SEG_PREFIX;
1855 break;
1857 case REPNE_PREFIX_OPCODE:
1858 case REPE_PREFIX_OPCODE:
1859 q = REP_PREFIX;
1860 ret = PREFIX_REP;
1861 break;
1863 case LOCK_PREFIX_OPCODE:
1864 q = LOCK_PREFIX;
1865 ret = PREFIX_LOCK;
1866 break;
1868 case FWAIT_OPCODE:
1869 q = WAIT_PREFIX;
1870 break;
1872 case ADDR_PREFIX_OPCODE:
1873 q = ADDR_PREFIX;
1874 break;
1876 case DATA_PREFIX_OPCODE:
1877 q = DATA_PREFIX;
1878 break;
1880 if (i.prefix[q] != 0)
1881 ret = PREFIX_EXIST;
1884 if (ret)
1886 if (!i.prefix[q])
1887 ++i.prefixes;
1888 i.prefix[q] |= prefix;
1890 else
1891 as_bad (_("same type of prefix used twice"));
1893 return ret;
1896 static void
1897 set_code_flag (int value)
1899 flag_code = (enum flag_code) value;
1900 if (flag_code == CODE_64BIT)
1902 cpu_arch_flags.bitfield.cpu64 = 1;
1903 cpu_arch_flags.bitfield.cpuno64 = 0;
1905 else
1907 cpu_arch_flags.bitfield.cpu64 = 0;
1908 cpu_arch_flags.bitfield.cpuno64 = 1;
1910 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1912 as_bad (_("64bit mode not supported on this CPU."));
1914 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1916 as_bad (_("32bit mode not supported on this CPU."));
1918 stackop_size = '\0';
1921 static void
1922 set_16bit_gcc_code_flag (int new_code_flag)
1924 flag_code = (enum flag_code) new_code_flag;
1925 if (flag_code != CODE_16BIT)
1926 abort ();
1927 cpu_arch_flags.bitfield.cpu64 = 0;
1928 cpu_arch_flags.bitfield.cpuno64 = 1;
1929 stackop_size = LONG_MNEM_SUFFIX;
1932 static void
1933 set_intel_syntax (int syntax_flag)
1935 /* Find out if register prefixing is specified. */
1936 int ask_naked_reg = 0;
1938 SKIP_WHITESPACE ();
1939 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1941 char *string = input_line_pointer;
1942 int e = get_symbol_end ();
1944 if (strcmp (string, "prefix") == 0)
1945 ask_naked_reg = 1;
1946 else if (strcmp (string, "noprefix") == 0)
1947 ask_naked_reg = -1;
1948 else
1949 as_bad (_("bad argument to syntax directive."));
1950 *input_line_pointer = e;
1952 demand_empty_rest_of_line ();
1954 intel_syntax = syntax_flag;
1956 if (ask_naked_reg == 0)
1957 allow_naked_reg = (intel_syntax
1958 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1959 else
1960 allow_naked_reg = (ask_naked_reg < 0);
1962 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
1964 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1965 identifier_chars['$'] = intel_syntax ? '$' : 0;
1966 register_prefix = allow_naked_reg ? "" : "%";
1969 static void
1970 set_intel_mnemonic (int mnemonic_flag)
1972 intel_mnemonic = mnemonic_flag;
1975 static void
1976 set_allow_index_reg (int flag)
1978 allow_index_reg = flag;
1981 static void
1982 set_sse_check (int dummy ATTRIBUTE_UNUSED)
1984 SKIP_WHITESPACE ();
1986 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1988 char *string = input_line_pointer;
1989 int e = get_symbol_end ();
1991 if (strcmp (string, "none") == 0)
1992 sse_check = sse_check_none;
1993 else if (strcmp (string, "warning") == 0)
1994 sse_check = sse_check_warning;
1995 else if (strcmp (string, "error") == 0)
1996 sse_check = sse_check_error;
1997 else
1998 as_bad (_("bad argument to sse_check directive."));
1999 *input_line_pointer = e;
2001 else
2002 as_bad (_("missing argument for sse_check directive"));
2004 demand_empty_rest_of_line ();
2007 static void
2008 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2009 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2011 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2012 static const char *arch;
2014 /* Intel LIOM is only supported on ELF. */
2015 if (!IS_ELF)
2016 return;
2018 if (!arch)
2020 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2021 use default_arch. */
2022 arch = cpu_arch_name;
2023 if (!arch)
2024 arch = default_arch;
2027 /* If we are targeting Intel L1OM, we must enable it. */
2028 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2029 || new_flag.bitfield.cpul1om)
2030 return;
2032 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2033 #endif
2036 static void
2037 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2039 SKIP_WHITESPACE ();
2041 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2043 char *string = input_line_pointer;
2044 int e = get_symbol_end ();
2045 unsigned int j;
2046 i386_cpu_flags flags;
2048 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2050 if (strcmp (string, cpu_arch[j].name) == 0)
2052 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2054 if (*string != '.')
2056 cpu_arch_name = cpu_arch[j].name;
2057 cpu_sub_arch_name = NULL;
2058 cpu_arch_flags = cpu_arch[j].flags;
2059 if (flag_code == CODE_64BIT)
2061 cpu_arch_flags.bitfield.cpu64 = 1;
2062 cpu_arch_flags.bitfield.cpuno64 = 0;
2064 else
2066 cpu_arch_flags.bitfield.cpu64 = 0;
2067 cpu_arch_flags.bitfield.cpuno64 = 1;
2069 cpu_arch_isa = cpu_arch[j].type;
2070 cpu_arch_isa_flags = cpu_arch[j].flags;
2071 if (!cpu_arch_tune_set)
2073 cpu_arch_tune = cpu_arch_isa;
2074 cpu_arch_tune_flags = cpu_arch_isa_flags;
2076 break;
2079 if (strncmp (string + 1, "no", 2))
2080 flags = cpu_flags_or (cpu_arch_flags,
2081 cpu_arch[j].flags);
2082 else
2083 flags = cpu_flags_and_not (cpu_arch_flags,
2084 cpu_arch[j].flags);
2085 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2087 if (cpu_sub_arch_name)
2089 char *name = cpu_sub_arch_name;
2090 cpu_sub_arch_name = concat (name,
2091 cpu_arch[j].name,
2092 (const char *) NULL);
2093 free (name);
2095 else
2096 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2097 cpu_arch_flags = flags;
2099 *input_line_pointer = e;
2100 demand_empty_rest_of_line ();
2101 return;
2104 if (j >= ARRAY_SIZE (cpu_arch))
2105 as_bad (_("no such architecture: `%s'"), string);
2107 *input_line_pointer = e;
2109 else
2110 as_bad (_("missing cpu architecture"));
2112 no_cond_jump_promotion = 0;
2113 if (*input_line_pointer == ','
2114 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2116 char *string = ++input_line_pointer;
2117 int e = get_symbol_end ();
2119 if (strcmp (string, "nojumps") == 0)
2120 no_cond_jump_promotion = 1;
2121 else if (strcmp (string, "jumps") == 0)
2123 else
2124 as_bad (_("no such architecture modifier: `%s'"), string);
2126 *input_line_pointer = e;
2129 demand_empty_rest_of_line ();
2132 enum bfd_architecture
2133 i386_arch (void)
2135 if (cpu_arch_isa == PROCESSOR_L1OM)
2137 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2138 || flag_code != CODE_64BIT)
2139 as_fatal (_("Intel L1OM is 64bit ELF only"));
2140 return bfd_arch_l1om;
2142 else
2143 return bfd_arch_i386;
2146 unsigned long
2147 i386_mach ()
2149 if (!strcmp (default_arch, "x86_64"))
2151 if (cpu_arch_isa == PROCESSOR_L1OM)
2153 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2154 as_fatal (_("Intel L1OM is 64bit ELF only"));
2155 return bfd_mach_l1om;
2157 else
2158 return bfd_mach_x86_64;
2160 else if (!strcmp (default_arch, "i386"))
2161 return bfd_mach_i386_i386;
2162 else
2163 as_fatal (_("Unknown architecture"));
2166 void
2167 md_begin ()
2169 const char *hash_err;
2171 /* Initialize op_hash hash table. */
2172 op_hash = hash_new ();
2175 const insn_template *optab;
2176 templates *core_optab;
2178 /* Setup for loop. */
2179 optab = i386_optab;
2180 core_optab = (templates *) xmalloc (sizeof (templates));
2181 core_optab->start = optab;
2183 while (1)
2185 ++optab;
2186 if (optab->name == NULL
2187 || strcmp (optab->name, (optab - 1)->name) != 0)
2189 /* different name --> ship out current template list;
2190 add to hash table; & begin anew. */
2191 core_optab->end = optab;
2192 hash_err = hash_insert (op_hash,
2193 (optab - 1)->name,
2194 (void *) core_optab);
2195 if (hash_err)
2197 as_fatal (_("Internal Error: Can't hash %s: %s"),
2198 (optab - 1)->name,
2199 hash_err);
2201 if (optab->name == NULL)
2202 break;
2203 core_optab = (templates *) xmalloc (sizeof (templates));
2204 core_optab->start = optab;
2209 /* Initialize reg_hash hash table. */
2210 reg_hash = hash_new ();
2212 const reg_entry *regtab;
2213 unsigned int regtab_size = i386_regtab_size;
2215 for (regtab = i386_regtab; regtab_size--; regtab++)
2217 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2218 if (hash_err)
2219 as_fatal (_("Internal Error: Can't hash %s: %s"),
2220 regtab->reg_name,
2221 hash_err);
2225 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2227 int c;
2228 char *p;
2230 for (c = 0; c < 256; c++)
2232 if (ISDIGIT (c))
2234 digit_chars[c] = c;
2235 mnemonic_chars[c] = c;
2236 register_chars[c] = c;
2237 operand_chars[c] = c;
2239 else if (ISLOWER (c))
2241 mnemonic_chars[c] = c;
2242 register_chars[c] = c;
2243 operand_chars[c] = c;
2245 else if (ISUPPER (c))
2247 mnemonic_chars[c] = TOLOWER (c);
2248 register_chars[c] = mnemonic_chars[c];
2249 operand_chars[c] = c;
2252 if (ISALPHA (c) || ISDIGIT (c))
2253 identifier_chars[c] = c;
2254 else if (c >= 128)
2256 identifier_chars[c] = c;
2257 operand_chars[c] = c;
2261 #ifdef LEX_AT
2262 identifier_chars['@'] = '@';
2263 #endif
2264 #ifdef LEX_QM
2265 identifier_chars['?'] = '?';
2266 operand_chars['?'] = '?';
2267 #endif
2268 digit_chars['-'] = '-';
2269 mnemonic_chars['_'] = '_';
2270 mnemonic_chars['-'] = '-';
2271 mnemonic_chars['.'] = '.';
2272 identifier_chars['_'] = '_';
2273 identifier_chars['.'] = '.';
2275 for (p = operand_special_chars; *p != '\0'; p++)
2276 operand_chars[(unsigned char) *p] = *p;
2279 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2280 if (IS_ELF)
2282 record_alignment (text_section, 2);
2283 record_alignment (data_section, 2);
2284 record_alignment (bss_section, 2);
2286 #endif
2288 if (flag_code == CODE_64BIT)
2290 x86_dwarf2_return_column = 16;
2291 x86_cie_data_alignment = -8;
2293 else
2295 x86_dwarf2_return_column = 8;
2296 x86_cie_data_alignment = -4;
2300 void
2301 i386_print_statistics (FILE *file)
2303 hash_print_statistics (file, "i386 opcode", op_hash);
2304 hash_print_statistics (file, "i386 register", reg_hash);
2307 #ifdef DEBUG386
2309 /* Debugging routines for md_assemble. */
2310 static void pte (insn_template *);
2311 static void pt (i386_operand_type);
2312 static void pe (expressionS *);
2313 static void ps (symbolS *);
2315 static void
2316 pi (char *line, i386_insn *x)
2318 unsigned int i;
2320 fprintf (stdout, "%s: template ", line);
2321 pte (&x->tm);
2322 fprintf (stdout, " address: base %s index %s scale %x\n",
2323 x->base_reg ? x->base_reg->reg_name : "none",
2324 x->index_reg ? x->index_reg->reg_name : "none",
2325 x->log2_scale_factor);
2326 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2327 x->rm.mode, x->rm.reg, x->rm.regmem);
2328 fprintf (stdout, " sib: base %x index %x scale %x\n",
2329 x->sib.base, x->sib.index, x->sib.scale);
2330 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2331 (x->rex & REX_W) != 0,
2332 (x->rex & REX_R) != 0,
2333 (x->rex & REX_X) != 0,
2334 (x->rex & REX_B) != 0);
2335 for (i = 0; i < x->operands; i++)
2337 fprintf (stdout, " #%d: ", i + 1);
2338 pt (x->types[i]);
2339 fprintf (stdout, "\n");
2340 if (x->types[i].bitfield.reg8
2341 || x->types[i].bitfield.reg16
2342 || x->types[i].bitfield.reg32
2343 || x->types[i].bitfield.reg64
2344 || x->types[i].bitfield.regmmx
2345 || x->types[i].bitfield.regxmm
2346 || x->types[i].bitfield.regymm
2347 || x->types[i].bitfield.sreg2
2348 || x->types[i].bitfield.sreg3
2349 || x->types[i].bitfield.control
2350 || x->types[i].bitfield.debug
2351 || x->types[i].bitfield.test)
2352 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
2353 if (operand_type_check (x->types[i], imm))
2354 pe (x->op[i].imms);
2355 if (operand_type_check (x->types[i], disp))
2356 pe (x->op[i].disps);
2360 static void
2361 pte (insn_template *t)
2363 unsigned int i;
2364 fprintf (stdout, " %d operands ", t->operands);
2365 fprintf (stdout, "opcode %x ", t->base_opcode);
2366 if (t->extension_opcode != None)
2367 fprintf (stdout, "ext %x ", t->extension_opcode);
2368 if (t->opcode_modifier.d)
2369 fprintf (stdout, "D");
2370 if (t->opcode_modifier.w)
2371 fprintf (stdout, "W");
2372 fprintf (stdout, "\n");
2373 for (i = 0; i < t->operands; i++)
2375 fprintf (stdout, " #%d type ", i + 1);
2376 pt (t->operand_types[i]);
2377 fprintf (stdout, "\n");
2381 static void
2382 pe (expressionS *e)
2384 fprintf (stdout, " operation %d\n", e->X_op);
2385 fprintf (stdout, " add_number %ld (%lx)\n",
2386 (long) e->X_add_number, (long) e->X_add_number);
2387 if (e->X_add_symbol)
2389 fprintf (stdout, " add_symbol ");
2390 ps (e->X_add_symbol);
2391 fprintf (stdout, "\n");
2393 if (e->X_op_symbol)
2395 fprintf (stdout, " op_symbol ");
2396 ps (e->X_op_symbol);
2397 fprintf (stdout, "\n");
2401 static void
2402 ps (symbolS *s)
2404 fprintf (stdout, "%s type %s%s",
2405 S_GET_NAME (s),
2406 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2407 segment_name (S_GET_SEGMENT (s)));
2410 static struct type_name
2412 i386_operand_type mask;
2413 const char *name;
2415 const type_names[] =
2417 { OPERAND_TYPE_REG8, "r8" },
2418 { OPERAND_TYPE_REG16, "r16" },
2419 { OPERAND_TYPE_REG32, "r32" },
2420 { OPERAND_TYPE_REG64, "r64" },
2421 { OPERAND_TYPE_IMM8, "i8" },
2422 { OPERAND_TYPE_IMM8, "i8s" },
2423 { OPERAND_TYPE_IMM16, "i16" },
2424 { OPERAND_TYPE_IMM32, "i32" },
2425 { OPERAND_TYPE_IMM32S, "i32s" },
2426 { OPERAND_TYPE_IMM64, "i64" },
2427 { OPERAND_TYPE_IMM1, "i1" },
2428 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2429 { OPERAND_TYPE_DISP8, "d8" },
2430 { OPERAND_TYPE_DISP16, "d16" },
2431 { OPERAND_TYPE_DISP32, "d32" },
2432 { OPERAND_TYPE_DISP32S, "d32s" },
2433 { OPERAND_TYPE_DISP64, "d64" },
2434 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2435 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2436 { OPERAND_TYPE_CONTROL, "control reg" },
2437 { OPERAND_TYPE_TEST, "test reg" },
2438 { OPERAND_TYPE_DEBUG, "debug reg" },
2439 { OPERAND_TYPE_FLOATREG, "FReg" },
2440 { OPERAND_TYPE_FLOATACC, "FAcc" },
2441 { OPERAND_TYPE_SREG2, "SReg2" },
2442 { OPERAND_TYPE_SREG3, "SReg3" },
2443 { OPERAND_TYPE_ACC, "Acc" },
2444 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2445 { OPERAND_TYPE_REGMMX, "rMMX" },
2446 { OPERAND_TYPE_REGXMM, "rXMM" },
2447 { OPERAND_TYPE_REGYMM, "rYMM" },
2448 { OPERAND_TYPE_ESSEG, "es" },
2451 static void
2452 pt (i386_operand_type t)
2454 unsigned int j;
2455 i386_operand_type a;
2457 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2459 a = operand_type_and (t, type_names[j].mask);
2460 if (!operand_type_all_zero (&a))
2461 fprintf (stdout, "%s, ", type_names[j].name);
2463 fflush (stdout);
2466 #endif /* DEBUG386 */
2468 static bfd_reloc_code_real_type
2469 reloc (unsigned int size,
2470 int pcrel,
2471 int sign,
2472 bfd_reloc_code_real_type other)
2474 if (other != NO_RELOC)
2476 reloc_howto_type *rel;
2478 if (size == 8)
2479 switch (other)
2481 case BFD_RELOC_X86_64_GOT32:
2482 return BFD_RELOC_X86_64_GOT64;
2483 break;
2484 case BFD_RELOC_X86_64_PLTOFF64:
2485 return BFD_RELOC_X86_64_PLTOFF64;
2486 break;
2487 case BFD_RELOC_X86_64_GOTPC32:
2488 other = BFD_RELOC_X86_64_GOTPC64;
2489 break;
2490 case BFD_RELOC_X86_64_GOTPCREL:
2491 other = BFD_RELOC_X86_64_GOTPCREL64;
2492 break;
2493 case BFD_RELOC_X86_64_TPOFF32:
2494 other = BFD_RELOC_X86_64_TPOFF64;
2495 break;
2496 case BFD_RELOC_X86_64_DTPOFF32:
2497 other = BFD_RELOC_X86_64_DTPOFF64;
2498 break;
2499 default:
2500 break;
2503 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2504 if (size == 4 && flag_code != CODE_64BIT)
2505 sign = -1;
2507 rel = bfd_reloc_type_lookup (stdoutput, other);
2508 if (!rel)
2509 as_bad (_("unknown relocation (%u)"), other);
2510 else if (size != bfd_get_reloc_size (rel))
2511 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2512 bfd_get_reloc_size (rel),
2513 size);
2514 else if (pcrel && !rel->pc_relative)
2515 as_bad (_("non-pc-relative relocation for pc-relative field"));
2516 else if ((rel->complain_on_overflow == complain_overflow_signed
2517 && !sign)
2518 || (rel->complain_on_overflow == complain_overflow_unsigned
2519 && sign > 0))
2520 as_bad (_("relocated field and relocation type differ in signedness"));
2521 else
2522 return other;
2523 return NO_RELOC;
2526 if (pcrel)
2528 if (!sign)
2529 as_bad (_("there are no unsigned pc-relative relocations"));
2530 switch (size)
2532 case 1: return BFD_RELOC_8_PCREL;
2533 case 2: return BFD_RELOC_16_PCREL;
2534 case 4: return BFD_RELOC_32_PCREL;
2535 case 8: return BFD_RELOC_64_PCREL;
2537 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2539 else
2541 if (sign > 0)
2542 switch (size)
2544 case 4: return BFD_RELOC_X86_64_32S;
2546 else
2547 switch (size)
2549 case 1: return BFD_RELOC_8;
2550 case 2: return BFD_RELOC_16;
2551 case 4: return BFD_RELOC_32;
2552 case 8: return BFD_RELOC_64;
2554 as_bad (_("cannot do %s %u byte relocation"),
2555 sign > 0 ? "signed" : "unsigned", size);
2558 return NO_RELOC;
2561 /* Here we decide which fixups can be adjusted to make them relative to
2562 the beginning of the section instead of the symbol. Basically we need
2563 to make sure that the dynamic relocations are done correctly, so in
2564 some cases we force the original symbol to be used. */
2567 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2569 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2570 if (!IS_ELF)
2571 return 1;
2573 /* Don't adjust pc-relative references to merge sections in 64-bit
2574 mode. */
2575 if (use_rela_relocations
2576 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2577 && fixP->fx_pcrel)
2578 return 0;
2580 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2581 and changed later by validate_fix. */
2582 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2583 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2584 return 0;
2586 /* adjust_reloc_syms doesn't know about the GOT. */
2587 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2588 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2589 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2590 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2591 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2592 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2593 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2594 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2595 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2596 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2597 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2598 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2599 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2600 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2601 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2602 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2603 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2604 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2605 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2606 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2607 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2608 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2609 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2610 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2611 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2612 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2613 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2614 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2615 return 0;
2616 #endif
2617 return 1;
2620 static int
2621 intel_float_operand (const char *mnemonic)
2623 /* Note that the value returned is meaningful only for opcodes with (memory)
2624 operands, hence the code here is free to improperly handle opcodes that
2625 have no operands (for better performance and smaller code). */
2627 if (mnemonic[0] != 'f')
2628 return 0; /* non-math */
2630 switch (mnemonic[1])
2632 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2633 the fs segment override prefix not currently handled because no
2634 call path can make opcodes without operands get here */
2635 case 'i':
2636 return 2 /* integer op */;
2637 case 'l':
2638 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2639 return 3; /* fldcw/fldenv */
2640 break;
2641 case 'n':
2642 if (mnemonic[2] != 'o' /* fnop */)
2643 return 3; /* non-waiting control op */
2644 break;
2645 case 'r':
2646 if (mnemonic[2] == 's')
2647 return 3; /* frstor/frstpm */
2648 break;
2649 case 's':
2650 if (mnemonic[2] == 'a')
2651 return 3; /* fsave */
2652 if (mnemonic[2] == 't')
2654 switch (mnemonic[3])
2656 case 'c': /* fstcw */
2657 case 'd': /* fstdw */
2658 case 'e': /* fstenv */
2659 case 's': /* fsts[gw] */
2660 return 3;
2663 break;
2664 case 'x':
2665 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2666 return 0; /* fxsave/fxrstor are not really math ops */
2667 break;
2670 return 1;
2673 /* Build the VEX prefix. */
2675 static void
2676 build_vex_prefix (const insn_template *t)
2678 unsigned int register_specifier;
2679 unsigned int implied_prefix;
2680 unsigned int vector_length;
2682 /* Check register specifier. */
2683 if (i.vex.register_specifier)
2685 register_specifier = i.vex.register_specifier->reg_num;
2686 if ((i.vex.register_specifier->reg_flags & RegRex))
2687 register_specifier += 8;
2688 register_specifier = ~register_specifier & 0xf;
2690 else
2691 register_specifier = 0xf;
2693 /* Use 2-byte VEX prefix by swappping destination and source
2694 operand. */
2695 if (!i.swap_operand
2696 && i.operands == i.reg_operands
2697 && i.tm.opcode_modifier.vexopcode == VEX0F
2698 && i.tm.opcode_modifier.s
2699 && i.rex == REX_B)
2701 unsigned int xchg = i.operands - 1;
2702 union i386_op temp_op;
2703 i386_operand_type temp_type;
2705 temp_type = i.types[xchg];
2706 i.types[xchg] = i.types[0];
2707 i.types[0] = temp_type;
2708 temp_op = i.op[xchg];
2709 i.op[xchg] = i.op[0];
2710 i.op[0] = temp_op;
2712 gas_assert (i.rm.mode == 3);
2714 i.rex = REX_R;
2715 xchg = i.rm.regmem;
2716 i.rm.regmem = i.rm.reg;
2717 i.rm.reg = xchg;
2719 /* Use the next insn. */
2720 i.tm = t[1];
2723 if (i.tm.opcode_modifier.vex == VEXScalar)
2724 vector_length = avxscalar;
2725 else
2726 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
2728 switch ((i.tm.base_opcode >> 8) & 0xff)
2730 case 0:
2731 implied_prefix = 0;
2732 break;
2733 case DATA_PREFIX_OPCODE:
2734 implied_prefix = 1;
2735 break;
2736 case REPE_PREFIX_OPCODE:
2737 implied_prefix = 2;
2738 break;
2739 case REPNE_PREFIX_OPCODE:
2740 implied_prefix = 3;
2741 break;
2742 default:
2743 abort ();
2746 /* Use 2-byte VEX prefix if possible. */
2747 if (i.tm.opcode_modifier.vexopcode == VEX0F
2748 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
2750 /* 2-byte VEX prefix. */
2751 unsigned int r;
2753 i.vex.length = 2;
2754 i.vex.bytes[0] = 0xc5;
2756 /* Check the REX.R bit. */
2757 r = (i.rex & REX_R) ? 0 : 1;
2758 i.vex.bytes[1] = (r << 7
2759 | register_specifier << 3
2760 | vector_length << 2
2761 | implied_prefix);
2763 else
2765 /* 3-byte VEX prefix. */
2766 unsigned int m, w;
2768 i.vex.length = 3;
2770 switch (i.tm.opcode_modifier.vexopcode)
2772 case VEX0F:
2773 m = 0x1;
2774 i.vex.bytes[0] = 0xc4;
2775 break;
2776 case VEX0F38:
2777 m = 0x2;
2778 i.vex.bytes[0] = 0xc4;
2779 break;
2780 case VEX0F3A:
2781 m = 0x3;
2782 i.vex.bytes[0] = 0xc4;
2783 break;
2784 case XOP08:
2785 m = 0x8;
2786 i.vex.bytes[0] = 0x8f;
2787 break;
2788 case XOP09:
2789 m = 0x9;
2790 i.vex.bytes[0] = 0x8f;
2791 break;
2792 case XOP0A:
2793 m = 0xa;
2794 i.vex.bytes[0] = 0x8f;
2795 break;
2796 default:
2797 abort ();
2800 /* The high 3 bits of the second VEX byte are 1's compliment
2801 of RXB bits from REX. */
2802 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
2804 /* Check the REX.W bit. */
2805 w = (i.rex & REX_W) ? 1 : 0;
2806 if (i.tm.opcode_modifier.vexw)
2808 if (w)
2809 abort ();
2811 if (i.tm.opcode_modifier.vexw == VEXW1)
2812 w = 1;
2815 i.vex.bytes[2] = (w << 7
2816 | register_specifier << 3
2817 | vector_length << 2
2818 | implied_prefix);
2822 static void
2823 process_immext (void)
2825 expressionS *exp;
2827 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2829 /* SSE3 Instructions have the fixed operands with an opcode
2830 suffix which is coded in the same place as an 8-bit immediate
2831 field would be. Here we check those operands and remove them
2832 afterwards. */
2833 unsigned int x;
2835 for (x = 0; x < i.operands; x++)
2836 if (i.op[x].regs->reg_num != x)
2837 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2838 register_prefix, i.op[x].regs->reg_name, x + 1,
2839 i.tm.name);
2841 i.operands = 0;
2844 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2845 which is coded in the same place as an 8-bit immediate field
2846 would be. Here we fake an 8-bit immediate operand from the
2847 opcode suffix stored in tm.extension_opcode.
2849 AVX instructions also use this encoding, for some of
2850 3 argument instructions. */
2852 gas_assert (i.imm_operands == 0
2853 && (i.operands <= 2
2854 || (i.tm.opcode_modifier.vex
2855 && i.operands <= 4)));
2857 exp = &im_expressions[i.imm_operands++];
2858 i.op[i.operands].imms = exp;
2859 i.types[i.operands] = imm8;
2860 i.operands++;
2861 exp->X_op = O_constant;
2862 exp->X_add_number = i.tm.extension_opcode;
2863 i.tm.extension_opcode = None;
2866 /* This is the guts of the machine-dependent assembler. LINE points to a
2867 machine dependent instruction. This function is supposed to emit
2868 the frags/bytes it assembles to. */
2870 void
2871 md_assemble (char *line)
2873 unsigned int j;
2874 char mnemonic[MAX_MNEM_SIZE];
2875 const insn_template *t;
2877 /* Initialize globals. */
2878 memset (&i, '\0', sizeof (i));
2879 for (j = 0; j < MAX_OPERANDS; j++)
2880 i.reloc[j] = NO_RELOC;
2881 memset (disp_expressions, '\0', sizeof (disp_expressions));
2882 memset (im_expressions, '\0', sizeof (im_expressions));
2883 save_stack_p = save_stack;
2885 /* First parse an instruction mnemonic & call i386_operand for the operands.
2886 We assume that the scrubber has arranged it so that line[0] is the valid
2887 start of a (possibly prefixed) mnemonic. */
2889 line = parse_insn (line, mnemonic);
2890 if (line == NULL)
2891 return;
2893 line = parse_operands (line, mnemonic);
2894 this_operand = -1;
2895 if (line == NULL)
2896 return;
2898 /* Now we've parsed the mnemonic into a set of templates, and have the
2899 operands at hand. */
2901 /* All intel opcodes have reversed operands except for "bound" and
2902 "enter". We also don't reverse intersegment "jmp" and "call"
2903 instructions with 2 immediate operands so that the immediate segment
2904 precedes the offset, as it does when in AT&T mode. */
2905 if (intel_syntax
2906 && i.operands > 1
2907 && (strcmp (mnemonic, "bound") != 0)
2908 && (strcmp (mnemonic, "invlpga") != 0)
2909 && !(operand_type_check (i.types[0], imm)
2910 && operand_type_check (i.types[1], imm)))
2911 swap_operands ();
2913 /* The order of the immediates should be reversed
2914 for 2 immediates extrq and insertq instructions */
2915 if (i.imm_operands == 2
2916 && (strcmp (mnemonic, "extrq") == 0
2917 || strcmp (mnemonic, "insertq") == 0))
2918 swap_2_operands (0, 1);
2920 if (i.imm_operands)
2921 optimize_imm ();
2923 /* Don't optimize displacement for movabs since it only takes 64bit
2924 displacement. */
2925 if (i.disp_operands
2926 && (flag_code != CODE_64BIT
2927 || strcmp (mnemonic, "movabs") != 0))
2928 optimize_disp ();
2930 /* Next, we find a template that matches the given insn,
2931 making sure the overlap of the given operands types is consistent
2932 with the template operand types. */
2934 if (!(t = match_template ()))
2935 return;
2937 if (sse_check != sse_check_none
2938 && !i.tm.opcode_modifier.noavx
2939 && (i.tm.cpu_flags.bitfield.cpusse
2940 || i.tm.cpu_flags.bitfield.cpusse2
2941 || i.tm.cpu_flags.bitfield.cpusse3
2942 || i.tm.cpu_flags.bitfield.cpussse3
2943 || i.tm.cpu_flags.bitfield.cpusse4_1
2944 || i.tm.cpu_flags.bitfield.cpusse4_2))
2946 (sse_check == sse_check_warning
2947 ? as_warn
2948 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
2951 /* Zap movzx and movsx suffix. The suffix has been set from
2952 "word ptr" or "byte ptr" on the source operand in Intel syntax
2953 or extracted from mnemonic in AT&T syntax. But we'll use
2954 the destination register to choose the suffix for encoding. */
2955 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2957 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2958 there is no suffix, the default will be byte extension. */
2959 if (i.reg_operands != 2
2960 && !i.suffix
2961 && intel_syntax)
2962 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2964 i.suffix = 0;
2967 if (i.tm.opcode_modifier.fwait)
2968 if (!add_prefix (FWAIT_OPCODE))
2969 return;
2971 /* Check for lock without a lockable instruction. Destination operand
2972 must be memory unless it is xchg (0x86). */
2973 if (i.prefix[LOCK_PREFIX]
2974 && (!i.tm.opcode_modifier.islockable
2975 || i.mem_operands == 0
2976 || (i.tm.base_opcode != 0x86
2977 && !operand_type_check (i.types[i.operands - 1], anymem))))
2979 as_bad (_("expecting lockable instruction after `lock'"));
2980 return;
2983 /* Check string instruction segment overrides. */
2984 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2986 if (!check_string ())
2987 return;
2988 i.disp_operands = 0;
2991 if (!process_suffix ())
2992 return;
2994 /* Update operand types. */
2995 for (j = 0; j < i.operands; j++)
2996 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
2998 /* Make still unresolved immediate matches conform to size of immediate
2999 given in i.suffix. */
3000 if (!finalize_imm ())
3001 return;
3003 if (i.types[0].bitfield.imm1)
3004 i.imm_operands = 0; /* kludge for shift insns. */
3006 /* We only need to check those implicit registers for instructions
3007 with 3 operands or less. */
3008 if (i.operands <= 3)
3009 for (j = 0; j < i.operands; j++)
3010 if (i.types[j].bitfield.inoutportreg
3011 || i.types[j].bitfield.shiftcount
3012 || i.types[j].bitfield.acc
3013 || i.types[j].bitfield.floatacc)
3014 i.reg_operands--;
3016 /* ImmExt should be processed after SSE2AVX. */
3017 if (!i.tm.opcode_modifier.sse2avx
3018 && i.tm.opcode_modifier.immext)
3019 process_immext ();
3021 /* For insns with operands there are more diddles to do to the opcode. */
3022 if (i.operands)
3024 if (!process_operands ())
3025 return;
3027 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3029 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3030 as_warn (_("translating to `%sp'"), i.tm.name);
3033 if (i.tm.opcode_modifier.vex)
3034 build_vex_prefix (t);
3036 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3037 instructions may define INT_OPCODE as well, so avoid this corner
3038 case for those instructions that use MODRM. */
3039 if (i.tm.base_opcode == INT_OPCODE
3040 && !i.tm.opcode_modifier.modrm
3041 && i.op[0].imms->X_add_number == 3)
3043 i.tm.base_opcode = INT3_OPCODE;
3044 i.imm_operands = 0;
3047 if ((i.tm.opcode_modifier.jump
3048 || i.tm.opcode_modifier.jumpbyte
3049 || i.tm.opcode_modifier.jumpdword)
3050 && i.op[0].disps->X_op == O_constant)
3052 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3053 the absolute address given by the constant. Since ix86 jumps and
3054 calls are pc relative, we need to generate a reloc. */
3055 i.op[0].disps->X_add_symbol = &abs_symbol;
3056 i.op[0].disps->X_op = O_symbol;
3059 if (i.tm.opcode_modifier.rex64)
3060 i.rex |= REX_W;
3062 /* For 8 bit registers we need an empty rex prefix. Also if the
3063 instruction already has a prefix, we need to convert old
3064 registers to new ones. */
3066 if ((i.types[0].bitfield.reg8
3067 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3068 || (i.types[1].bitfield.reg8
3069 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3070 || ((i.types[0].bitfield.reg8
3071 || i.types[1].bitfield.reg8)
3072 && i.rex != 0))
3074 int x;
3076 i.rex |= REX_OPCODE;
3077 for (x = 0; x < 2; x++)
3079 /* Look for 8 bit operand that uses old registers. */
3080 if (i.types[x].bitfield.reg8
3081 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3083 /* In case it is "hi" register, give up. */
3084 if (i.op[x].regs->reg_num > 3)
3085 as_bad (_("can't encode register '%s%s' in an "
3086 "instruction requiring REX prefix."),
3087 register_prefix, i.op[x].regs->reg_name);
3089 /* Otherwise it is equivalent to the extended register.
3090 Since the encoding doesn't change this is merely
3091 cosmetic cleanup for debug output. */
3093 i.op[x].regs = i.op[x].regs + 8;
3098 if (i.rex != 0)
3099 add_prefix (REX_OPCODE | i.rex);
3101 /* We are ready to output the insn. */
3102 output_insn ();
3105 static char *
3106 parse_insn (char *line, char *mnemonic)
3108 char *l = line;
3109 char *token_start = l;
3110 char *mnem_p;
3111 int supported;
3112 const insn_template *t;
3113 char *dot_p = NULL;
3115 /* Non-zero if we found a prefix only acceptable with string insns. */
3116 const char *expecting_string_instruction = NULL;
3118 while (1)
3120 mnem_p = mnemonic;
3121 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3123 if (*mnem_p == '.')
3124 dot_p = mnem_p;
3125 mnem_p++;
3126 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3128 as_bad (_("no such instruction: `%s'"), token_start);
3129 return NULL;
3131 l++;
3133 if (!is_space_char (*l)
3134 && *l != END_OF_INSN
3135 && (intel_syntax
3136 || (*l != PREFIX_SEPARATOR
3137 && *l != ',')))
3139 as_bad (_("invalid character %s in mnemonic"),
3140 output_invalid (*l));
3141 return NULL;
3143 if (token_start == l)
3145 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3146 as_bad (_("expecting prefix; got nothing"));
3147 else
3148 as_bad (_("expecting mnemonic; got nothing"));
3149 return NULL;
3152 /* Look up instruction (or prefix) via hash table. */
3153 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3155 if (*l != END_OF_INSN
3156 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3157 && current_templates
3158 && current_templates->start->opcode_modifier.isprefix)
3160 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3162 as_bad ((flag_code != CODE_64BIT
3163 ? _("`%s' is only supported in 64-bit mode")
3164 : _("`%s' is not supported in 64-bit mode")),
3165 current_templates->start->name);
3166 return NULL;
3168 /* If we are in 16-bit mode, do not allow addr16 or data16.
3169 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3170 if ((current_templates->start->opcode_modifier.size16
3171 || current_templates->start->opcode_modifier.size32)
3172 && flag_code != CODE_64BIT
3173 && (current_templates->start->opcode_modifier.size32
3174 ^ (flag_code == CODE_16BIT)))
3176 as_bad (_("redundant %s prefix"),
3177 current_templates->start->name);
3178 return NULL;
3180 /* Add prefix, checking for repeated prefixes. */
3181 switch (add_prefix (current_templates->start->base_opcode))
3183 case PREFIX_EXIST:
3184 return NULL;
3185 case PREFIX_REP:
3186 expecting_string_instruction = current_templates->start->name;
3187 break;
3188 default:
3189 break;
3191 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3192 token_start = ++l;
3194 else
3195 break;
3198 if (!current_templates)
3200 /* Check if we should swap operand in encoding. */
3201 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3202 i.swap_operand = 1;
3203 else
3204 goto check_suffix;
3205 mnem_p = dot_p;
3206 *dot_p = '\0';
3207 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3210 if (!current_templates)
3212 check_suffix:
3213 /* See if we can get a match by trimming off a suffix. */
3214 switch (mnem_p[-1])
3216 case WORD_MNEM_SUFFIX:
3217 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3218 i.suffix = SHORT_MNEM_SUFFIX;
3219 else
3220 case BYTE_MNEM_SUFFIX:
3221 case QWORD_MNEM_SUFFIX:
3222 i.suffix = mnem_p[-1];
3223 mnem_p[-1] = '\0';
3224 current_templates = (const templates *) hash_find (op_hash,
3225 mnemonic);
3226 break;
3227 case SHORT_MNEM_SUFFIX:
3228 case LONG_MNEM_SUFFIX:
3229 if (!intel_syntax)
3231 i.suffix = mnem_p[-1];
3232 mnem_p[-1] = '\0';
3233 current_templates = (const templates *) hash_find (op_hash,
3234 mnemonic);
3236 break;
3238 /* Intel Syntax. */
3239 case 'd':
3240 if (intel_syntax)
3242 if (intel_float_operand (mnemonic) == 1)
3243 i.suffix = SHORT_MNEM_SUFFIX;
3244 else
3245 i.suffix = LONG_MNEM_SUFFIX;
3246 mnem_p[-1] = '\0';
3247 current_templates = (const templates *) hash_find (op_hash,
3248 mnemonic);
3250 break;
3252 if (!current_templates)
3254 as_bad (_("no such instruction: `%s'"), token_start);
3255 return NULL;
3259 if (current_templates->start->opcode_modifier.jump
3260 || current_templates->start->opcode_modifier.jumpbyte)
3262 /* Check for a branch hint. We allow ",pt" and ",pn" for
3263 predict taken and predict not taken respectively.
3264 I'm not sure that branch hints actually do anything on loop
3265 and jcxz insns (JumpByte) for current Pentium4 chips. They
3266 may work in the future and it doesn't hurt to accept them
3267 now. */
3268 if (l[0] == ',' && l[1] == 'p')
3270 if (l[2] == 't')
3272 if (!add_prefix (DS_PREFIX_OPCODE))
3273 return NULL;
3274 l += 3;
3276 else if (l[2] == 'n')
3278 if (!add_prefix (CS_PREFIX_OPCODE))
3279 return NULL;
3280 l += 3;
3284 /* Any other comma loses. */
3285 if (*l == ',')
3287 as_bad (_("invalid character %s in mnemonic"),
3288 output_invalid (*l));
3289 return NULL;
3292 /* Check if instruction is supported on specified architecture. */
3293 supported = 0;
3294 for (t = current_templates->start; t < current_templates->end; ++t)
3296 supported |= cpu_flags_match (t);
3297 if (supported == CPU_FLAGS_PERFECT_MATCH)
3298 goto skip;
3301 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3303 as_bad (flag_code == CODE_64BIT
3304 ? _("`%s' is not supported in 64-bit mode")
3305 : _("`%s' is only supported in 64-bit mode"),
3306 current_templates->start->name);
3307 return NULL;
3309 if (supported != CPU_FLAGS_PERFECT_MATCH)
3311 as_bad (_("`%s' is not supported on `%s%s'"),
3312 current_templates->start->name,
3313 cpu_arch_name ? cpu_arch_name : default_arch,
3314 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3315 return NULL;
3318 skip:
3319 if (!cpu_arch_flags.bitfield.cpui386
3320 && (flag_code != CODE_16BIT))
3322 as_warn (_("use .code16 to ensure correct addressing mode"));
3325 /* Check for rep/repne without a string instruction. */
3326 if (expecting_string_instruction)
3328 static templates override;
3330 for (t = current_templates->start; t < current_templates->end; ++t)
3331 if (t->opcode_modifier.isstring)
3332 break;
3333 if (t >= current_templates->end)
3335 as_bad (_("expecting string instruction after `%s'"),
3336 expecting_string_instruction);
3337 return NULL;
3339 for (override.start = t; t < current_templates->end; ++t)
3340 if (!t->opcode_modifier.isstring)
3341 break;
3342 override.end = t;
3343 current_templates = &override;
3346 return l;
3349 static char *
3350 parse_operands (char *l, const char *mnemonic)
3352 char *token_start;
3354 /* 1 if operand is pending after ','. */
3355 unsigned int expecting_operand = 0;
3357 /* Non-zero if operand parens not balanced. */
3358 unsigned int paren_not_balanced;
3360 while (*l != END_OF_INSN)
3362 /* Skip optional white space before operand. */
3363 if (is_space_char (*l))
3364 ++l;
3365 if (!is_operand_char (*l) && *l != END_OF_INSN)
3367 as_bad (_("invalid character %s before operand %d"),
3368 output_invalid (*l),
3369 i.operands + 1);
3370 return NULL;
3372 token_start = l; /* after white space */
3373 paren_not_balanced = 0;
3374 while (paren_not_balanced || *l != ',')
3376 if (*l == END_OF_INSN)
3378 if (paren_not_balanced)
3380 if (!intel_syntax)
3381 as_bad (_("unbalanced parenthesis in operand %d."),
3382 i.operands + 1);
3383 else
3384 as_bad (_("unbalanced brackets in operand %d."),
3385 i.operands + 1);
3386 return NULL;
3388 else
3389 break; /* we are done */
3391 else if (!is_operand_char (*l) && !is_space_char (*l))
3393 as_bad (_("invalid character %s in operand %d"),
3394 output_invalid (*l),
3395 i.operands + 1);
3396 return NULL;
3398 if (!intel_syntax)
3400 if (*l == '(')
3401 ++paren_not_balanced;
3402 if (*l == ')')
3403 --paren_not_balanced;
3405 else
3407 if (*l == '[')
3408 ++paren_not_balanced;
3409 if (*l == ']')
3410 --paren_not_balanced;
3412 l++;
3414 if (l != token_start)
3415 { /* Yes, we've read in another operand. */
3416 unsigned int operand_ok;
3417 this_operand = i.operands++;
3418 i.types[this_operand].bitfield.unspecified = 1;
3419 if (i.operands > MAX_OPERANDS)
3421 as_bad (_("spurious operands; (%d operands/instruction max)"),
3422 MAX_OPERANDS);
3423 return NULL;
3425 /* Now parse operand adding info to 'i' as we go along. */
3426 END_STRING_AND_SAVE (l);
3428 if (intel_syntax)
3429 operand_ok =
3430 i386_intel_operand (token_start,
3431 intel_float_operand (mnemonic));
3432 else
3433 operand_ok = i386_att_operand (token_start);
3435 RESTORE_END_STRING (l);
3436 if (!operand_ok)
3437 return NULL;
3439 else
3441 if (expecting_operand)
3443 expecting_operand_after_comma:
3444 as_bad (_("expecting operand after ','; got nothing"));
3445 return NULL;
3447 if (*l == ',')
3449 as_bad (_("expecting operand before ','; got nothing"));
3450 return NULL;
3454 /* Now *l must be either ',' or END_OF_INSN. */
3455 if (*l == ',')
3457 if (*++l == END_OF_INSN)
3459 /* Just skip it, if it's \n complain. */
3460 goto expecting_operand_after_comma;
3462 expecting_operand = 1;
3465 return l;
3468 static void
3469 swap_2_operands (int xchg1, int xchg2)
3471 union i386_op temp_op;
3472 i386_operand_type temp_type;
3473 enum bfd_reloc_code_real temp_reloc;
3475 temp_type = i.types[xchg2];
3476 i.types[xchg2] = i.types[xchg1];
3477 i.types[xchg1] = temp_type;
3478 temp_op = i.op[xchg2];
3479 i.op[xchg2] = i.op[xchg1];
3480 i.op[xchg1] = temp_op;
3481 temp_reloc = i.reloc[xchg2];
3482 i.reloc[xchg2] = i.reloc[xchg1];
3483 i.reloc[xchg1] = temp_reloc;
3486 static void
3487 swap_operands (void)
3489 switch (i.operands)
3491 case 5:
3492 case 4:
3493 swap_2_operands (1, i.operands - 2);
3494 case 3:
3495 case 2:
3496 swap_2_operands (0, i.operands - 1);
3497 break;
3498 default:
3499 abort ();
3502 if (i.mem_operands == 2)
3504 const seg_entry *temp_seg;
3505 temp_seg = i.seg[0];
3506 i.seg[0] = i.seg[1];
3507 i.seg[1] = temp_seg;
3511 /* Try to ensure constant immediates are represented in the smallest
3512 opcode possible. */
3513 static void
3514 optimize_imm (void)
3516 char guess_suffix = 0;
3517 int op;
3519 if (i.suffix)
3520 guess_suffix = i.suffix;
3521 else if (i.reg_operands)
3523 /* Figure out a suffix from the last register operand specified.
3524 We can't do this properly yet, ie. excluding InOutPortReg,
3525 but the following works for instructions with immediates.
3526 In any case, we can't set i.suffix yet. */
3527 for (op = i.operands; --op >= 0;)
3528 if (i.types[op].bitfield.reg8)
3530 guess_suffix = BYTE_MNEM_SUFFIX;
3531 break;
3533 else if (i.types[op].bitfield.reg16)
3535 guess_suffix = WORD_MNEM_SUFFIX;
3536 break;
3538 else if (i.types[op].bitfield.reg32)
3540 guess_suffix = LONG_MNEM_SUFFIX;
3541 break;
3543 else if (i.types[op].bitfield.reg64)
3545 guess_suffix = QWORD_MNEM_SUFFIX;
3546 break;
3549 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3550 guess_suffix = WORD_MNEM_SUFFIX;
3552 for (op = i.operands; --op >= 0;)
3553 if (operand_type_check (i.types[op], imm))
3555 switch (i.op[op].imms->X_op)
3557 case O_constant:
3558 /* If a suffix is given, this operand may be shortened. */
3559 switch (guess_suffix)
3561 case LONG_MNEM_SUFFIX:
3562 i.types[op].bitfield.imm32 = 1;
3563 i.types[op].bitfield.imm64 = 1;
3564 break;
3565 case WORD_MNEM_SUFFIX:
3566 i.types[op].bitfield.imm16 = 1;
3567 i.types[op].bitfield.imm32 = 1;
3568 i.types[op].bitfield.imm32s = 1;
3569 i.types[op].bitfield.imm64 = 1;
3570 break;
3571 case BYTE_MNEM_SUFFIX:
3572 i.types[op].bitfield.imm8 = 1;
3573 i.types[op].bitfield.imm8s = 1;
3574 i.types[op].bitfield.imm16 = 1;
3575 i.types[op].bitfield.imm32 = 1;
3576 i.types[op].bitfield.imm32s = 1;
3577 i.types[op].bitfield.imm64 = 1;
3578 break;
3581 /* If this operand is at most 16 bits, convert it
3582 to a signed 16 bit number before trying to see
3583 whether it will fit in an even smaller size.
3584 This allows a 16-bit operand such as $0xffe0 to
3585 be recognised as within Imm8S range. */
3586 if ((i.types[op].bitfield.imm16)
3587 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
3589 i.op[op].imms->X_add_number =
3590 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
3592 if ((i.types[op].bitfield.imm32)
3593 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
3594 == 0))
3596 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
3597 ^ ((offsetT) 1 << 31))
3598 - ((offsetT) 1 << 31));
3600 i.types[op]
3601 = operand_type_or (i.types[op],
3602 smallest_imm_type (i.op[op].imms->X_add_number));
3604 /* We must avoid matching of Imm32 templates when 64bit
3605 only immediate is available. */
3606 if (guess_suffix == QWORD_MNEM_SUFFIX)
3607 i.types[op].bitfield.imm32 = 0;
3608 break;
3610 case O_absent:
3611 case O_register:
3612 abort ();
3614 /* Symbols and expressions. */
3615 default:
3616 /* Convert symbolic operand to proper sizes for matching, but don't
3617 prevent matching a set of insns that only supports sizes other
3618 than those matching the insn suffix. */
3620 i386_operand_type mask, allowed;
3621 const insn_template *t;
3623 operand_type_set (&mask, 0);
3624 operand_type_set (&allowed, 0);
3626 for (t = current_templates->start;
3627 t < current_templates->end;
3628 ++t)
3629 allowed = operand_type_or (allowed,
3630 t->operand_types[op]);
3631 switch (guess_suffix)
3633 case QWORD_MNEM_SUFFIX:
3634 mask.bitfield.imm64 = 1;
3635 mask.bitfield.imm32s = 1;
3636 break;
3637 case LONG_MNEM_SUFFIX:
3638 mask.bitfield.imm32 = 1;
3639 break;
3640 case WORD_MNEM_SUFFIX:
3641 mask.bitfield.imm16 = 1;
3642 break;
3643 case BYTE_MNEM_SUFFIX:
3644 mask.bitfield.imm8 = 1;
3645 break;
3646 default:
3647 break;
3649 allowed = operand_type_and (mask, allowed);
3650 if (!operand_type_all_zero (&allowed))
3651 i.types[op] = operand_type_and (i.types[op], mask);
3653 break;
3658 /* Try to use the smallest displacement type too. */
3659 static void
3660 optimize_disp (void)
3662 int op;
3664 for (op = i.operands; --op >= 0;)
3665 if (operand_type_check (i.types[op], disp))
3667 if (i.op[op].disps->X_op == O_constant)
3669 offsetT op_disp = i.op[op].disps->X_add_number;
3671 if (i.types[op].bitfield.disp16
3672 && (op_disp & ~(offsetT) 0xffff) == 0)
3674 /* If this operand is at most 16 bits, convert
3675 to a signed 16 bit number and don't use 64bit
3676 displacement. */
3677 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
3678 i.types[op].bitfield.disp64 = 0;
3680 if (i.types[op].bitfield.disp32
3681 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3683 /* If this operand is at most 32 bits, convert
3684 to a signed 32 bit number and don't use 64bit
3685 displacement. */
3686 op_disp &= (((offsetT) 2 << 31) - 1);
3687 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3688 i.types[op].bitfield.disp64 = 0;
3690 if (!op_disp && i.types[op].bitfield.baseindex)
3692 i.types[op].bitfield.disp8 = 0;
3693 i.types[op].bitfield.disp16 = 0;
3694 i.types[op].bitfield.disp32 = 0;
3695 i.types[op].bitfield.disp32s = 0;
3696 i.types[op].bitfield.disp64 = 0;
3697 i.op[op].disps = 0;
3698 i.disp_operands--;
3700 else if (flag_code == CODE_64BIT)
3702 if (fits_in_signed_long (op_disp))
3704 i.types[op].bitfield.disp64 = 0;
3705 i.types[op].bitfield.disp32s = 1;
3707 if (i.prefix[ADDR_PREFIX]
3708 && fits_in_unsigned_long (op_disp))
3709 i.types[op].bitfield.disp32 = 1;
3711 if ((i.types[op].bitfield.disp32
3712 || i.types[op].bitfield.disp32s
3713 || i.types[op].bitfield.disp16)
3714 && fits_in_signed_byte (op_disp))
3715 i.types[op].bitfield.disp8 = 1;
3717 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3718 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3720 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3721 i.op[op].disps, 0, i.reloc[op]);
3722 i.types[op].bitfield.disp8 = 0;
3723 i.types[op].bitfield.disp16 = 0;
3724 i.types[op].bitfield.disp32 = 0;
3725 i.types[op].bitfield.disp32s = 0;
3726 i.types[op].bitfield.disp64 = 0;
3728 else
3729 /* We only support 64bit displacement on constants. */
3730 i.types[op].bitfield.disp64 = 0;
3734 /* Check if operands are valid for the instrucrtion. Update VEX
3735 operand types. */
3737 static int
3738 VEX_check_operands (const insn_template *t)
3740 if (!t->opcode_modifier.vex)
3741 return 0;
3743 /* Only check VEX_Imm4, which must be the first operand. */
3744 if (t->operand_types[0].bitfield.vec_imm4)
3746 if (i.op[0].imms->X_op != O_constant
3747 || !fits_in_imm4 (i.op[0].imms->X_add_number))
3748 return 1;
3750 /* Turn off Imm8 so that update_imm won't complain. */
3751 i.types[0] = vec_imm4;
3754 return 0;
3757 static const insn_template *
3758 match_template (void)
3760 /* Points to template once we've found it. */
3761 const insn_template *t;
3762 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3763 i386_operand_type overlap4;
3764 unsigned int found_reverse_match;
3765 i386_opcode_modifier suffix_check;
3766 i386_operand_type operand_types [MAX_OPERANDS];
3767 int addr_prefix_disp;
3768 unsigned int j;
3769 unsigned int found_cpu_match;
3770 unsigned int check_register;
3772 #if MAX_OPERANDS != 5
3773 # error "MAX_OPERANDS must be 5."
3774 #endif
3776 found_reverse_match = 0;
3777 addr_prefix_disp = -1;
3779 memset (&suffix_check, 0, sizeof (suffix_check));
3780 if (i.suffix == BYTE_MNEM_SUFFIX)
3781 suffix_check.no_bsuf = 1;
3782 else if (i.suffix == WORD_MNEM_SUFFIX)
3783 suffix_check.no_wsuf = 1;
3784 else if (i.suffix == SHORT_MNEM_SUFFIX)
3785 suffix_check.no_ssuf = 1;
3786 else if (i.suffix == LONG_MNEM_SUFFIX)
3787 suffix_check.no_lsuf = 1;
3788 else if (i.suffix == QWORD_MNEM_SUFFIX)
3789 suffix_check.no_qsuf = 1;
3790 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3791 suffix_check.no_ldsuf = 1;
3793 for (t = current_templates->start; t < current_templates->end; t++)
3795 addr_prefix_disp = -1;
3797 /* Must have right number of operands. */
3798 if (i.operands != t->operands)
3799 continue;
3801 /* Check processor support. */
3802 found_cpu_match = (cpu_flags_match (t)
3803 == CPU_FLAGS_PERFECT_MATCH);
3804 if (!found_cpu_match)
3805 continue;
3807 /* Check old gcc support. */
3808 if (!old_gcc && t->opcode_modifier.oldgcc)
3809 continue;
3811 /* Check AT&T mnemonic. */
3812 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3813 continue;
3815 /* Check AT&T syntax Intel syntax. */
3816 if ((intel_syntax && t->opcode_modifier.attsyntax)
3817 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3818 continue;
3820 /* Check the suffix, except for some instructions in intel mode. */
3821 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3822 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3823 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3824 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3825 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3826 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3827 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3828 continue;
3830 if (!operand_size_match (t))
3831 continue;
3833 for (j = 0; j < MAX_OPERANDS; j++)
3834 operand_types[j] = t->operand_types[j];
3836 /* In general, don't allow 64-bit operands in 32-bit mode. */
3837 if (i.suffix == QWORD_MNEM_SUFFIX
3838 && flag_code != CODE_64BIT
3839 && (intel_syntax
3840 ? (!t->opcode_modifier.ignoresize
3841 && !intel_float_operand (t->name))
3842 : intel_float_operand (t->name) != 2)
3843 && ((!operand_types[0].bitfield.regmmx
3844 && !operand_types[0].bitfield.regxmm
3845 && !operand_types[0].bitfield.regymm)
3846 || (!operand_types[t->operands > 1].bitfield.regmmx
3847 && !!operand_types[t->operands > 1].bitfield.regxmm
3848 && !!operand_types[t->operands > 1].bitfield.regymm))
3849 && (t->base_opcode != 0x0fc7
3850 || t->extension_opcode != 1 /* cmpxchg8b */))
3851 continue;
3853 /* In general, don't allow 32-bit operands on pre-386. */
3854 else if (i.suffix == LONG_MNEM_SUFFIX
3855 && !cpu_arch_flags.bitfield.cpui386
3856 && (intel_syntax
3857 ? (!t->opcode_modifier.ignoresize
3858 && !intel_float_operand (t->name))
3859 : intel_float_operand (t->name) != 2)
3860 && ((!operand_types[0].bitfield.regmmx
3861 && !operand_types[0].bitfield.regxmm)
3862 || (!operand_types[t->operands > 1].bitfield.regmmx
3863 && !!operand_types[t->operands > 1].bitfield.regxmm)))
3864 continue;
3866 /* Do not verify operands when there are none. */
3867 else
3869 if (!t->operands)
3870 /* We've found a match; break out of loop. */
3871 break;
3874 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3875 into Disp32/Disp16/Disp32 operand. */
3876 if (i.prefix[ADDR_PREFIX] != 0)
3878 /* There should be only one Disp operand. */
3879 switch (flag_code)
3881 case CODE_16BIT:
3882 for (j = 0; j < MAX_OPERANDS; j++)
3884 if (operand_types[j].bitfield.disp16)
3886 addr_prefix_disp = j;
3887 operand_types[j].bitfield.disp32 = 1;
3888 operand_types[j].bitfield.disp16 = 0;
3889 break;
3892 break;
3893 case CODE_32BIT:
3894 for (j = 0; j < MAX_OPERANDS; j++)
3896 if (operand_types[j].bitfield.disp32)
3898 addr_prefix_disp = j;
3899 operand_types[j].bitfield.disp32 = 0;
3900 operand_types[j].bitfield.disp16 = 1;
3901 break;
3904 break;
3905 case CODE_64BIT:
3906 for (j = 0; j < MAX_OPERANDS; j++)
3908 if (operand_types[j].bitfield.disp64)
3910 addr_prefix_disp = j;
3911 operand_types[j].bitfield.disp64 = 0;
3912 operand_types[j].bitfield.disp32 = 1;
3913 break;
3916 break;
3920 /* We check register size only if size of operands can be
3921 encoded the canonical way. */
3922 check_register = t->opcode_modifier.w;
3923 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3924 switch (t->operands)
3926 case 1:
3927 if (!operand_type_match (overlap0, i.types[0]))
3928 continue;
3929 break;
3930 case 2:
3931 /* xchg %eax, %eax is a special case. It is an aliase for nop
3932 only in 32bit mode and we can use opcode 0x90. In 64bit
3933 mode, we can't use 0x90 for xchg %eax, %eax since it should
3934 zero-extend %eax to %rax. */
3935 if (flag_code == CODE_64BIT
3936 && t->base_opcode == 0x90
3937 && operand_type_equal (&i.types [0], &acc32)
3938 && operand_type_equal (&i.types [1], &acc32))
3939 continue;
3940 if (i.swap_operand)
3942 /* If we swap operand in encoding, we either match
3943 the next one or reverse direction of operands. */
3944 if (t->opcode_modifier.s)
3945 continue;
3946 else if (t->opcode_modifier.d)
3947 goto check_reverse;
3950 case 3:
3951 /* If we swap operand in encoding, we match the next one. */
3952 if (i.swap_operand && t->opcode_modifier.s)
3953 continue;
3954 case 4:
3955 case 5:
3956 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3957 if (!operand_type_match (overlap0, i.types[0])
3958 || !operand_type_match (overlap1, i.types[1])
3959 || (check_register
3960 && !operand_type_register_match (overlap0, i.types[0],
3961 operand_types[0],
3962 overlap1, i.types[1],
3963 operand_types[1])))
3965 /* Check if other direction is valid ... */
3966 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3967 continue;
3969 check_reverse:
3970 /* Try reversing direction of operands. */
3971 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3972 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3973 if (!operand_type_match (overlap0, i.types[0])
3974 || !operand_type_match (overlap1, i.types[1])
3975 || (check_register
3976 && !operand_type_register_match (overlap0,
3977 i.types[0],
3978 operand_types[1],
3979 overlap1,
3980 i.types[1],
3981 operand_types[0])))
3983 /* Does not match either direction. */
3984 continue;
3986 /* found_reverse_match holds which of D or FloatDR
3987 we've found. */
3988 if (t->opcode_modifier.d)
3989 found_reverse_match = Opcode_D;
3990 else if (t->opcode_modifier.floatd)
3991 found_reverse_match = Opcode_FloatD;
3992 else
3993 found_reverse_match = 0;
3994 if (t->opcode_modifier.floatr)
3995 found_reverse_match |= Opcode_FloatR;
3997 else
3999 /* Found a forward 2 operand match here. */
4000 switch (t->operands)
4002 case 5:
4003 overlap4 = operand_type_and (i.types[4],
4004 operand_types[4]);
4005 case 4:
4006 overlap3 = operand_type_and (i.types[3],
4007 operand_types[3]);
4008 case 3:
4009 overlap2 = operand_type_and (i.types[2],
4010 operand_types[2]);
4011 break;
4014 switch (t->operands)
4016 case 5:
4017 if (!operand_type_match (overlap4, i.types[4])
4018 || !operand_type_register_match (overlap3,
4019 i.types[3],
4020 operand_types[3],
4021 overlap4,
4022 i.types[4],
4023 operand_types[4]))
4024 continue;
4025 case 4:
4026 if (!operand_type_match (overlap3, i.types[3])
4027 || (check_register
4028 && !operand_type_register_match (overlap2,
4029 i.types[2],
4030 operand_types[2],
4031 overlap3,
4032 i.types[3],
4033 operand_types[3])))
4034 continue;
4035 case 3:
4036 /* Here we make use of the fact that there are no
4037 reverse match 3 operand instructions, and all 3
4038 operand instructions only need to be checked for
4039 register consistency between operands 2 and 3. */
4040 if (!operand_type_match (overlap2, i.types[2])
4041 || (check_register
4042 && !operand_type_register_match (overlap1,
4043 i.types[1],
4044 operand_types[1],
4045 overlap2,
4046 i.types[2],
4047 operand_types[2])))
4048 continue;
4049 break;
4052 /* Found either forward/reverse 2, 3 or 4 operand match here:
4053 slip through to break. */
4055 if (!found_cpu_match)
4057 found_reverse_match = 0;
4058 continue;
4061 /* Check if VEX operands are valid. */
4062 if (VEX_check_operands (t))
4063 continue;
4065 /* We've found a match; break out of loop. */
4066 break;
4069 if (t == current_templates->end)
4071 /* We found no match. */
4072 if (intel_syntax)
4073 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
4074 current_templates->start->name);
4075 else
4076 as_bad (_("suffix or operands invalid for `%s'"),
4077 current_templates->start->name);
4078 return NULL;
4081 if (!quiet_warnings)
4083 if (!intel_syntax
4084 && (i.types[0].bitfield.jumpabsolute
4085 != operand_types[0].bitfield.jumpabsolute))
4087 as_warn (_("indirect %s without `*'"), t->name);
4090 if (t->opcode_modifier.isprefix
4091 && t->opcode_modifier.ignoresize)
4093 /* Warn them that a data or address size prefix doesn't
4094 affect assembly of the next line of code. */
4095 as_warn (_("stand-alone `%s' prefix"), t->name);
4099 /* Copy the template we found. */
4100 i.tm = *t;
4102 if (addr_prefix_disp != -1)
4103 i.tm.operand_types[addr_prefix_disp]
4104 = operand_types[addr_prefix_disp];
4106 if (found_reverse_match)
4108 /* If we found a reverse match we must alter the opcode
4109 direction bit. found_reverse_match holds bits to change
4110 (different for int & float insns). */
4112 i.tm.base_opcode ^= found_reverse_match;
4114 i.tm.operand_types[0] = operand_types[1];
4115 i.tm.operand_types[1] = operand_types[0];
4118 return t;
4121 static int
4122 check_string (void)
4124 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
4125 if (i.tm.operand_types[mem_op].bitfield.esseg)
4127 if (i.seg[0] != NULL && i.seg[0] != &es)
4129 as_bad (_("`%s' operand %d must use `%ses' segment"),
4130 i.tm.name,
4131 mem_op + 1,
4132 register_prefix);
4133 return 0;
4135 /* There's only ever one segment override allowed per instruction.
4136 This instruction possibly has a legal segment override on the
4137 second operand, so copy the segment to where non-string
4138 instructions store it, allowing common code. */
4139 i.seg[0] = i.seg[1];
4141 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
4143 if (i.seg[1] != NULL && i.seg[1] != &es)
4145 as_bad (_("`%s' operand %d must use `%ses' segment"),
4146 i.tm.name,
4147 mem_op + 2,
4148 register_prefix);
4149 return 0;
4152 return 1;
4155 static int
4156 process_suffix (void)
4158 /* If matched instruction specifies an explicit instruction mnemonic
4159 suffix, use it. */
4160 if (i.tm.opcode_modifier.size16)
4161 i.suffix = WORD_MNEM_SUFFIX;
4162 else if (i.tm.opcode_modifier.size32)
4163 i.suffix = LONG_MNEM_SUFFIX;
4164 else if (i.tm.opcode_modifier.size64)
4165 i.suffix = QWORD_MNEM_SUFFIX;
4166 else if (i.reg_operands)
4168 /* If there's no instruction mnemonic suffix we try to invent one
4169 based on register operands. */
4170 if (!i.suffix)
4172 /* We take i.suffix from the last register operand specified,
4173 Destination register type is more significant than source
4174 register type. crc32 in SSE4.2 prefers source register
4175 type. */
4176 if (i.tm.base_opcode == 0xf20f38f1)
4178 if (i.types[0].bitfield.reg16)
4179 i.suffix = WORD_MNEM_SUFFIX;
4180 else if (i.types[0].bitfield.reg32)
4181 i.suffix = LONG_MNEM_SUFFIX;
4182 else if (i.types[0].bitfield.reg64)
4183 i.suffix = QWORD_MNEM_SUFFIX;
4185 else if (i.tm.base_opcode == 0xf20f38f0)
4187 if (i.types[0].bitfield.reg8)
4188 i.suffix = BYTE_MNEM_SUFFIX;
4191 if (!i.suffix)
4193 int op;
4195 if (i.tm.base_opcode == 0xf20f38f1
4196 || i.tm.base_opcode == 0xf20f38f0)
4198 /* We have to know the operand size for crc32. */
4199 as_bad (_("ambiguous memory operand size for `%s`"),
4200 i.tm.name);
4201 return 0;
4204 for (op = i.operands; --op >= 0;)
4205 if (!i.tm.operand_types[op].bitfield.inoutportreg)
4207 if (i.types[op].bitfield.reg8)
4209 i.suffix = BYTE_MNEM_SUFFIX;
4210 break;
4212 else if (i.types[op].bitfield.reg16)
4214 i.suffix = WORD_MNEM_SUFFIX;
4215 break;
4217 else if (i.types[op].bitfield.reg32)
4219 i.suffix = LONG_MNEM_SUFFIX;
4220 break;
4222 else if (i.types[op].bitfield.reg64)
4224 i.suffix = QWORD_MNEM_SUFFIX;
4225 break;
4230 else if (i.suffix == BYTE_MNEM_SUFFIX)
4232 if (intel_syntax
4233 && i.tm.opcode_modifier.ignoresize
4234 && i.tm.opcode_modifier.no_bsuf)
4235 i.suffix = 0;
4236 else if (!check_byte_reg ())
4237 return 0;
4239 else if (i.suffix == LONG_MNEM_SUFFIX)
4241 if (intel_syntax
4242 && i.tm.opcode_modifier.ignoresize
4243 && i.tm.opcode_modifier.no_lsuf)
4244 i.suffix = 0;
4245 else if (!check_long_reg ())
4246 return 0;
4248 else if (i.suffix == QWORD_MNEM_SUFFIX)
4250 if (intel_syntax
4251 && i.tm.opcode_modifier.ignoresize
4252 && i.tm.opcode_modifier.no_qsuf)
4253 i.suffix = 0;
4254 else if (!check_qword_reg ())
4255 return 0;
4257 else if (i.suffix == WORD_MNEM_SUFFIX)
4259 if (intel_syntax
4260 && i.tm.opcode_modifier.ignoresize
4261 && i.tm.opcode_modifier.no_wsuf)
4262 i.suffix = 0;
4263 else if (!check_word_reg ())
4264 return 0;
4266 else if (i.suffix == XMMWORD_MNEM_SUFFIX
4267 || i.suffix == YMMWORD_MNEM_SUFFIX)
4269 /* Skip if the instruction has x/y suffix. match_template
4270 should check if it is a valid suffix. */
4272 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
4273 /* Do nothing if the instruction is going to ignore the prefix. */
4275 else
4276 abort ();
4278 else if (i.tm.opcode_modifier.defaultsize
4279 && !i.suffix
4280 /* exclude fldenv/frstor/fsave/fstenv */
4281 && i.tm.opcode_modifier.no_ssuf)
4283 i.suffix = stackop_size;
4285 else if (intel_syntax
4286 && !i.suffix
4287 && (i.tm.operand_types[0].bitfield.jumpabsolute
4288 || i.tm.opcode_modifier.jumpbyte
4289 || i.tm.opcode_modifier.jumpintersegment
4290 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
4291 && i.tm.extension_opcode <= 3)))
4293 switch (flag_code)
4295 case CODE_64BIT:
4296 if (!i.tm.opcode_modifier.no_qsuf)
4298 i.suffix = QWORD_MNEM_SUFFIX;
4299 break;
4301 case CODE_32BIT:
4302 if (!i.tm.opcode_modifier.no_lsuf)
4303 i.suffix = LONG_MNEM_SUFFIX;
4304 break;
4305 case CODE_16BIT:
4306 if (!i.tm.opcode_modifier.no_wsuf)
4307 i.suffix = WORD_MNEM_SUFFIX;
4308 break;
4312 if (!i.suffix)
4314 if (!intel_syntax)
4316 if (i.tm.opcode_modifier.w)
4318 as_bad (_("no instruction mnemonic suffix given and "
4319 "no register operands; can't size instruction"));
4320 return 0;
4323 else
4325 unsigned int suffixes;
4327 suffixes = !i.tm.opcode_modifier.no_bsuf;
4328 if (!i.tm.opcode_modifier.no_wsuf)
4329 suffixes |= 1 << 1;
4330 if (!i.tm.opcode_modifier.no_lsuf)
4331 suffixes |= 1 << 2;
4332 if (!i.tm.opcode_modifier.no_ldsuf)
4333 suffixes |= 1 << 3;
4334 if (!i.tm.opcode_modifier.no_ssuf)
4335 suffixes |= 1 << 4;
4336 if (!i.tm.opcode_modifier.no_qsuf)
4337 suffixes |= 1 << 5;
4339 /* There are more than suffix matches. */
4340 if (i.tm.opcode_modifier.w
4341 || ((suffixes & (suffixes - 1))
4342 && !i.tm.opcode_modifier.defaultsize
4343 && !i.tm.opcode_modifier.ignoresize))
4345 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4346 return 0;
4351 /* Change the opcode based on the operand size given by i.suffix;
4352 We don't need to change things for byte insns. */
4354 if (i.suffix
4355 && i.suffix != BYTE_MNEM_SUFFIX
4356 && i.suffix != XMMWORD_MNEM_SUFFIX
4357 && i.suffix != YMMWORD_MNEM_SUFFIX)
4359 /* It's not a byte, select word/dword operation. */
4360 if (i.tm.opcode_modifier.w)
4362 if (i.tm.opcode_modifier.shortform)
4363 i.tm.base_opcode |= 8;
4364 else
4365 i.tm.base_opcode |= 1;
4368 /* Now select between word & dword operations via the operand
4369 size prefix, except for instructions that will ignore this
4370 prefix anyway. */
4371 if (i.tm.opcode_modifier.addrprefixop0)
4373 /* The address size override prefix changes the size of the
4374 first operand. */
4375 if ((flag_code == CODE_32BIT
4376 && i.op->regs[0].reg_type.bitfield.reg16)
4377 || (flag_code != CODE_32BIT
4378 && i.op->regs[0].reg_type.bitfield.reg32))
4379 if (!add_prefix (ADDR_PREFIX_OPCODE))
4380 return 0;
4382 else if (i.suffix != QWORD_MNEM_SUFFIX
4383 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
4384 && !i.tm.opcode_modifier.ignoresize
4385 && !i.tm.opcode_modifier.floatmf
4386 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
4387 || (flag_code == CODE_64BIT
4388 && i.tm.opcode_modifier.jumpbyte)))
4390 unsigned int prefix = DATA_PREFIX_OPCODE;
4392 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
4393 prefix = ADDR_PREFIX_OPCODE;
4395 if (!add_prefix (prefix))
4396 return 0;
4399 /* Set mode64 for an operand. */
4400 if (i.suffix == QWORD_MNEM_SUFFIX
4401 && flag_code == CODE_64BIT
4402 && !i.tm.opcode_modifier.norex64)
4404 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4405 need rex64. cmpxchg8b is also a special case. */
4406 if (! (i.operands == 2
4407 && i.tm.base_opcode == 0x90
4408 && i.tm.extension_opcode == None
4409 && operand_type_equal (&i.types [0], &acc64)
4410 && operand_type_equal (&i.types [1], &acc64))
4411 && ! (i.operands == 1
4412 && i.tm.base_opcode == 0xfc7
4413 && i.tm.extension_opcode == 1
4414 && !operand_type_check (i.types [0], reg)
4415 && operand_type_check (i.types [0], anymem)))
4416 i.rex |= REX_W;
4419 /* Size floating point instruction. */
4420 if (i.suffix == LONG_MNEM_SUFFIX)
4421 if (i.tm.opcode_modifier.floatmf)
4422 i.tm.base_opcode ^= 4;
4425 return 1;
4428 static int
4429 check_byte_reg (void)
4431 int op;
4433 for (op = i.operands; --op >= 0;)
4435 /* If this is an eight bit register, it's OK. If it's the 16 or
4436 32 bit version of an eight bit register, we will just use the
4437 low portion, and that's OK too. */
4438 if (i.types[op].bitfield.reg8)
4439 continue;
4441 /* crc32 doesn't generate this warning. */
4442 if (i.tm.base_opcode == 0xf20f38f0)
4443 continue;
4445 if ((i.types[op].bitfield.reg16
4446 || i.types[op].bitfield.reg32
4447 || i.types[op].bitfield.reg64)
4448 && i.op[op].regs->reg_num < 4)
4450 /* Prohibit these changes in the 64bit mode, since the
4451 lowering is more complicated. */
4452 if (flag_code == CODE_64BIT
4453 && !i.tm.operand_types[op].bitfield.inoutportreg)
4455 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4456 register_prefix, i.op[op].regs->reg_name,
4457 i.suffix);
4458 return 0;
4460 #if REGISTER_WARNINGS
4461 if (!quiet_warnings
4462 && !i.tm.operand_types[op].bitfield.inoutportreg)
4463 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4464 register_prefix,
4465 (i.op[op].regs + (i.types[op].bitfield.reg16
4466 ? REGNAM_AL - REGNAM_AX
4467 : REGNAM_AL - REGNAM_EAX))->reg_name,
4468 register_prefix,
4469 i.op[op].regs->reg_name,
4470 i.suffix);
4471 #endif
4472 continue;
4474 /* Any other register is bad. */
4475 if (i.types[op].bitfield.reg16
4476 || i.types[op].bitfield.reg32
4477 || i.types[op].bitfield.reg64
4478 || i.types[op].bitfield.regmmx
4479 || i.types[op].bitfield.regxmm
4480 || i.types[op].bitfield.regymm
4481 || i.types[op].bitfield.sreg2
4482 || i.types[op].bitfield.sreg3
4483 || i.types[op].bitfield.control
4484 || i.types[op].bitfield.debug
4485 || i.types[op].bitfield.test
4486 || i.types[op].bitfield.floatreg
4487 || i.types[op].bitfield.floatacc)
4489 as_bad (_("`%s%s' not allowed with `%s%c'"),
4490 register_prefix,
4491 i.op[op].regs->reg_name,
4492 i.tm.name,
4493 i.suffix);
4494 return 0;
4497 return 1;
4500 static int
4501 check_long_reg (void)
4503 int op;
4505 for (op = i.operands; --op >= 0;)
4506 /* Reject eight bit registers, except where the template requires
4507 them. (eg. movzb) */
4508 if (i.types[op].bitfield.reg8
4509 && (i.tm.operand_types[op].bitfield.reg16
4510 || i.tm.operand_types[op].bitfield.reg32
4511 || i.tm.operand_types[op].bitfield.acc))
4513 as_bad (_("`%s%s' not allowed with `%s%c'"),
4514 register_prefix,
4515 i.op[op].regs->reg_name,
4516 i.tm.name,
4517 i.suffix);
4518 return 0;
4520 /* Warn if the e prefix on a general reg is missing. */
4521 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4522 && i.types[op].bitfield.reg16
4523 && (i.tm.operand_types[op].bitfield.reg32
4524 || i.tm.operand_types[op].bitfield.acc))
4526 /* Prohibit these changes in the 64bit mode, since the
4527 lowering is more complicated. */
4528 if (flag_code == CODE_64BIT)
4530 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4531 register_prefix, i.op[op].regs->reg_name,
4532 i.suffix);
4533 return 0;
4535 #if REGISTER_WARNINGS
4536 else
4537 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4538 register_prefix,
4539 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
4540 register_prefix,
4541 i.op[op].regs->reg_name,
4542 i.suffix);
4543 #endif
4545 /* Warn if the r prefix on a general reg is missing. */
4546 else if (i.types[op].bitfield.reg64
4547 && (i.tm.operand_types[op].bitfield.reg32
4548 || i.tm.operand_types[op].bitfield.acc))
4550 if (intel_syntax
4551 && i.tm.opcode_modifier.toqword
4552 && !i.types[0].bitfield.regxmm)
4554 /* Convert to QWORD. We want REX byte. */
4555 i.suffix = QWORD_MNEM_SUFFIX;
4557 else
4559 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4560 register_prefix, i.op[op].regs->reg_name,
4561 i.suffix);
4562 return 0;
4565 return 1;
4568 static int
4569 check_qword_reg (void)
4571 int op;
4573 for (op = i.operands; --op >= 0; )
4574 /* Reject eight bit registers, except where the template requires
4575 them. (eg. movzb) */
4576 if (i.types[op].bitfield.reg8
4577 && (i.tm.operand_types[op].bitfield.reg16
4578 || i.tm.operand_types[op].bitfield.reg32
4579 || i.tm.operand_types[op].bitfield.acc))
4581 as_bad (_("`%s%s' not allowed with `%s%c'"),
4582 register_prefix,
4583 i.op[op].regs->reg_name,
4584 i.tm.name,
4585 i.suffix);
4586 return 0;
4588 /* Warn if the e prefix on a general reg is missing. */
4589 else if ((i.types[op].bitfield.reg16
4590 || i.types[op].bitfield.reg32)
4591 && (i.tm.operand_types[op].bitfield.reg32
4592 || i.tm.operand_types[op].bitfield.acc))
4594 /* Prohibit these changes in the 64bit mode, since the
4595 lowering is more complicated. */
4596 if (intel_syntax
4597 && i.tm.opcode_modifier.todword
4598 && !i.types[0].bitfield.regxmm)
4600 /* Convert to DWORD. We don't want REX byte. */
4601 i.suffix = LONG_MNEM_SUFFIX;
4603 else
4605 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4606 register_prefix, i.op[op].regs->reg_name,
4607 i.suffix);
4608 return 0;
4611 return 1;
4614 static int
4615 check_word_reg (void)
4617 int op;
4618 for (op = i.operands; --op >= 0;)
4619 /* Reject eight bit registers, except where the template requires
4620 them. (eg. movzb) */
4621 if (i.types[op].bitfield.reg8
4622 && (i.tm.operand_types[op].bitfield.reg16
4623 || i.tm.operand_types[op].bitfield.reg32
4624 || i.tm.operand_types[op].bitfield.acc))
4626 as_bad (_("`%s%s' not allowed with `%s%c'"),
4627 register_prefix,
4628 i.op[op].regs->reg_name,
4629 i.tm.name,
4630 i.suffix);
4631 return 0;
4633 /* Warn if the e prefix on a general reg is present. */
4634 else if ((!quiet_warnings || flag_code == CODE_64BIT)
4635 && i.types[op].bitfield.reg32
4636 && (i.tm.operand_types[op].bitfield.reg16
4637 || i.tm.operand_types[op].bitfield.acc))
4639 /* Prohibit these changes in the 64bit mode, since the
4640 lowering is more complicated. */
4641 if (flag_code == CODE_64BIT)
4643 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4644 register_prefix, i.op[op].regs->reg_name,
4645 i.suffix);
4646 return 0;
4648 else
4649 #if REGISTER_WARNINGS
4650 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4651 register_prefix,
4652 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
4653 register_prefix,
4654 i.op[op].regs->reg_name,
4655 i.suffix);
4656 #endif
4658 return 1;
4661 static int
4662 update_imm (unsigned int j)
4664 i386_operand_type overlap = i.types[j];
4665 if ((overlap.bitfield.imm8
4666 || overlap.bitfield.imm8s
4667 || overlap.bitfield.imm16
4668 || overlap.bitfield.imm32
4669 || overlap.bitfield.imm32s
4670 || overlap.bitfield.imm64)
4671 && !operand_type_equal (&overlap, &imm8)
4672 && !operand_type_equal (&overlap, &imm8s)
4673 && !operand_type_equal (&overlap, &imm16)
4674 && !operand_type_equal (&overlap, &imm32)
4675 && !operand_type_equal (&overlap, &imm32s)
4676 && !operand_type_equal (&overlap, &imm64))
4678 if (i.suffix)
4680 i386_operand_type temp;
4682 operand_type_set (&temp, 0);
4683 if (i.suffix == BYTE_MNEM_SUFFIX)
4685 temp.bitfield.imm8 = overlap.bitfield.imm8;
4686 temp.bitfield.imm8s = overlap.bitfield.imm8s;
4688 else if (i.suffix == WORD_MNEM_SUFFIX)
4689 temp.bitfield.imm16 = overlap.bitfield.imm16;
4690 else if (i.suffix == QWORD_MNEM_SUFFIX)
4692 temp.bitfield.imm64 = overlap.bitfield.imm64;
4693 temp.bitfield.imm32s = overlap.bitfield.imm32s;
4695 else
4696 temp.bitfield.imm32 = overlap.bitfield.imm32;
4697 overlap = temp;
4699 else if (operand_type_equal (&overlap, &imm16_32_32s)
4700 || operand_type_equal (&overlap, &imm16_32)
4701 || operand_type_equal (&overlap, &imm16_32s))
4703 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4704 overlap = imm16;
4705 else
4706 overlap = imm32s;
4708 if (!operand_type_equal (&overlap, &imm8)
4709 && !operand_type_equal (&overlap, &imm8s)
4710 && !operand_type_equal (&overlap, &imm16)
4711 && !operand_type_equal (&overlap, &imm32)
4712 && !operand_type_equal (&overlap, &imm32s)
4713 && !operand_type_equal (&overlap, &imm64))
4715 as_bad (_("no instruction mnemonic suffix given; "
4716 "can't determine immediate size"));
4717 return 0;
4720 i.types[j] = overlap;
4722 return 1;
4725 static int
4726 finalize_imm (void)
4728 unsigned int j, n;
4730 /* Update the first 2 immediate operands. */
4731 n = i.operands > 2 ? 2 : i.operands;
4732 if (n)
4734 for (j = 0; j < n; j++)
4735 if (update_imm (j) == 0)
4736 return 0;
4738 /* The 3rd operand can't be immediate operand. */
4739 gas_assert (operand_type_check (i.types[2], imm) == 0);
4742 return 1;
4745 static int
4746 bad_implicit_operand (int xmm)
4748 const char *ireg = xmm ? "xmm0" : "ymm0";
4750 if (intel_syntax)
4751 as_bad (_("the last operand of `%s' must be `%s%s'"),
4752 i.tm.name, register_prefix, ireg);
4753 else
4754 as_bad (_("the first operand of `%s' must be `%s%s'"),
4755 i.tm.name, register_prefix, ireg);
4756 return 0;
4759 static int
4760 process_operands (void)
4762 /* Default segment register this instruction will use for memory
4763 accesses. 0 means unknown. This is only for optimizing out
4764 unnecessary segment overrides. */
4765 const seg_entry *default_seg = 0;
4767 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
4769 unsigned int dupl = i.operands;
4770 unsigned int dest = dupl - 1;
4771 unsigned int j;
4773 /* The destination must be an xmm register. */
4774 gas_assert (i.reg_operands
4775 && MAX_OPERANDS > dupl
4776 && operand_type_equal (&i.types[dest], &regxmm));
4778 if (i.tm.opcode_modifier.firstxmm0)
4780 /* The first operand is implicit and must be xmm0. */
4781 gas_assert (operand_type_equal (&i.types[0], &regxmm));
4782 if (i.op[0].regs->reg_num != 0)
4783 return bad_implicit_operand (1);
4785 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4787 /* Keep xmm0 for instructions with VEX prefix and 3
4788 sources. */
4789 goto duplicate;
4791 else
4793 /* We remove the first xmm0 and keep the number of
4794 operands unchanged, which in fact duplicates the
4795 destination. */
4796 for (j = 1; j < i.operands; j++)
4798 i.op[j - 1] = i.op[j];
4799 i.types[j - 1] = i.types[j];
4800 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
4804 else if (i.tm.opcode_modifier.implicit1stxmm0)
4806 gas_assert ((MAX_OPERANDS - 1) > dupl
4807 && (i.tm.opcode_modifier.vexsources
4808 == VEX3SOURCES));
4810 /* Add the implicit xmm0 for instructions with VEX prefix
4811 and 3 sources. */
4812 for (j = i.operands; j > 0; j--)
4814 i.op[j] = i.op[j - 1];
4815 i.types[j] = i.types[j - 1];
4816 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
4818 i.op[0].regs
4819 = (const reg_entry *) hash_find (reg_hash, "xmm0");
4820 i.types[0] = regxmm;
4821 i.tm.operand_types[0] = regxmm;
4823 i.operands += 2;
4824 i.reg_operands += 2;
4825 i.tm.operands += 2;
4827 dupl++;
4828 dest++;
4829 i.op[dupl] = i.op[dest];
4830 i.types[dupl] = i.types[dest];
4831 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
4833 else
4835 duplicate:
4836 i.operands++;
4837 i.reg_operands++;
4838 i.tm.operands++;
4840 i.op[dupl] = i.op[dest];
4841 i.types[dupl] = i.types[dest];
4842 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
4845 if (i.tm.opcode_modifier.immext)
4846 process_immext ();
4848 else if (i.tm.opcode_modifier.firstxmm0)
4850 unsigned int j;
4852 /* The first operand is implicit and must be xmm0/ymm0. */
4853 gas_assert (i.reg_operands
4854 && (operand_type_equal (&i.types[0], &regxmm)
4855 || operand_type_equal (&i.types[0], &regymm)));
4856 if (i.op[0].regs->reg_num != 0)
4857 return bad_implicit_operand (i.types[0].bitfield.regxmm);
4859 for (j = 1; j < i.operands; j++)
4861 i.op[j - 1] = i.op[j];
4862 i.types[j - 1] = i.types[j];
4864 /* We need to adjust fields in i.tm since they are used by
4865 build_modrm_byte. */
4866 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4869 i.operands--;
4870 i.reg_operands--;
4871 i.tm.operands--;
4873 else if (i.tm.opcode_modifier.regkludge)
4875 /* The imul $imm, %reg instruction is converted into
4876 imul $imm, %reg, %reg, and the clr %reg instruction
4877 is converted into xor %reg, %reg. */
4879 unsigned int first_reg_op;
4881 if (operand_type_check (i.types[0], reg))
4882 first_reg_op = 0;
4883 else
4884 first_reg_op = 1;
4885 /* Pretend we saw the extra register operand. */
4886 gas_assert (i.reg_operands == 1
4887 && i.op[first_reg_op + 1].regs == 0);
4888 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4889 i.types[first_reg_op + 1] = i.types[first_reg_op];
4890 i.operands++;
4891 i.reg_operands++;
4894 if (i.tm.opcode_modifier.shortform)
4896 if (i.types[0].bitfield.sreg2
4897 || i.types[0].bitfield.sreg3)
4899 if (i.tm.base_opcode == POP_SEG_SHORT
4900 && i.op[0].regs->reg_num == 1)
4902 as_bad (_("you can't `pop %scs'"), register_prefix);
4903 return 0;
4905 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4906 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4907 i.rex |= REX_B;
4909 else
4911 /* The register or float register operand is in operand
4912 0 or 1. */
4913 unsigned int op;
4915 if (i.types[0].bitfield.floatreg
4916 || operand_type_check (i.types[0], reg))
4917 op = 0;
4918 else
4919 op = 1;
4920 /* Register goes in low 3 bits of opcode. */
4921 i.tm.base_opcode |= i.op[op].regs->reg_num;
4922 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4923 i.rex |= REX_B;
4924 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4926 /* Warn about some common errors, but press on regardless.
4927 The first case can be generated by gcc (<= 2.8.1). */
4928 if (i.operands == 2)
4930 /* Reversed arguments on faddp, fsubp, etc. */
4931 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4932 register_prefix, i.op[!intel_syntax].regs->reg_name,
4933 register_prefix, i.op[intel_syntax].regs->reg_name);
4935 else
4937 /* Extraneous `l' suffix on fp insn. */
4938 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4939 register_prefix, i.op[0].regs->reg_name);
4944 else if (i.tm.opcode_modifier.modrm)
4946 /* The opcode is completed (modulo i.tm.extension_opcode which
4947 must be put into the modrm byte). Now, we make the modrm and
4948 index base bytes based on all the info we've collected. */
4950 default_seg = build_modrm_byte ();
4952 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4954 default_seg = &ds;
4956 else if (i.tm.opcode_modifier.isstring)
4958 /* For the string instructions that allow a segment override
4959 on one of their operands, the default segment is ds. */
4960 default_seg = &ds;
4963 if (i.tm.base_opcode == 0x8d /* lea */
4964 && i.seg[0]
4965 && !quiet_warnings)
4966 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4968 /* If a segment was explicitly specified, and the specified segment
4969 is not the default, use an opcode prefix to select it. If we
4970 never figured out what the default segment is, then default_seg
4971 will be zero at this point, and the specified segment prefix will
4972 always be used. */
4973 if ((i.seg[0]) && (i.seg[0] != default_seg))
4975 if (!add_prefix (i.seg[0]->seg_prefix))
4976 return 0;
4978 return 1;
4981 static const seg_entry *
4982 build_modrm_byte (void)
4984 const seg_entry *default_seg = 0;
4985 unsigned int source, dest;
4986 int vex_3_sources;
4988 /* The first operand of instructions with VEX prefix and 3 sources
4989 must be VEX_Imm4. */
4990 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
4991 if (vex_3_sources)
4993 unsigned int nds, reg_slot;
4994 expressionS *exp;
4996 if (i.tm.opcode_modifier.veximmext
4997 && i.tm.opcode_modifier.immext)
4999 dest = i.operands - 2;
5000 gas_assert (dest == 3);
5002 else
5003 dest = i.operands - 1;
5004 nds = dest - 1;
5006 /* There are 2 kinds of instructions:
5007 1. 5 operands: 4 register operands or 3 register operands
5008 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5009 VexW0 or VexW1. The destination must be either XMM or YMM
5010 register.
5011 2. 4 operands: 4 register operands or 3 register operands
5012 plus 1 memory operand, VexXDS, and VexImmExt */
5013 gas_assert ((i.reg_operands == 4
5014 || (i.reg_operands == 3 && i.mem_operands == 1))
5015 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5016 && (i.tm.opcode_modifier.veximmext
5017 || (i.imm_operands == 1
5018 && i.types[0].bitfield.vec_imm4
5019 && (i.tm.opcode_modifier.vexw == VEXW0
5020 || i.tm.opcode_modifier.vexw == VEXW1)
5021 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5022 || operand_type_equal (&i.tm.operand_types[dest], &regymm)))));
5024 if (i.imm_operands == 0)
5026 /* When there is no immediate operand, generate an 8bit
5027 immediate operand to encode the first operand. */
5028 exp = &im_expressions[i.imm_operands++];
5029 i.op[i.operands].imms = exp;
5030 i.types[i.operands] = imm8;
5031 i.operands++;
5032 /* If VexW1 is set, the first operand is the source and
5033 the second operand is encoded in the immediate operand. */
5034 if (i.tm.opcode_modifier.vexw == VEXW1)
5036 source = 0;
5037 reg_slot = 1;
5039 else
5041 source = 1;
5042 reg_slot = 0;
5045 /* FMA swaps REG and NDS. */
5046 if (i.tm.cpu_flags.bitfield.cpufma)
5048 unsigned int tmp;
5049 tmp = reg_slot;
5050 reg_slot = nds;
5051 nds = tmp;
5054 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5055 &regxmm)
5056 || operand_type_equal (&i.tm.operand_types[reg_slot],
5057 &regymm));
5058 exp->X_op = O_constant;
5059 exp->X_add_number
5060 = ((i.op[reg_slot].regs->reg_num
5061 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5062 << 4);
5064 else
5066 unsigned int imm_slot;
5068 if (i.tm.opcode_modifier.vexw == VEXW0)
5070 /* If VexW0 is set, the third operand is the source and
5071 the second operand is encoded in the immediate
5072 operand. */
5073 source = 2;
5074 reg_slot = 1;
5076 else
5078 /* VexW1 is set, the second operand is the source and
5079 the third operand is encoded in the immediate
5080 operand. */
5081 source = 1;
5082 reg_slot = 2;
5085 if (i.tm.opcode_modifier.immext)
5087 /* When ImmExt is set, the immdiate byte is the last
5088 operand. */
5089 imm_slot = i.operands - 1;
5090 source--;
5091 reg_slot--;
5093 else
5095 imm_slot = 0;
5097 /* Turn on Imm8 so that output_imm will generate it. */
5098 i.types[imm_slot].bitfield.imm8 = 1;
5101 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5102 &regxmm)
5103 || operand_type_equal (&i.tm.operand_types[reg_slot],
5104 &regymm));
5105 i.op[imm_slot].imms->X_add_number
5106 |= ((i.op[reg_slot].regs->reg_num
5107 + ((i.op[reg_slot].regs->reg_flags & RegRex) ? 8 : 0))
5108 << 4);
5111 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
5112 || operand_type_equal (&i.tm.operand_types[nds],
5113 &regymm));
5114 i.vex.register_specifier = i.op[nds].regs;
5116 else
5117 source = dest = 0;
5119 /* i.reg_operands MUST be the number of real register operands;
5120 implicit registers do not count. If there are 3 register
5121 operands, it must be a instruction with VexNDS. For a
5122 instruction with VexNDD, the destination register is encoded
5123 in VEX prefix. If there are 4 register operands, it must be
5124 a instruction with VEX prefix and 3 sources. */
5125 if (i.mem_operands == 0
5126 && ((i.reg_operands == 2
5127 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
5128 || (i.reg_operands == 3
5129 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
5130 || (i.reg_operands == 4 && vex_3_sources)))
5132 switch (i.operands)
5134 case 2:
5135 source = 0;
5136 break;
5137 case 3:
5138 /* When there are 3 operands, one of them may be immediate,
5139 which may be the first or the last operand. Otherwise,
5140 the first operand must be shift count register (cl) or it
5141 is an instruction with VexNDS. */
5142 gas_assert (i.imm_operands == 1
5143 || (i.imm_operands == 0
5144 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
5145 || i.types[0].bitfield.shiftcount)));
5146 if (operand_type_check (i.types[0], imm)
5147 || i.types[0].bitfield.shiftcount)
5148 source = 1;
5149 else
5150 source = 0;
5151 break;
5152 case 4:
5153 /* When there are 4 operands, the first two must be 8bit
5154 immediate operands. The source operand will be the 3rd
5155 one.
5157 For instructions with VexNDS, if the first operand
5158 an imm8, the source operand is the 2nd one. If the last
5159 operand is imm8, the source operand is the first one. */
5160 gas_assert ((i.imm_operands == 2
5161 && i.types[0].bitfield.imm8
5162 && i.types[1].bitfield.imm8)
5163 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
5164 && i.imm_operands == 1
5165 && (i.types[0].bitfield.imm8
5166 || i.types[i.operands - 1].bitfield.imm8)));
5167 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5169 if (i.types[0].bitfield.imm8)
5170 source = 1;
5171 else
5172 source = 0;
5174 else
5175 source = 2;
5176 break;
5177 case 5:
5178 break;
5179 default:
5180 abort ();
5183 if (!vex_3_sources)
5185 dest = source + 1;
5187 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5189 /* For instructions with VexNDS, the register-only
5190 source operand must be XMM or YMM register. It is
5191 encoded in VEX prefix. We need to clear RegMem bit
5192 before calling operand_type_equal. */
5193 i386_operand_type op = i.tm.operand_types[dest];
5194 op.bitfield.regmem = 0;
5195 if ((dest + 1) >= i.operands
5196 || (!operand_type_equal (&op, &regxmm)
5197 && !operand_type_equal (&op, &regymm)))
5198 abort ();
5199 i.vex.register_specifier = i.op[dest].regs;
5200 dest++;
5204 i.rm.mode = 3;
5205 /* One of the register operands will be encoded in the i.tm.reg
5206 field, the other in the combined i.tm.mode and i.tm.regmem
5207 fields. If no form of this instruction supports a memory
5208 destination operand, then we assume the source operand may
5209 sometimes be a memory operand and so we need to store the
5210 destination in the i.rm.reg field. */
5211 if (!i.tm.operand_types[dest].bitfield.regmem
5212 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
5214 i.rm.reg = i.op[dest].regs->reg_num;
5215 i.rm.regmem = i.op[source].regs->reg_num;
5216 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5217 i.rex |= REX_R;
5218 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5219 i.rex |= REX_B;
5221 else
5223 i.rm.reg = i.op[source].regs->reg_num;
5224 i.rm.regmem = i.op[dest].regs->reg_num;
5225 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
5226 i.rex |= REX_B;
5227 if ((i.op[source].regs->reg_flags & RegRex) != 0)
5228 i.rex |= REX_R;
5230 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
5232 if (!i.types[0].bitfield.control
5233 && !i.types[1].bitfield.control)
5234 abort ();
5235 i.rex &= ~(REX_R | REX_B);
5236 add_prefix (LOCK_PREFIX_OPCODE);
5239 else
5240 { /* If it's not 2 reg operands... */
5241 unsigned int mem;
5243 if (i.mem_operands)
5245 unsigned int fake_zero_displacement = 0;
5246 unsigned int op;
5248 for (op = 0; op < i.operands; op++)
5249 if (operand_type_check (i.types[op], anymem))
5250 break;
5251 gas_assert (op < i.operands);
5253 default_seg = &ds;
5255 if (i.base_reg == 0)
5257 i.rm.mode = 0;
5258 if (!i.disp_operands)
5259 fake_zero_displacement = 1;
5260 if (i.index_reg == 0)
5262 /* Operand is just <disp> */
5263 if (flag_code == CODE_64BIT)
5265 /* 64bit mode overwrites the 32bit absolute
5266 addressing by RIP relative addressing and
5267 absolute addressing is encoded by one of the
5268 redundant SIB forms. */
5269 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5270 i.sib.base = NO_BASE_REGISTER;
5271 i.sib.index = NO_INDEX_REGISTER;
5272 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
5273 ? disp32s : disp32);
5275 else if ((flag_code == CODE_16BIT)
5276 ^ (i.prefix[ADDR_PREFIX] != 0))
5278 i.rm.regmem = NO_BASE_REGISTER_16;
5279 i.types[op] = disp16;
5281 else
5283 i.rm.regmem = NO_BASE_REGISTER;
5284 i.types[op] = disp32;
5287 else /* !i.base_reg && i.index_reg */
5289 if (i.index_reg->reg_num == RegEiz
5290 || i.index_reg->reg_num == RegRiz)
5291 i.sib.index = NO_INDEX_REGISTER;
5292 else
5293 i.sib.index = i.index_reg->reg_num;
5294 i.sib.base = NO_BASE_REGISTER;
5295 i.sib.scale = i.log2_scale_factor;
5296 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5297 i.types[op].bitfield.disp8 = 0;
5298 i.types[op].bitfield.disp16 = 0;
5299 i.types[op].bitfield.disp64 = 0;
5300 if (flag_code != CODE_64BIT)
5302 /* Must be 32 bit */
5303 i.types[op].bitfield.disp32 = 1;
5304 i.types[op].bitfield.disp32s = 0;
5306 else
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 1;
5311 if ((i.index_reg->reg_flags & RegRex) != 0)
5312 i.rex |= REX_X;
5315 /* RIP addressing for 64bit mode. */
5316 else if (i.base_reg->reg_num == RegRip ||
5317 i.base_reg->reg_num == RegEip)
5319 i.rm.regmem = NO_BASE_REGISTER;
5320 i.types[op].bitfield.disp8 = 0;
5321 i.types[op].bitfield.disp16 = 0;
5322 i.types[op].bitfield.disp32 = 0;
5323 i.types[op].bitfield.disp32s = 1;
5324 i.types[op].bitfield.disp64 = 0;
5325 i.flags[op] |= Operand_PCrel;
5326 if (! i.disp_operands)
5327 fake_zero_displacement = 1;
5329 else if (i.base_reg->reg_type.bitfield.reg16)
5331 switch (i.base_reg->reg_num)
5333 case 3: /* (%bx) */
5334 if (i.index_reg == 0)
5335 i.rm.regmem = 7;
5336 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5337 i.rm.regmem = i.index_reg->reg_num - 6;
5338 break;
5339 case 5: /* (%bp) */
5340 default_seg = &ss;
5341 if (i.index_reg == 0)
5343 i.rm.regmem = 6;
5344 if (operand_type_check (i.types[op], disp) == 0)
5346 /* fake (%bp) into 0(%bp) */
5347 i.types[op].bitfield.disp8 = 1;
5348 fake_zero_displacement = 1;
5351 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5352 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
5353 break;
5354 default: /* (%si) -> 4 or (%di) -> 5 */
5355 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
5357 i.rm.mode = mode_from_disp_size (i.types[op]);
5359 else /* i.base_reg and 32/64 bit mode */
5361 if (flag_code == CODE_64BIT
5362 && operand_type_check (i.types[op], disp))
5364 i386_operand_type temp;
5365 operand_type_set (&temp, 0);
5366 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
5367 i.types[op] = temp;
5368 if (i.prefix[ADDR_PREFIX] == 0)
5369 i.types[op].bitfield.disp32s = 1;
5370 else
5371 i.types[op].bitfield.disp32 = 1;
5374 i.rm.regmem = i.base_reg->reg_num;
5375 if ((i.base_reg->reg_flags & RegRex) != 0)
5376 i.rex |= REX_B;
5377 i.sib.base = i.base_reg->reg_num;
5378 /* x86-64 ignores REX prefix bit here to avoid decoder
5379 complications. */
5380 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
5382 default_seg = &ss;
5383 if (i.disp_operands == 0)
5385 fake_zero_displacement = 1;
5386 i.types[op].bitfield.disp8 = 1;
5389 else if (i.base_reg->reg_num == ESP_REG_NUM)
5391 default_seg = &ss;
5393 i.sib.scale = i.log2_scale_factor;
5394 if (i.index_reg == 0)
5396 /* <disp>(%esp) becomes two byte modrm with no index
5397 register. We've already stored the code for esp
5398 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5399 Any base register besides %esp will not use the
5400 extra modrm byte. */
5401 i.sib.index = NO_INDEX_REGISTER;
5403 else
5405 if (i.index_reg->reg_num == RegEiz
5406 || i.index_reg->reg_num == RegRiz)
5407 i.sib.index = NO_INDEX_REGISTER;
5408 else
5409 i.sib.index = i.index_reg->reg_num;
5410 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
5411 if ((i.index_reg->reg_flags & RegRex) != 0)
5412 i.rex |= REX_X;
5415 if (i.disp_operands
5416 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5417 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
5418 i.rm.mode = 0;
5419 else
5420 i.rm.mode = mode_from_disp_size (i.types[op]);
5423 if (fake_zero_displacement)
5425 /* Fakes a zero displacement assuming that i.types[op]
5426 holds the correct displacement size. */
5427 expressionS *exp;
5429 gas_assert (i.op[op].disps == 0);
5430 exp = &disp_expressions[i.disp_operands++];
5431 i.op[op].disps = exp;
5432 exp->X_op = O_constant;
5433 exp->X_add_number = 0;
5434 exp->X_add_symbol = (symbolS *) 0;
5435 exp->X_op_symbol = (symbolS *) 0;
5438 mem = op;
5440 else
5441 mem = ~0;
5443 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5445 if (operand_type_check (i.types[0], imm))
5446 i.vex.register_specifier = NULL;
5447 else
5449 /* VEX.vvvv encodes one of the sources when the first
5450 operand is not an immediate. */
5451 if (i.tm.opcode_modifier.vexw == VEXW0)
5452 i.vex.register_specifier = i.op[0].regs;
5453 else
5454 i.vex.register_specifier = i.op[1].regs;
5457 /* Destination is a XMM register encoded in the ModRM.reg
5458 and VEX.R bit. */
5459 i.rm.reg = i.op[2].regs->reg_num;
5460 if ((i.op[2].regs->reg_flags & RegRex) != 0)
5461 i.rex |= REX_R;
5463 /* ModRM.rm and VEX.B encodes the other source. */
5464 if (!i.mem_operands)
5466 i.rm.mode = 3;
5468 if (i.tm.opcode_modifier.vexw == VEXW0)
5469 i.rm.regmem = i.op[1].regs->reg_num;
5470 else
5471 i.rm.regmem = i.op[0].regs->reg_num;
5473 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5474 i.rex |= REX_B;
5477 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
5479 i.vex.register_specifier = i.op[2].regs;
5480 if (!i.mem_operands)
5482 i.rm.mode = 3;
5483 i.rm.regmem = i.op[1].regs->reg_num;
5484 if ((i.op[1].regs->reg_flags & RegRex) != 0)
5485 i.rex |= REX_B;
5488 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5489 (if any) based on i.tm.extension_opcode. Again, we must be
5490 careful to make sure that segment/control/debug/test/MMX
5491 registers are coded into the i.rm.reg field. */
5492 else if (i.reg_operands)
5494 unsigned int op;
5495 unsigned int vex_reg = ~0;
5497 for (op = 0; op < i.operands; op++)
5498 if (i.types[op].bitfield.reg8
5499 || i.types[op].bitfield.reg16
5500 || i.types[op].bitfield.reg32
5501 || i.types[op].bitfield.reg64
5502 || i.types[op].bitfield.regmmx
5503 || i.types[op].bitfield.regxmm
5504 || i.types[op].bitfield.regymm
5505 || i.types[op].bitfield.sreg2
5506 || i.types[op].bitfield.sreg3
5507 || i.types[op].bitfield.control
5508 || i.types[op].bitfield.debug
5509 || i.types[op].bitfield.test)
5510 break;
5512 if (vex_3_sources)
5513 op = dest;
5514 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
5516 /* For instructions with VexNDS, the register-only
5517 source operand is encoded in VEX prefix. */
5518 gas_assert (mem != (unsigned int) ~0);
5520 if (op > mem)
5522 vex_reg = op++;
5523 gas_assert (op < i.operands);
5525 else
5527 vex_reg = op + 1;
5528 gas_assert (vex_reg < i.operands);
5531 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
5533 /* For instructions with VexNDD, there should be
5534 no memory operand and the register destination
5535 is encoded in VEX prefix. */
5536 gas_assert (i.mem_operands == 0
5537 && (op + 2) == i.operands);
5538 vex_reg = op + 1;
5540 else
5541 gas_assert (op < i.operands);
5543 if (vex_reg != (unsigned int) ~0)
5545 gas_assert (i.reg_operands == 2);
5547 if (!operand_type_equal (&i.tm.operand_types[vex_reg],
5548 &regxmm)
5549 && !operand_type_equal (&i.tm.operand_types[vex_reg],
5550 &regymm))
5551 abort ();
5553 i.vex.register_specifier = i.op[vex_reg].regs;
5556 /* Don't set OP operand twice. */
5557 if (vex_reg != op)
5559 /* If there is an extension opcode to put here, the
5560 register number must be put into the regmem field. */
5561 if (i.tm.extension_opcode != None)
5563 i.rm.regmem = i.op[op].regs->reg_num;
5564 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5565 i.rex |= REX_B;
5567 else
5569 i.rm.reg = i.op[op].regs->reg_num;
5570 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5571 i.rex |= REX_R;
5575 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5576 must set it to 3 to indicate this is a register operand
5577 in the regmem field. */
5578 if (!i.mem_operands)
5579 i.rm.mode = 3;
5582 /* Fill in i.rm.reg field with extension opcode (if any). */
5583 if (i.tm.extension_opcode != None)
5584 i.rm.reg = i.tm.extension_opcode;
5586 return default_seg;
5589 static void
5590 output_branch (void)
5592 char *p;
5593 int code16;
5594 int prefix;
5595 relax_substateT subtype;
5596 symbolS *sym;
5597 offsetT off;
5599 code16 = 0;
5600 if (flag_code == CODE_16BIT)
5601 code16 = CODE16;
5603 prefix = 0;
5604 if (i.prefix[DATA_PREFIX] != 0)
5606 prefix = 1;
5607 i.prefixes -= 1;
5608 code16 ^= CODE16;
5610 /* Pentium4 branch hints. */
5611 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5612 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5614 prefix++;
5615 i.prefixes--;
5617 if (i.prefix[REX_PREFIX] != 0)
5619 prefix++;
5620 i.prefixes--;
5623 if (i.prefixes != 0 && !intel_syntax)
5624 as_warn (_("skipping prefixes on this instruction"));
5626 /* It's always a symbol; End frag & setup for relax.
5627 Make sure there is enough room in this frag for the largest
5628 instruction we may generate in md_convert_frag. This is 2
5629 bytes for the opcode and room for the prefix and largest
5630 displacement. */
5631 frag_grow (prefix + 2 + 4);
5632 /* Prefix and 1 opcode byte go in fr_fix. */
5633 p = frag_more (prefix + 1);
5634 if (i.prefix[DATA_PREFIX] != 0)
5635 *p++ = DATA_PREFIX_OPCODE;
5636 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
5637 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
5638 *p++ = i.prefix[SEG_PREFIX];
5639 if (i.prefix[REX_PREFIX] != 0)
5640 *p++ = i.prefix[REX_PREFIX];
5641 *p = i.tm.base_opcode;
5643 if ((unsigned char) *p == JUMP_PC_RELATIVE)
5644 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
5645 else if (cpu_arch_flags.bitfield.cpui386)
5646 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
5647 else
5648 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
5649 subtype |= code16;
5651 sym = i.op[0].disps->X_add_symbol;
5652 off = i.op[0].disps->X_add_number;
5654 if (i.op[0].disps->X_op != O_constant
5655 && i.op[0].disps->X_op != O_symbol)
5657 /* Handle complex expressions. */
5658 sym = make_expr_symbol (i.op[0].disps);
5659 off = 0;
5662 /* 1 possible extra opcode + 4 byte displacement go in var part.
5663 Pass reloc in fr_var. */
5664 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
5667 static void
5668 output_jump (void)
5670 char *p;
5671 int size;
5672 fixS *fixP;
5674 if (i.tm.opcode_modifier.jumpbyte)
5676 /* This is a loop or jecxz type instruction. */
5677 size = 1;
5678 if (i.prefix[ADDR_PREFIX] != 0)
5680 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
5681 i.prefixes -= 1;
5683 /* Pentium4 branch hints. */
5684 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
5685 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
5687 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
5688 i.prefixes--;
5691 else
5693 int code16;
5695 code16 = 0;
5696 if (flag_code == CODE_16BIT)
5697 code16 = CODE16;
5699 if (i.prefix[DATA_PREFIX] != 0)
5701 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
5702 i.prefixes -= 1;
5703 code16 ^= CODE16;
5706 size = 4;
5707 if (code16)
5708 size = 2;
5711 if (i.prefix[REX_PREFIX] != 0)
5713 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
5714 i.prefixes -= 1;
5717 if (i.prefixes != 0 && !intel_syntax)
5718 as_warn (_("skipping prefixes on this instruction"));
5720 p = frag_more (1 + size);
5721 *p++ = i.tm.base_opcode;
5723 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5724 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
5726 /* All jumps handled here are signed, but don't use a signed limit
5727 check for 32 and 16 bit jumps as we want to allow wrap around at
5728 4G and 64k respectively. */
5729 if (size == 1)
5730 fixP->fx_signed = 1;
5733 static void
5734 output_interseg_jump (void)
5736 char *p;
5737 int size;
5738 int prefix;
5739 int code16;
5741 code16 = 0;
5742 if (flag_code == CODE_16BIT)
5743 code16 = CODE16;
5745 prefix = 0;
5746 if (i.prefix[DATA_PREFIX] != 0)
5748 prefix = 1;
5749 i.prefixes -= 1;
5750 code16 ^= CODE16;
5752 if (i.prefix[REX_PREFIX] != 0)
5754 prefix++;
5755 i.prefixes -= 1;
5758 size = 4;
5759 if (code16)
5760 size = 2;
5762 if (i.prefixes != 0 && !intel_syntax)
5763 as_warn (_("skipping prefixes on this instruction"));
5765 /* 1 opcode; 2 segment; offset */
5766 p = frag_more (prefix + 1 + 2 + size);
5768 if (i.prefix[DATA_PREFIX] != 0)
5769 *p++ = DATA_PREFIX_OPCODE;
5771 if (i.prefix[REX_PREFIX] != 0)
5772 *p++ = i.prefix[REX_PREFIX];
5774 *p++ = i.tm.base_opcode;
5775 if (i.op[1].imms->X_op == O_constant)
5777 offsetT n = i.op[1].imms->X_add_number;
5779 if (size == 2
5780 && !fits_in_unsigned_word (n)
5781 && !fits_in_signed_word (n))
5783 as_bad (_("16-bit jump out of range"));
5784 return;
5786 md_number_to_chars (p, n, size);
5788 else
5789 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5790 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5791 if (i.op[0].imms->X_op != O_constant)
5792 as_bad (_("can't handle non absolute segment in `%s'"),
5793 i.tm.name);
5794 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5797 static void
5798 output_insn (void)
5800 fragS *insn_start_frag;
5801 offsetT insn_start_off;
5803 /* Tie dwarf2 debug info to the address at the start of the insn.
5804 We can't do this after the insn has been output as the current
5805 frag may have been closed off. eg. by frag_var. */
5806 dwarf2_emit_insn (0);
5808 insn_start_frag = frag_now;
5809 insn_start_off = frag_now_fix ();
5811 /* Output jumps. */
5812 if (i.tm.opcode_modifier.jump)
5813 output_branch ();
5814 else if (i.tm.opcode_modifier.jumpbyte
5815 || i.tm.opcode_modifier.jumpdword)
5816 output_jump ();
5817 else if (i.tm.opcode_modifier.jumpintersegment)
5818 output_interseg_jump ();
5819 else
5821 /* Output normal instructions here. */
5822 char *p;
5823 unsigned char *q;
5824 unsigned int j;
5825 unsigned int prefix;
5827 /* Since the VEX prefix contains the implicit prefix, we don't
5828 need the explicit prefix. */
5829 if (!i.tm.opcode_modifier.vex)
5831 switch (i.tm.opcode_length)
5833 case 3:
5834 if (i.tm.base_opcode & 0xff000000)
5836 prefix = (i.tm.base_opcode >> 24) & 0xff;
5837 goto check_prefix;
5839 break;
5840 case 2:
5841 if ((i.tm.base_opcode & 0xff0000) != 0)
5843 prefix = (i.tm.base_opcode >> 16) & 0xff;
5844 if (i.tm.cpu_flags.bitfield.cpupadlock)
5846 check_prefix:
5847 if (prefix != REPE_PREFIX_OPCODE
5848 || (i.prefix[REP_PREFIX]
5849 != REPE_PREFIX_OPCODE))
5850 add_prefix (prefix);
5852 else
5853 add_prefix (prefix);
5855 break;
5856 case 1:
5857 break;
5858 default:
5859 abort ();
5862 /* The prefix bytes. */
5863 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5864 if (*q)
5865 FRAG_APPEND_1_CHAR (*q);
5868 if (i.tm.opcode_modifier.vex)
5870 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
5871 if (*q)
5872 switch (j)
5874 case REX_PREFIX:
5875 /* REX byte is encoded in VEX prefix. */
5876 break;
5877 case SEG_PREFIX:
5878 case ADDR_PREFIX:
5879 FRAG_APPEND_1_CHAR (*q);
5880 break;
5881 default:
5882 /* There should be no other prefixes for instructions
5883 with VEX prefix. */
5884 abort ();
5887 /* Now the VEX prefix. */
5888 p = frag_more (i.vex.length);
5889 for (j = 0; j < i.vex.length; j++)
5890 p[j] = i.vex.bytes[j];
5893 /* Now the opcode; be careful about word order here! */
5894 if (i.tm.opcode_length == 1)
5896 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5898 else
5900 switch (i.tm.opcode_length)
5902 case 3:
5903 p = frag_more (3);
5904 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5905 break;
5906 case 2:
5907 p = frag_more (2);
5908 break;
5909 default:
5910 abort ();
5911 break;
5914 /* Put out high byte first: can't use md_number_to_chars! */
5915 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5916 *p = i.tm.base_opcode & 0xff;
5919 /* Now the modrm byte and sib byte (if present). */
5920 if (i.tm.opcode_modifier.modrm)
5922 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5923 | i.rm.reg << 3
5924 | i.rm.mode << 6));
5925 /* If i.rm.regmem == ESP (4)
5926 && i.rm.mode != (Register mode)
5927 && not 16 bit
5928 ==> need second modrm byte. */
5929 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5930 && i.rm.mode != 3
5931 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5932 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5933 | i.sib.index << 3
5934 | i.sib.scale << 6));
5937 if (i.disp_operands)
5938 output_disp (insn_start_frag, insn_start_off);
5940 if (i.imm_operands)
5941 output_imm (insn_start_frag, insn_start_off);
5944 #ifdef DEBUG386
5945 if (flag_debug)
5947 pi ("" /*line*/, &i);
5949 #endif /* DEBUG386 */
5952 /* Return the size of the displacement operand N. */
5954 static int
5955 disp_size (unsigned int n)
5957 int size = 4;
5958 if (i.types[n].bitfield.disp64)
5959 size = 8;
5960 else if (i.types[n].bitfield.disp8)
5961 size = 1;
5962 else if (i.types[n].bitfield.disp16)
5963 size = 2;
5964 return size;
5967 /* Return the size of the immediate operand N. */
5969 static int
5970 imm_size (unsigned int n)
5972 int size = 4;
5973 if (i.types[n].bitfield.imm64)
5974 size = 8;
5975 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5976 size = 1;
5977 else if (i.types[n].bitfield.imm16)
5978 size = 2;
5979 return size;
5982 static void
5983 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5985 char *p;
5986 unsigned int n;
5988 for (n = 0; n < i.operands; n++)
5990 if (operand_type_check (i.types[n], disp))
5992 if (i.op[n].disps->X_op == O_constant)
5994 int size = disp_size (n);
5995 offsetT val;
5997 val = offset_in_range (i.op[n].disps->X_add_number,
5998 size);
5999 p = frag_more (size);
6000 md_number_to_chars (p, val, size);
6002 else
6004 enum bfd_reloc_code_real reloc_type;
6005 int size = disp_size (n);
6006 int sign = i.types[n].bitfield.disp32s;
6007 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
6009 /* We can't have 8 bit displacement here. */
6010 gas_assert (!i.types[n].bitfield.disp8);
6012 /* The PC relative address is computed relative
6013 to the instruction boundary, so in case immediate
6014 fields follows, we need to adjust the value. */
6015 if (pcrel && i.imm_operands)
6017 unsigned int n1;
6018 int sz = 0;
6020 for (n1 = 0; n1 < i.operands; n1++)
6021 if (operand_type_check (i.types[n1], imm))
6023 /* Only one immediate is allowed for PC
6024 relative address. */
6025 gas_assert (sz == 0);
6026 sz = imm_size (n1);
6027 i.op[n].disps->X_add_number -= sz;
6029 /* We should find the immediate. */
6030 gas_assert (sz != 0);
6033 p = frag_more (size);
6034 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
6035 if (GOT_symbol
6036 && GOT_symbol == i.op[n].disps->X_add_symbol
6037 && (((reloc_type == BFD_RELOC_32
6038 || reloc_type == BFD_RELOC_X86_64_32S
6039 || (reloc_type == BFD_RELOC_64
6040 && object_64bit))
6041 && (i.op[n].disps->X_op == O_symbol
6042 || (i.op[n].disps->X_op == O_add
6043 && ((symbol_get_value_expression
6044 (i.op[n].disps->X_op_symbol)->X_op)
6045 == O_subtract))))
6046 || reloc_type == BFD_RELOC_32_PCREL))
6048 offsetT add;
6050 if (insn_start_frag == frag_now)
6051 add = (p - frag_now->fr_literal) - insn_start_off;
6052 else
6054 fragS *fr;
6056 add = insn_start_frag->fr_fix - insn_start_off;
6057 for (fr = insn_start_frag->fr_next;
6058 fr && fr != frag_now; fr = fr->fr_next)
6059 add += fr->fr_fix;
6060 add += p - frag_now->fr_literal;
6063 if (!object_64bit)
6065 reloc_type = BFD_RELOC_386_GOTPC;
6066 i.op[n].imms->X_add_number += add;
6068 else if (reloc_type == BFD_RELOC_64)
6069 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6070 else
6071 /* Don't do the adjustment for x86-64, as there
6072 the pcrel addressing is relative to the _next_
6073 insn, and that is taken care of in other code. */
6074 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6076 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6077 i.op[n].disps, pcrel, reloc_type);
6083 static void
6084 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
6086 char *p;
6087 unsigned int n;
6089 for (n = 0; n < i.operands; n++)
6091 if (operand_type_check (i.types[n], imm))
6093 if (i.op[n].imms->X_op == O_constant)
6095 int size = imm_size (n);
6096 offsetT val;
6098 val = offset_in_range (i.op[n].imms->X_add_number,
6099 size);
6100 p = frag_more (size);
6101 md_number_to_chars (p, val, size);
6103 else
6105 /* Not absolute_section.
6106 Need a 32-bit fixup (don't support 8bit
6107 non-absolute imms). Try to support other
6108 sizes ... */
6109 enum bfd_reloc_code_real reloc_type;
6110 int size = imm_size (n);
6111 int sign;
6113 if (i.types[n].bitfield.imm32s
6114 && (i.suffix == QWORD_MNEM_SUFFIX
6115 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
6116 sign = 1;
6117 else
6118 sign = 0;
6120 p = frag_more (size);
6121 reloc_type = reloc (size, 0, sign, i.reloc[n]);
6123 /* This is tough to explain. We end up with this one if we
6124 * have operands that look like
6125 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6126 * obtain the absolute address of the GOT, and it is strongly
6127 * preferable from a performance point of view to avoid using
6128 * a runtime relocation for this. The actual sequence of
6129 * instructions often look something like:
6131 * call .L66
6132 * .L66:
6133 * popl %ebx
6134 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6136 * The call and pop essentially return the absolute address
6137 * of the label .L66 and store it in %ebx. The linker itself
6138 * will ultimately change the first operand of the addl so
6139 * that %ebx points to the GOT, but to keep things simple, the
6140 * .o file must have this operand set so that it generates not
6141 * the absolute address of .L66, but the absolute address of
6142 * itself. This allows the linker itself simply treat a GOTPC
6143 * relocation as asking for a pcrel offset to the GOT to be
6144 * added in, and the addend of the relocation is stored in the
6145 * operand field for the instruction itself.
6147 * Our job here is to fix the operand so that it would add
6148 * the correct offset so that %ebx would point to itself. The
6149 * thing that is tricky is that .-.L66 will point to the
6150 * beginning of the instruction, so we need to further modify
6151 * the operand so that it will point to itself. There are
6152 * other cases where you have something like:
6154 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6156 * and here no correction would be required. Internally in
6157 * the assembler we treat operands of this form as not being
6158 * pcrel since the '.' is explicitly mentioned, and I wonder
6159 * whether it would simplify matters to do it this way. Who
6160 * knows. In earlier versions of the PIC patches, the
6161 * pcrel_adjust field was used to store the correction, but
6162 * since the expression is not pcrel, I felt it would be
6163 * confusing to do it this way. */
6165 if ((reloc_type == BFD_RELOC_32
6166 || reloc_type == BFD_RELOC_X86_64_32S
6167 || reloc_type == BFD_RELOC_64)
6168 && GOT_symbol
6169 && GOT_symbol == i.op[n].imms->X_add_symbol
6170 && (i.op[n].imms->X_op == O_symbol
6171 || (i.op[n].imms->X_op == O_add
6172 && ((symbol_get_value_expression
6173 (i.op[n].imms->X_op_symbol)->X_op)
6174 == O_subtract))))
6176 offsetT add;
6178 if (insn_start_frag == frag_now)
6179 add = (p - frag_now->fr_literal) - insn_start_off;
6180 else
6182 fragS *fr;
6184 add = insn_start_frag->fr_fix - insn_start_off;
6185 for (fr = insn_start_frag->fr_next;
6186 fr && fr != frag_now; fr = fr->fr_next)
6187 add += fr->fr_fix;
6188 add += p - frag_now->fr_literal;
6191 if (!object_64bit)
6192 reloc_type = BFD_RELOC_386_GOTPC;
6193 else if (size == 4)
6194 reloc_type = BFD_RELOC_X86_64_GOTPC32;
6195 else if (size == 8)
6196 reloc_type = BFD_RELOC_X86_64_GOTPC64;
6197 i.op[n].imms->X_add_number += add;
6199 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6200 i.op[n].imms, 0, reloc_type);
6206 /* x86_cons_fix_new is called via the expression parsing code when a
6207 reloc is needed. We use this hook to get the correct .got reloc. */
6208 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
6209 static int cons_sign = -1;
6211 void
6212 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
6213 expressionS *exp)
6215 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
6217 got_reloc = NO_RELOC;
6219 #ifdef TE_PE
6220 if (exp->X_op == O_secrel)
6222 exp->X_op = O_symbol;
6223 r = BFD_RELOC_32_SECREL;
6225 #endif
6227 fix_new_exp (frag, off, len, exp, 0, r);
6230 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
6231 # define lex_got(reloc, adjust, types) NULL
6232 #else
6233 /* Parse operands of the form
6234 <symbol>@GOTOFF+<nnn>
6235 and similar .plt or .got references.
6237 If we find one, set up the correct relocation in RELOC and copy the
6238 input string, minus the `@GOTOFF' into a malloc'd buffer for
6239 parsing by the calling routine. Return this buffer, and if ADJUST
6240 is non-null set it to the length of the string we removed from the
6241 input line. Otherwise return NULL. */
6242 static char *
6243 lex_got (enum bfd_reloc_code_real *rel,
6244 int *adjust,
6245 i386_operand_type *types)
6247 /* Some of the relocations depend on the size of what field is to
6248 be relocated. But in our callers i386_immediate and i386_displacement
6249 we don't yet know the operand size (this will be set by insn
6250 matching). Hence we record the word32 relocation here,
6251 and adjust the reloc according to the real size in reloc(). */
6252 static const struct {
6253 const char *str;
6254 const enum bfd_reloc_code_real rel[2];
6255 const i386_operand_type types64;
6256 } gotrel[] = {
6257 { "PLTOFF", { _dummy_first_bfd_reloc_code_real,
6258 BFD_RELOC_X86_64_PLTOFF64 },
6259 OPERAND_TYPE_IMM64 },
6260 { "PLT", { BFD_RELOC_386_PLT32,
6261 BFD_RELOC_X86_64_PLT32 },
6262 OPERAND_TYPE_IMM32_32S_DISP32 },
6263 { "GOTPLT", { _dummy_first_bfd_reloc_code_real,
6264 BFD_RELOC_X86_64_GOTPLT64 },
6265 OPERAND_TYPE_IMM64_DISP64 },
6266 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
6267 BFD_RELOC_X86_64_GOTOFF64 },
6268 OPERAND_TYPE_IMM64_DISP64 },
6269 { "GOTPCREL", { _dummy_first_bfd_reloc_code_real,
6270 BFD_RELOC_X86_64_GOTPCREL },
6271 OPERAND_TYPE_IMM32_32S_DISP32 },
6272 { "TLSGD", { BFD_RELOC_386_TLS_GD,
6273 BFD_RELOC_X86_64_TLSGD },
6274 OPERAND_TYPE_IMM32_32S_DISP32 },
6275 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
6276 _dummy_first_bfd_reloc_code_real },
6277 OPERAND_TYPE_NONE },
6278 { "TLSLD", { _dummy_first_bfd_reloc_code_real,
6279 BFD_RELOC_X86_64_TLSLD },
6280 OPERAND_TYPE_IMM32_32S_DISP32 },
6281 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
6282 BFD_RELOC_X86_64_GOTTPOFF },
6283 OPERAND_TYPE_IMM32_32S_DISP32 },
6284 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
6285 BFD_RELOC_X86_64_TPOFF32 },
6286 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6287 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
6288 _dummy_first_bfd_reloc_code_real },
6289 OPERAND_TYPE_NONE },
6290 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
6291 BFD_RELOC_X86_64_DTPOFF32 },
6293 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
6294 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
6295 _dummy_first_bfd_reloc_code_real },
6296 OPERAND_TYPE_NONE },
6297 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
6298 _dummy_first_bfd_reloc_code_real },
6299 OPERAND_TYPE_NONE },
6300 { "GOT", { BFD_RELOC_386_GOT32,
6301 BFD_RELOC_X86_64_GOT32 },
6302 OPERAND_TYPE_IMM32_32S_64_DISP32 },
6303 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
6304 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
6305 OPERAND_TYPE_IMM32_32S_DISP32 },
6306 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
6307 BFD_RELOC_X86_64_TLSDESC_CALL },
6308 OPERAND_TYPE_IMM32_32S_DISP32 },
6310 char *cp;
6311 unsigned int j;
6313 if (!IS_ELF)
6314 return NULL;
6316 for (cp = input_line_pointer; *cp != '@'; cp++)
6317 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
6318 return NULL;
6320 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
6322 int len;
6324 len = strlen (gotrel[j].str);
6325 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
6327 if (gotrel[j].rel[object_64bit] != 0)
6329 int first, second;
6330 char *tmpbuf, *past_reloc;
6332 *rel = gotrel[j].rel[object_64bit];
6333 if (adjust)
6334 *adjust = len;
6336 if (types)
6338 if (flag_code != CODE_64BIT)
6340 types->bitfield.imm32 = 1;
6341 types->bitfield.disp32 = 1;
6343 else
6344 *types = gotrel[j].types64;
6347 if (GOT_symbol == NULL)
6348 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
6350 /* The length of the first part of our input line. */
6351 first = cp - input_line_pointer;
6353 /* The second part goes from after the reloc token until
6354 (and including) an end_of_line char or comma. */
6355 past_reloc = cp + 1 + len;
6356 cp = past_reloc;
6357 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
6358 ++cp;
6359 second = cp + 1 - past_reloc;
6361 /* Allocate and copy string. The trailing NUL shouldn't
6362 be necessary, but be safe. */
6363 tmpbuf = (char *) xmalloc (first + second + 2);
6364 memcpy (tmpbuf, input_line_pointer, first);
6365 if (second != 0 && *past_reloc != ' ')
6366 /* Replace the relocation token with ' ', so that
6367 errors like foo@GOTOFF1 will be detected. */
6368 tmpbuf[first++] = ' ';
6369 memcpy (tmpbuf + first, past_reloc, second);
6370 tmpbuf[first + second] = '\0';
6371 return tmpbuf;
6374 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6375 gotrel[j].str, 1 << (5 + object_64bit));
6376 return NULL;
6380 /* Might be a symbol version string. Don't as_bad here. */
6381 return NULL;
6384 void
6385 x86_cons (expressionS *exp, int size)
6387 intel_syntax = -intel_syntax;
6389 if (size == 4 || (object_64bit && size == 8))
6391 /* Handle @GOTOFF and the like in an expression. */
6392 char *save;
6393 char *gotfree_input_line;
6394 int adjust;
6396 save = input_line_pointer;
6397 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
6398 if (gotfree_input_line)
6399 input_line_pointer = gotfree_input_line;
6401 expression (exp);
6403 if (gotfree_input_line)
6405 /* expression () has merrily parsed up to the end of line,
6406 or a comma - in the wrong buffer. Transfer how far
6407 input_line_pointer has moved to the right buffer. */
6408 input_line_pointer = (save
6409 + (input_line_pointer - gotfree_input_line)
6410 + adjust);
6411 free (gotfree_input_line);
6412 if (exp->X_op == O_constant
6413 || exp->X_op == O_absent
6414 || exp->X_op == O_illegal
6415 || exp->X_op == O_register
6416 || exp->X_op == O_big)
6418 char c = *input_line_pointer;
6419 *input_line_pointer = 0;
6420 as_bad (_("missing or invalid expression `%s'"), save);
6421 *input_line_pointer = c;
6425 else
6426 expression (exp);
6428 intel_syntax = -intel_syntax;
6430 if (intel_syntax)
6431 i386_intel_simplify (exp);
6433 #endif
6435 static void
6436 signed_cons (int size)
6438 if (flag_code == CODE_64BIT)
6439 cons_sign = 1;
6440 cons (size);
6441 cons_sign = -1;
6444 #ifdef TE_PE
6445 static void
6446 pe_directive_secrel (dummy)
6447 int dummy ATTRIBUTE_UNUSED;
6449 expressionS exp;
6453 expression (&exp);
6454 if (exp.X_op == O_symbol)
6455 exp.X_op = O_secrel;
6457 emit_expr (&exp, 4);
6459 while (*input_line_pointer++ == ',');
6461 input_line_pointer--;
6462 demand_empty_rest_of_line ();
6464 #endif
6466 static int
6467 i386_immediate (char *imm_start)
6469 char *save_input_line_pointer;
6470 char *gotfree_input_line;
6471 segT exp_seg = 0;
6472 expressionS *exp;
6473 i386_operand_type types;
6475 operand_type_set (&types, ~0);
6477 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
6479 as_bad (_("at most %d immediate operands are allowed"),
6480 MAX_IMMEDIATE_OPERANDS);
6481 return 0;
6484 exp = &im_expressions[i.imm_operands++];
6485 i.op[this_operand].imms = exp;
6487 if (is_space_char (*imm_start))
6488 ++imm_start;
6490 save_input_line_pointer = input_line_pointer;
6491 input_line_pointer = imm_start;
6493 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6494 if (gotfree_input_line)
6495 input_line_pointer = gotfree_input_line;
6497 exp_seg = expression (exp);
6499 SKIP_WHITESPACE ();
6500 if (*input_line_pointer)
6501 as_bad (_("junk `%s' after expression"), input_line_pointer);
6503 input_line_pointer = save_input_line_pointer;
6504 if (gotfree_input_line)
6506 free (gotfree_input_line);
6508 if (exp->X_op == O_constant || exp->X_op == O_register)
6509 exp->X_op = O_illegal;
6512 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
6515 static int
6516 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6517 i386_operand_type types, const char *imm_start)
6519 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
6521 if (imm_start)
6522 as_bad (_("missing or invalid immediate expression `%s'"),
6523 imm_start);
6524 return 0;
6526 else if (exp->X_op == O_constant)
6528 /* Size it properly later. */
6529 i.types[this_operand].bitfield.imm64 = 1;
6530 /* If BFD64, sign extend val. */
6531 if (!use_rela_relocations
6532 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
6533 exp->X_add_number
6534 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
6536 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6537 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
6538 && exp_seg != absolute_section
6539 && exp_seg != text_section
6540 && exp_seg != data_section
6541 && exp_seg != bss_section
6542 && exp_seg != undefined_section
6543 && !bfd_is_com_section (exp_seg))
6545 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6546 return 0;
6548 #endif
6549 else if (!intel_syntax && exp->X_op == O_register)
6551 if (imm_start)
6552 as_bad (_("illegal immediate register operand %s"), imm_start);
6553 return 0;
6555 else
6557 /* This is an address. The size of the address will be
6558 determined later, depending on destination register,
6559 suffix, or the default for the section. */
6560 i.types[this_operand].bitfield.imm8 = 1;
6561 i.types[this_operand].bitfield.imm16 = 1;
6562 i.types[this_operand].bitfield.imm32 = 1;
6563 i.types[this_operand].bitfield.imm32s = 1;
6564 i.types[this_operand].bitfield.imm64 = 1;
6565 i.types[this_operand] = operand_type_and (i.types[this_operand],
6566 types);
6569 return 1;
6572 static char *
6573 i386_scale (char *scale)
6575 offsetT val;
6576 char *save = input_line_pointer;
6578 input_line_pointer = scale;
6579 val = get_absolute_expression ();
6581 switch (val)
6583 case 1:
6584 i.log2_scale_factor = 0;
6585 break;
6586 case 2:
6587 i.log2_scale_factor = 1;
6588 break;
6589 case 4:
6590 i.log2_scale_factor = 2;
6591 break;
6592 case 8:
6593 i.log2_scale_factor = 3;
6594 break;
6595 default:
6597 char sep = *input_line_pointer;
6599 *input_line_pointer = '\0';
6600 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6601 scale);
6602 *input_line_pointer = sep;
6603 input_line_pointer = save;
6604 return NULL;
6607 if (i.log2_scale_factor != 0 && i.index_reg == 0)
6609 as_warn (_("scale factor of %d without an index register"),
6610 1 << i.log2_scale_factor);
6611 i.log2_scale_factor = 0;
6613 scale = input_line_pointer;
6614 input_line_pointer = save;
6615 return scale;
6618 static int
6619 i386_displacement (char *disp_start, char *disp_end)
6621 expressionS *exp;
6622 segT exp_seg = 0;
6623 char *save_input_line_pointer;
6624 char *gotfree_input_line;
6625 int override;
6626 i386_operand_type bigdisp, types = anydisp;
6627 int ret;
6629 if (i.disp_operands == MAX_MEMORY_OPERANDS)
6631 as_bad (_("at most %d displacement operands are allowed"),
6632 MAX_MEMORY_OPERANDS);
6633 return 0;
6636 operand_type_set (&bigdisp, 0);
6637 if ((i.types[this_operand].bitfield.jumpabsolute)
6638 || (!current_templates->start->opcode_modifier.jump
6639 && !current_templates->start->opcode_modifier.jumpdword))
6641 bigdisp.bitfield.disp32 = 1;
6642 override = (i.prefix[ADDR_PREFIX] != 0);
6643 if (flag_code == CODE_64BIT)
6645 if (!override)
6647 bigdisp.bitfield.disp32s = 1;
6648 bigdisp.bitfield.disp64 = 1;
6651 else if ((flag_code == CODE_16BIT) ^ override)
6653 bigdisp.bitfield.disp32 = 0;
6654 bigdisp.bitfield.disp16 = 1;
6657 else
6659 /* For PC-relative branches, the width of the displacement
6660 is dependent upon data size, not address size. */
6661 override = (i.prefix[DATA_PREFIX] != 0);
6662 if (flag_code == CODE_64BIT)
6664 if (override || i.suffix == WORD_MNEM_SUFFIX)
6665 bigdisp.bitfield.disp16 = 1;
6666 else
6668 bigdisp.bitfield.disp32 = 1;
6669 bigdisp.bitfield.disp32s = 1;
6672 else
6674 if (!override)
6675 override = (i.suffix == (flag_code != CODE_16BIT
6676 ? WORD_MNEM_SUFFIX
6677 : LONG_MNEM_SUFFIX));
6678 bigdisp.bitfield.disp32 = 1;
6679 if ((flag_code == CODE_16BIT) ^ override)
6681 bigdisp.bitfield.disp32 = 0;
6682 bigdisp.bitfield.disp16 = 1;
6686 i.types[this_operand] = operand_type_or (i.types[this_operand],
6687 bigdisp);
6689 exp = &disp_expressions[i.disp_operands];
6690 i.op[this_operand].disps = exp;
6691 i.disp_operands++;
6692 save_input_line_pointer = input_line_pointer;
6693 input_line_pointer = disp_start;
6694 END_STRING_AND_SAVE (disp_end);
6696 #ifndef GCC_ASM_O_HACK
6697 #define GCC_ASM_O_HACK 0
6698 #endif
6699 #if GCC_ASM_O_HACK
6700 END_STRING_AND_SAVE (disp_end + 1);
6701 if (i.types[this_operand].bitfield.baseIndex
6702 && displacement_string_end[-1] == '+')
6704 /* This hack is to avoid a warning when using the "o"
6705 constraint within gcc asm statements.
6706 For instance:
6708 #define _set_tssldt_desc(n,addr,limit,type) \
6709 __asm__ __volatile__ ( \
6710 "movw %w2,%0\n\t" \
6711 "movw %w1,2+%0\n\t" \
6712 "rorl $16,%1\n\t" \
6713 "movb %b1,4+%0\n\t" \
6714 "movb %4,5+%0\n\t" \
6715 "movb $0,6+%0\n\t" \
6716 "movb %h1,7+%0\n\t" \
6717 "rorl $16,%1" \
6718 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6720 This works great except that the output assembler ends
6721 up looking a bit weird if it turns out that there is
6722 no offset. You end up producing code that looks like:
6724 #APP
6725 movw $235,(%eax)
6726 movw %dx,2+(%eax)
6727 rorl $16,%edx
6728 movb %dl,4+(%eax)
6729 movb $137,5+(%eax)
6730 movb $0,6+(%eax)
6731 movb %dh,7+(%eax)
6732 rorl $16,%edx
6733 #NO_APP
6735 So here we provide the missing zero. */
6737 *displacement_string_end = '0';
6739 #endif
6740 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
6741 if (gotfree_input_line)
6742 input_line_pointer = gotfree_input_line;
6744 exp_seg = expression (exp);
6746 SKIP_WHITESPACE ();
6747 if (*input_line_pointer)
6748 as_bad (_("junk `%s' after expression"), input_line_pointer);
6749 #if GCC_ASM_O_HACK
6750 RESTORE_END_STRING (disp_end + 1);
6751 #endif
6752 input_line_pointer = save_input_line_pointer;
6753 if (gotfree_input_line)
6755 free (gotfree_input_line);
6757 if (exp->X_op == O_constant || exp->X_op == O_register)
6758 exp->X_op = O_illegal;
6761 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
6763 RESTORE_END_STRING (disp_end);
6765 return ret;
6768 static int
6769 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
6770 i386_operand_type types, const char *disp_start)
6772 i386_operand_type bigdisp;
6773 int ret = 1;
6775 /* We do this to make sure that the section symbol is in
6776 the symbol table. We will ultimately change the relocation
6777 to be relative to the beginning of the section. */
6778 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
6779 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
6780 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6782 if (exp->X_op != O_symbol)
6783 goto inv_disp;
6785 if (S_IS_LOCAL (exp->X_add_symbol)
6786 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
6787 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
6788 exp->X_op = O_subtract;
6789 exp->X_op_symbol = GOT_symbol;
6790 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6791 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6792 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6793 i.reloc[this_operand] = BFD_RELOC_64;
6794 else
6795 i.reloc[this_operand] = BFD_RELOC_32;
6798 else if (exp->X_op == O_absent
6799 || exp->X_op == O_illegal
6800 || exp->X_op == O_big)
6802 inv_disp:
6803 as_bad (_("missing or invalid displacement expression `%s'"),
6804 disp_start);
6805 ret = 0;
6808 else if (flag_code == CODE_64BIT
6809 && !i.prefix[ADDR_PREFIX]
6810 && exp->X_op == O_constant)
6812 /* Since displacement is signed extended to 64bit, don't allow
6813 disp32 and turn off disp32s if they are out of range. */
6814 i.types[this_operand].bitfield.disp32 = 0;
6815 if (!fits_in_signed_long (exp->X_add_number))
6817 i.types[this_operand].bitfield.disp32s = 0;
6818 if (i.types[this_operand].bitfield.baseindex)
6820 as_bad (_("0x%lx out range of signed 32bit displacement"),
6821 (long) exp->X_add_number);
6822 ret = 0;
6827 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6828 else if (exp->X_op != O_constant
6829 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6830 && exp_seg != absolute_section
6831 && exp_seg != text_section
6832 && exp_seg != data_section
6833 && exp_seg != bss_section
6834 && exp_seg != undefined_section
6835 && !bfd_is_com_section (exp_seg))
6837 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6838 ret = 0;
6840 #endif
6842 /* Check if this is a displacement only operand. */
6843 bigdisp = i.types[this_operand];
6844 bigdisp.bitfield.disp8 = 0;
6845 bigdisp.bitfield.disp16 = 0;
6846 bigdisp.bitfield.disp32 = 0;
6847 bigdisp.bitfield.disp32s = 0;
6848 bigdisp.bitfield.disp64 = 0;
6849 if (operand_type_all_zero (&bigdisp))
6850 i.types[this_operand] = operand_type_and (i.types[this_operand],
6851 types);
6853 return ret;
6856 /* Make sure the memory operand we've been dealt is valid.
6857 Return 1 on success, 0 on a failure. */
6859 static int
6860 i386_index_check (const char *operand_string)
6862 int ok;
6863 const char *kind = "base/index";
6864 #if INFER_ADDR_PREFIX
6865 int fudged = 0;
6867 tryprefix:
6868 #endif
6869 ok = 1;
6870 if (current_templates->start->opcode_modifier.isstring
6871 && !current_templates->start->opcode_modifier.immext
6872 && (current_templates->end[-1].opcode_modifier.isstring
6873 || i.mem_operands))
6875 /* Memory operands of string insns are special in that they only allow
6876 a single register (rDI, rSI, or rBX) as their memory address. */
6877 unsigned int expected;
6879 kind = "string address";
6881 if (current_templates->start->opcode_modifier.w)
6883 i386_operand_type type = current_templates->end[-1].operand_types[0];
6885 if (!type.bitfield.baseindex
6886 || ((!i.mem_operands != !intel_syntax)
6887 && current_templates->end[-1].operand_types[1]
6888 .bitfield.baseindex))
6889 type = current_templates->end[-1].operand_types[1];
6890 expected = type.bitfield.esseg ? 7 /* rDI */ : 6 /* rSI */;
6892 else
6893 expected = 3 /* rBX */;
6895 if (!i.base_reg || i.index_reg
6896 || operand_type_check (i.types[this_operand], disp))
6897 ok = -1;
6898 else if (!(flag_code == CODE_64BIT
6899 ? i.prefix[ADDR_PREFIX]
6900 ? i.base_reg->reg_type.bitfield.reg32
6901 : i.base_reg->reg_type.bitfield.reg64
6902 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6903 ? i.base_reg->reg_type.bitfield.reg32
6904 : i.base_reg->reg_type.bitfield.reg16))
6905 ok = 0;
6906 else if (i.base_reg->reg_num != expected)
6907 ok = -1;
6909 if (ok < 0)
6911 unsigned int j;
6913 for (j = 0; j < i386_regtab_size; ++j)
6914 if ((flag_code == CODE_64BIT
6915 ? i.prefix[ADDR_PREFIX]
6916 ? i386_regtab[j].reg_type.bitfield.reg32
6917 : i386_regtab[j].reg_type.bitfield.reg64
6918 : (flag_code == CODE_16BIT) ^ !i.prefix[ADDR_PREFIX]
6919 ? i386_regtab[j].reg_type.bitfield.reg32
6920 : i386_regtab[j].reg_type.bitfield.reg16)
6921 && i386_regtab[j].reg_num == expected)
6922 break;
6923 gas_assert (j < i386_regtab_size);
6924 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6925 operand_string,
6926 intel_syntax ? '[' : '(',
6927 register_prefix,
6928 i386_regtab[j].reg_name,
6929 intel_syntax ? ']' : ')');
6930 ok = 1;
6933 else if (flag_code == CODE_64BIT)
6935 if ((i.base_reg
6936 && ((i.prefix[ADDR_PREFIX] == 0
6937 && !i.base_reg->reg_type.bitfield.reg64)
6938 || (i.prefix[ADDR_PREFIX]
6939 && !i.base_reg->reg_type.bitfield.reg32))
6940 && (i.index_reg
6941 || i.base_reg->reg_num !=
6942 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6943 || (i.index_reg
6944 && (!i.index_reg->reg_type.bitfield.baseindex
6945 || (i.prefix[ADDR_PREFIX] == 0
6946 && i.index_reg->reg_num != RegRiz
6947 && !i.index_reg->reg_type.bitfield.reg64
6949 || (i.prefix[ADDR_PREFIX]
6950 && i.index_reg->reg_num != RegEiz
6951 && !i.index_reg->reg_type.bitfield.reg32))))
6952 ok = 0;
6954 else
6956 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6958 /* 16bit checks. */
6959 if ((i.base_reg
6960 && (!i.base_reg->reg_type.bitfield.reg16
6961 || !i.base_reg->reg_type.bitfield.baseindex))
6962 || (i.index_reg
6963 && (!i.index_reg->reg_type.bitfield.reg16
6964 || !i.index_reg->reg_type.bitfield.baseindex
6965 || !(i.base_reg
6966 && i.base_reg->reg_num < 6
6967 && i.index_reg->reg_num >= 6
6968 && i.log2_scale_factor == 0))))
6969 ok = 0;
6971 else
6973 /* 32bit checks. */
6974 if ((i.base_reg
6975 && !i.base_reg->reg_type.bitfield.reg32)
6976 || (i.index_reg
6977 && ((!i.index_reg->reg_type.bitfield.reg32
6978 && i.index_reg->reg_num != RegEiz)
6979 || !i.index_reg->reg_type.bitfield.baseindex)))
6980 ok = 0;
6983 if (!ok)
6985 #if INFER_ADDR_PREFIX
6986 if (!i.mem_operands && !i.prefix[ADDR_PREFIX])
6988 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6989 i.prefixes += 1;
6990 /* Change the size of any displacement too. At most one of
6991 Disp16 or Disp32 is set.
6992 FIXME. There doesn't seem to be any real need for separate
6993 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6994 Removing them would probably clean up the code quite a lot. */
6995 if (flag_code != CODE_64BIT
6996 && (i.types[this_operand].bitfield.disp16
6997 || i.types[this_operand].bitfield.disp32))
6998 i.types[this_operand]
6999 = operand_type_xor (i.types[this_operand], disp16_32);
7000 fudged = 1;
7001 goto tryprefix;
7003 if (fudged)
7004 as_bad (_("`%s' is not a valid %s expression"),
7005 operand_string,
7006 kind);
7007 else
7008 #endif
7009 as_bad (_("`%s' is not a valid %s-bit %s expression"),
7010 operand_string,
7011 flag_code_names[i.prefix[ADDR_PREFIX]
7012 ? flag_code == CODE_32BIT
7013 ? CODE_16BIT
7014 : CODE_32BIT
7015 : flag_code],
7016 kind);
7018 return ok;
7021 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
7022 on error. */
7024 static int
7025 i386_att_operand (char *operand_string)
7027 const reg_entry *r;
7028 char *end_op;
7029 char *op_string = operand_string;
7031 if (is_space_char (*op_string))
7032 ++op_string;
7034 /* We check for an absolute prefix (differentiating,
7035 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
7036 if (*op_string == ABSOLUTE_PREFIX)
7038 ++op_string;
7039 if (is_space_char (*op_string))
7040 ++op_string;
7041 i.types[this_operand].bitfield.jumpabsolute = 1;
7044 /* Check if operand is a register. */
7045 if ((r = parse_register (op_string, &end_op)) != NULL)
7047 i386_operand_type temp;
7049 /* Check for a segment override by searching for ':' after a
7050 segment register. */
7051 op_string = end_op;
7052 if (is_space_char (*op_string))
7053 ++op_string;
7054 if (*op_string == ':'
7055 && (r->reg_type.bitfield.sreg2
7056 || r->reg_type.bitfield.sreg3))
7058 switch (r->reg_num)
7060 case 0:
7061 i.seg[i.mem_operands] = &es;
7062 break;
7063 case 1:
7064 i.seg[i.mem_operands] = &cs;
7065 break;
7066 case 2:
7067 i.seg[i.mem_operands] = &ss;
7068 break;
7069 case 3:
7070 i.seg[i.mem_operands] = &ds;
7071 break;
7072 case 4:
7073 i.seg[i.mem_operands] = &fs;
7074 break;
7075 case 5:
7076 i.seg[i.mem_operands] = &gs;
7077 break;
7080 /* Skip the ':' and whitespace. */
7081 ++op_string;
7082 if (is_space_char (*op_string))
7083 ++op_string;
7085 if (!is_digit_char (*op_string)
7086 && !is_identifier_char (*op_string)
7087 && *op_string != '('
7088 && *op_string != ABSOLUTE_PREFIX)
7090 as_bad (_("bad memory operand `%s'"), op_string);
7091 return 0;
7093 /* Handle case of %es:*foo. */
7094 if (*op_string == ABSOLUTE_PREFIX)
7096 ++op_string;
7097 if (is_space_char (*op_string))
7098 ++op_string;
7099 i.types[this_operand].bitfield.jumpabsolute = 1;
7101 goto do_memory_reference;
7103 if (*op_string)
7105 as_bad (_("junk `%s' after register"), op_string);
7106 return 0;
7108 temp = r->reg_type;
7109 temp.bitfield.baseindex = 0;
7110 i.types[this_operand] = operand_type_or (i.types[this_operand],
7111 temp);
7112 i.types[this_operand].bitfield.unspecified = 0;
7113 i.op[this_operand].regs = r;
7114 i.reg_operands++;
7116 else if (*op_string == REGISTER_PREFIX)
7118 as_bad (_("bad register name `%s'"), op_string);
7119 return 0;
7121 else if (*op_string == IMMEDIATE_PREFIX)
7123 ++op_string;
7124 if (i.types[this_operand].bitfield.jumpabsolute)
7126 as_bad (_("immediate operand illegal with absolute jump"));
7127 return 0;
7129 if (!i386_immediate (op_string))
7130 return 0;
7132 else if (is_digit_char (*op_string)
7133 || is_identifier_char (*op_string)
7134 || *op_string == '(')
7136 /* This is a memory reference of some sort. */
7137 char *base_string;
7139 /* Start and end of displacement string expression (if found). */
7140 char *displacement_string_start;
7141 char *displacement_string_end;
7143 do_memory_reference:
7144 if ((i.mem_operands == 1
7145 && !current_templates->start->opcode_modifier.isstring)
7146 || i.mem_operands == 2)
7148 as_bad (_("too many memory references for `%s'"),
7149 current_templates->start->name);
7150 return 0;
7153 /* Check for base index form. We detect the base index form by
7154 looking for an ')' at the end of the operand, searching
7155 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7156 after the '('. */
7157 base_string = op_string + strlen (op_string);
7159 --base_string;
7160 if (is_space_char (*base_string))
7161 --base_string;
7163 /* If we only have a displacement, set-up for it to be parsed later. */
7164 displacement_string_start = op_string;
7165 displacement_string_end = base_string + 1;
7167 if (*base_string == ')')
7169 char *temp_string;
7170 unsigned int parens_balanced = 1;
7171 /* We've already checked that the number of left & right ()'s are
7172 equal, so this loop will not be infinite. */
7175 base_string--;
7176 if (*base_string == ')')
7177 parens_balanced++;
7178 if (*base_string == '(')
7179 parens_balanced--;
7181 while (parens_balanced);
7183 temp_string = base_string;
7185 /* Skip past '(' and whitespace. */
7186 ++base_string;
7187 if (is_space_char (*base_string))
7188 ++base_string;
7190 if (*base_string == ','
7191 || ((i.base_reg = parse_register (base_string, &end_op))
7192 != NULL))
7194 displacement_string_end = temp_string;
7196 i.types[this_operand].bitfield.baseindex = 1;
7198 if (i.base_reg)
7200 base_string = end_op;
7201 if (is_space_char (*base_string))
7202 ++base_string;
7205 /* There may be an index reg or scale factor here. */
7206 if (*base_string == ',')
7208 ++base_string;
7209 if (is_space_char (*base_string))
7210 ++base_string;
7212 if ((i.index_reg = parse_register (base_string, &end_op))
7213 != NULL)
7215 base_string = end_op;
7216 if (is_space_char (*base_string))
7217 ++base_string;
7218 if (*base_string == ',')
7220 ++base_string;
7221 if (is_space_char (*base_string))
7222 ++base_string;
7224 else if (*base_string != ')')
7226 as_bad (_("expecting `,' or `)' "
7227 "after index register in `%s'"),
7228 operand_string);
7229 return 0;
7232 else if (*base_string == REGISTER_PREFIX)
7234 as_bad (_("bad register name `%s'"), base_string);
7235 return 0;
7238 /* Check for scale factor. */
7239 if (*base_string != ')')
7241 char *end_scale = i386_scale (base_string);
7243 if (!end_scale)
7244 return 0;
7246 base_string = end_scale;
7247 if (is_space_char (*base_string))
7248 ++base_string;
7249 if (*base_string != ')')
7251 as_bad (_("expecting `)' "
7252 "after scale factor in `%s'"),
7253 operand_string);
7254 return 0;
7257 else if (!i.index_reg)
7259 as_bad (_("expecting index register or scale factor "
7260 "after `,'; got '%c'"),
7261 *base_string);
7262 return 0;
7265 else if (*base_string != ')')
7267 as_bad (_("expecting `,' or `)' "
7268 "after base register in `%s'"),
7269 operand_string);
7270 return 0;
7273 else if (*base_string == REGISTER_PREFIX)
7275 as_bad (_("bad register name `%s'"), base_string);
7276 return 0;
7280 /* If there's an expression beginning the operand, parse it,
7281 assuming displacement_string_start and
7282 displacement_string_end are meaningful. */
7283 if (displacement_string_start != displacement_string_end)
7285 if (!i386_displacement (displacement_string_start,
7286 displacement_string_end))
7287 return 0;
7290 /* Special case for (%dx) while doing input/output op. */
7291 if (i.base_reg
7292 && operand_type_equal (&i.base_reg->reg_type,
7293 &reg16_inoutportreg)
7294 && i.index_reg == 0
7295 && i.log2_scale_factor == 0
7296 && i.seg[i.mem_operands] == 0
7297 && !operand_type_check (i.types[this_operand], disp))
7299 i.types[this_operand] = inoutportreg;
7300 return 1;
7303 if (i386_index_check (operand_string) == 0)
7304 return 0;
7305 i.types[this_operand].bitfield.mem = 1;
7306 i.mem_operands++;
7308 else
7310 /* It's not a memory operand; argh! */
7311 as_bad (_("invalid char %s beginning operand %d `%s'"),
7312 output_invalid (*op_string),
7313 this_operand + 1,
7314 op_string);
7315 return 0;
7317 return 1; /* Normal return. */
7320 /* md_estimate_size_before_relax()
7322 Called just before relax() for rs_machine_dependent frags. The x86
7323 assembler uses these frags to handle variable size jump
7324 instructions.
7326 Any symbol that is now undefined will not become defined.
7327 Return the correct fr_subtype in the frag.
7328 Return the initial "guess for variable size of frag" to caller.
7329 The guess is actually the growth beyond the fixed part. Whatever
7330 we do to grow the fixed or variable part contributes to our
7331 returned value. */
7334 md_estimate_size_before_relax (fragP, segment)
7335 fragS *fragP;
7336 segT segment;
7338 /* We've already got fragP->fr_subtype right; all we have to do is
7339 check for un-relaxable symbols. On an ELF system, we can't relax
7340 an externally visible symbol, because it may be overridden by a
7341 shared library. */
7342 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
7343 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7344 || (IS_ELF
7345 && (S_IS_EXTERNAL (fragP->fr_symbol)
7346 || S_IS_WEAK (fragP->fr_symbol)
7347 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
7348 & BSF_GNU_INDIRECT_FUNCTION))))
7349 #endif
7350 #if defined (OBJ_COFF) && defined (TE_PE)
7351 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
7352 && S_IS_WEAK (fragP->fr_symbol))
7353 #endif
7356 /* Symbol is undefined in this segment, or we need to keep a
7357 reloc so that weak symbols can be overridden. */
7358 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
7359 enum bfd_reloc_code_real reloc_type;
7360 unsigned char *opcode;
7361 int old_fr_fix;
7363 if (fragP->fr_var != NO_RELOC)
7364 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
7365 else if (size == 2)
7366 reloc_type = BFD_RELOC_16_PCREL;
7367 else
7368 reloc_type = BFD_RELOC_32_PCREL;
7370 old_fr_fix = fragP->fr_fix;
7371 opcode = (unsigned char *) fragP->fr_opcode;
7373 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
7375 case UNCOND_JUMP:
7376 /* Make jmp (0xeb) a (d)word displacement jump. */
7377 opcode[0] = 0xe9;
7378 fragP->fr_fix += size;
7379 fix_new (fragP, old_fr_fix, size,
7380 fragP->fr_symbol,
7381 fragP->fr_offset, 1,
7382 reloc_type);
7383 break;
7385 case COND_JUMP86:
7386 if (size == 2
7387 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
7389 /* Negate the condition, and branch past an
7390 unconditional jump. */
7391 opcode[0] ^= 1;
7392 opcode[1] = 3;
7393 /* Insert an unconditional jump. */
7394 opcode[2] = 0xe9;
7395 /* We added two extra opcode bytes, and have a two byte
7396 offset. */
7397 fragP->fr_fix += 2 + 2;
7398 fix_new (fragP, old_fr_fix + 2, 2,
7399 fragP->fr_symbol,
7400 fragP->fr_offset, 1,
7401 reloc_type);
7402 break;
7404 /* Fall through. */
7406 case COND_JUMP:
7407 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
7409 fixS *fixP;
7411 fragP->fr_fix += 1;
7412 fixP = fix_new (fragP, old_fr_fix, 1,
7413 fragP->fr_symbol,
7414 fragP->fr_offset, 1,
7415 BFD_RELOC_8_PCREL);
7416 fixP->fx_signed = 1;
7417 break;
7420 /* This changes the byte-displacement jump 0x7N
7421 to the (d)word-displacement jump 0x0f,0x8N. */
7422 opcode[1] = opcode[0] + 0x10;
7423 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7424 /* We've added an opcode byte. */
7425 fragP->fr_fix += 1 + size;
7426 fix_new (fragP, old_fr_fix + 1, size,
7427 fragP->fr_symbol,
7428 fragP->fr_offset, 1,
7429 reloc_type);
7430 break;
7432 default:
7433 BAD_CASE (fragP->fr_subtype);
7434 break;
7436 frag_wane (fragP);
7437 return fragP->fr_fix - old_fr_fix;
7440 /* Guess size depending on current relax state. Initially the relax
7441 state will correspond to a short jump and we return 1, because
7442 the variable part of the frag (the branch offset) is one byte
7443 long. However, we can relax a section more than once and in that
7444 case we must either set fr_subtype back to the unrelaxed state,
7445 or return the value for the appropriate branch. */
7446 return md_relax_table[fragP->fr_subtype].rlx_length;
7449 /* Called after relax() is finished.
7451 In: Address of frag.
7452 fr_type == rs_machine_dependent.
7453 fr_subtype is what the address relaxed to.
7455 Out: Any fixSs and constants are set up.
7456 Caller will turn frag into a ".space 0". */
7458 void
7459 md_convert_frag (abfd, sec, fragP)
7460 bfd *abfd ATTRIBUTE_UNUSED;
7461 segT sec ATTRIBUTE_UNUSED;
7462 fragS *fragP;
7464 unsigned char *opcode;
7465 unsigned char *where_to_put_displacement = NULL;
7466 offsetT target_address;
7467 offsetT opcode_address;
7468 unsigned int extension = 0;
7469 offsetT displacement_from_opcode_start;
7471 opcode = (unsigned char *) fragP->fr_opcode;
7473 /* Address we want to reach in file space. */
7474 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
7476 /* Address opcode resides at in file space. */
7477 opcode_address = fragP->fr_address + fragP->fr_fix;
7479 /* Displacement from opcode start to fill into instruction. */
7480 displacement_from_opcode_start = target_address - opcode_address;
7482 if ((fragP->fr_subtype & BIG) == 0)
7484 /* Don't have to change opcode. */
7485 extension = 1; /* 1 opcode + 1 displacement */
7486 where_to_put_displacement = &opcode[1];
7488 else
7490 if (no_cond_jump_promotion
7491 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
7492 as_warn_where (fragP->fr_file, fragP->fr_line,
7493 _("long jump required"));
7495 switch (fragP->fr_subtype)
7497 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
7498 extension = 4; /* 1 opcode + 4 displacement */
7499 opcode[0] = 0xe9;
7500 where_to_put_displacement = &opcode[1];
7501 break;
7503 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
7504 extension = 2; /* 1 opcode + 2 displacement */
7505 opcode[0] = 0xe9;
7506 where_to_put_displacement = &opcode[1];
7507 break;
7509 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
7510 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
7511 extension = 5; /* 2 opcode + 4 displacement */
7512 opcode[1] = opcode[0] + 0x10;
7513 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7514 where_to_put_displacement = &opcode[2];
7515 break;
7517 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
7518 extension = 3; /* 2 opcode + 2 displacement */
7519 opcode[1] = opcode[0] + 0x10;
7520 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
7521 where_to_put_displacement = &opcode[2];
7522 break;
7524 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
7525 extension = 4;
7526 opcode[0] ^= 1;
7527 opcode[1] = 3;
7528 opcode[2] = 0xe9;
7529 where_to_put_displacement = &opcode[3];
7530 break;
7532 default:
7533 BAD_CASE (fragP->fr_subtype);
7534 break;
7538 /* If size if less then four we are sure that the operand fits,
7539 but if it's 4, then it could be that the displacement is larger
7540 then -/+ 2GB. */
7541 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
7542 && object_64bit
7543 && ((addressT) (displacement_from_opcode_start - extension
7544 + ((addressT) 1 << 31))
7545 > (((addressT) 2 << 31) - 1)))
7547 as_bad_where (fragP->fr_file, fragP->fr_line,
7548 _("jump target out of range"));
7549 /* Make us emit 0. */
7550 displacement_from_opcode_start = extension;
7552 /* Now put displacement after opcode. */
7553 md_number_to_chars ((char *) where_to_put_displacement,
7554 (valueT) (displacement_from_opcode_start - extension),
7555 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
7556 fragP->fr_fix += extension;
7559 /* Apply a fixup (fixS) to segment data, once it has been determined
7560 by our caller that we have all the info we need to fix it up.
7562 On the 386, immediates, displacements, and data pointers are all in
7563 the same (little-endian) format, so we don't need to care about which
7564 we are handling. */
7566 void
7567 md_apply_fix (fixP, valP, seg)
7568 /* The fix we're to put in. */
7569 fixS *fixP;
7570 /* Pointer to the value of the bits. */
7571 valueT *valP;
7572 /* Segment fix is from. */
7573 segT seg ATTRIBUTE_UNUSED;
7575 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
7576 valueT value = *valP;
7578 #if !defined (TE_Mach)
7579 if (fixP->fx_pcrel)
7581 switch (fixP->fx_r_type)
7583 default:
7584 break;
7586 case BFD_RELOC_64:
7587 fixP->fx_r_type = BFD_RELOC_64_PCREL;
7588 break;
7589 case BFD_RELOC_32:
7590 case BFD_RELOC_X86_64_32S:
7591 fixP->fx_r_type = BFD_RELOC_32_PCREL;
7592 break;
7593 case BFD_RELOC_16:
7594 fixP->fx_r_type = BFD_RELOC_16_PCREL;
7595 break;
7596 case BFD_RELOC_8:
7597 fixP->fx_r_type = BFD_RELOC_8_PCREL;
7598 break;
7602 if (fixP->fx_addsy != NULL
7603 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
7604 || fixP->fx_r_type == BFD_RELOC_64_PCREL
7605 || fixP->fx_r_type == BFD_RELOC_16_PCREL
7606 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
7607 && !use_rela_relocations)
7609 /* This is a hack. There should be a better way to handle this.
7610 This covers for the fact that bfd_install_relocation will
7611 subtract the current location (for partial_inplace, PC relative
7612 relocations); see more below. */
7613 #ifndef OBJ_AOUT
7614 if (IS_ELF
7615 #ifdef TE_PE
7616 || OUTPUT_FLAVOR == bfd_target_coff_flavour
7617 #endif
7619 value += fixP->fx_where + fixP->fx_frag->fr_address;
7620 #endif
7621 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7622 if (IS_ELF)
7624 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
7626 if ((sym_seg == seg
7627 || (symbol_section_p (fixP->fx_addsy)
7628 && sym_seg != absolute_section))
7629 && !generic_force_reloc (fixP))
7631 /* Yes, we add the values in twice. This is because
7632 bfd_install_relocation subtracts them out again. I think
7633 bfd_install_relocation is broken, but I don't dare change
7634 it. FIXME. */
7635 value += fixP->fx_where + fixP->fx_frag->fr_address;
7638 #endif
7639 #if defined (OBJ_COFF) && defined (TE_PE)
7640 /* For some reason, the PE format does not store a
7641 section address offset for a PC relative symbol. */
7642 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7643 || S_IS_WEAK (fixP->fx_addsy))
7644 value += md_pcrel_from (fixP);
7645 #endif
7647 #if defined (OBJ_COFF) && defined (TE_PE)
7648 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7650 value -= S_GET_VALUE (fixP->fx_addsy);
7652 #endif
7654 /* Fix a few things - the dynamic linker expects certain values here,
7655 and we must not disappoint it. */
7656 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7657 if (IS_ELF && fixP->fx_addsy)
7658 switch (fixP->fx_r_type)
7660 case BFD_RELOC_386_PLT32:
7661 case BFD_RELOC_X86_64_PLT32:
7662 /* Make the jump instruction point to the address of the operand. At
7663 runtime we merely add the offset to the actual PLT entry. */
7664 value = -4;
7665 break;
7667 case BFD_RELOC_386_TLS_GD:
7668 case BFD_RELOC_386_TLS_LDM:
7669 case BFD_RELOC_386_TLS_IE_32:
7670 case BFD_RELOC_386_TLS_IE:
7671 case BFD_RELOC_386_TLS_GOTIE:
7672 case BFD_RELOC_386_TLS_GOTDESC:
7673 case BFD_RELOC_X86_64_TLSGD:
7674 case BFD_RELOC_X86_64_TLSLD:
7675 case BFD_RELOC_X86_64_GOTTPOFF:
7676 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7677 value = 0; /* Fully resolved at runtime. No addend. */
7678 /* Fallthrough */
7679 case BFD_RELOC_386_TLS_LE:
7680 case BFD_RELOC_386_TLS_LDO_32:
7681 case BFD_RELOC_386_TLS_LE_32:
7682 case BFD_RELOC_X86_64_DTPOFF32:
7683 case BFD_RELOC_X86_64_DTPOFF64:
7684 case BFD_RELOC_X86_64_TPOFF32:
7685 case BFD_RELOC_X86_64_TPOFF64:
7686 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7687 break;
7689 case BFD_RELOC_386_TLS_DESC_CALL:
7690 case BFD_RELOC_X86_64_TLSDESC_CALL:
7691 value = 0; /* Fully resolved at runtime. No addend. */
7692 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7693 fixP->fx_done = 0;
7694 return;
7696 case BFD_RELOC_386_GOT32:
7697 case BFD_RELOC_X86_64_GOT32:
7698 value = 0; /* Fully resolved at runtime. No addend. */
7699 break;
7701 case BFD_RELOC_VTABLE_INHERIT:
7702 case BFD_RELOC_VTABLE_ENTRY:
7703 fixP->fx_done = 0;
7704 return;
7706 default:
7707 break;
7709 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7710 *valP = value;
7711 #endif /* !defined (TE_Mach) */
7713 /* Are we finished with this relocation now? */
7714 if (fixP->fx_addsy == NULL)
7715 fixP->fx_done = 1;
7716 #if defined (OBJ_COFF) && defined (TE_PE)
7717 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
7719 fixP->fx_done = 0;
7720 /* Remember value for tc_gen_reloc. */
7721 fixP->fx_addnumber = value;
7722 /* Clear out the frag for now. */
7723 value = 0;
7725 #endif
7726 else if (use_rela_relocations)
7728 fixP->fx_no_overflow = 1;
7729 /* Remember value for tc_gen_reloc. */
7730 fixP->fx_addnumber = value;
7731 value = 0;
7734 md_number_to_chars (p, value, fixP->fx_size);
7737 char *
7738 md_atof (int type, char *litP, int *sizeP)
7740 /* This outputs the LITTLENUMs in REVERSE order;
7741 in accord with the bigendian 386. */
7742 return ieee_md_atof (type, litP, sizeP, FALSE);
7745 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
7747 static char *
7748 output_invalid (int c)
7750 if (ISPRINT (c))
7751 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7752 "'%c'", c);
7753 else
7754 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
7755 "(0x%x)", (unsigned char) c);
7756 return output_invalid_buf;
7759 /* REG_STRING starts *before* REGISTER_PREFIX. */
7761 static const reg_entry *
7762 parse_real_register (char *reg_string, char **end_op)
7764 char *s = reg_string;
7765 char *p;
7766 char reg_name_given[MAX_REG_NAME_SIZE + 1];
7767 const reg_entry *r;
7769 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7770 if (*s == REGISTER_PREFIX)
7771 ++s;
7773 if (is_space_char (*s))
7774 ++s;
7776 p = reg_name_given;
7777 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
7779 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
7780 return (const reg_entry *) NULL;
7781 s++;
7784 /* For naked regs, make sure that we are not dealing with an identifier.
7785 This prevents confusing an identifier like `eax_var' with register
7786 `eax'. */
7787 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
7788 return (const reg_entry *) NULL;
7790 *end_op = s;
7792 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
7794 /* Handle floating point regs, allowing spaces in the (i) part. */
7795 if (r == i386_regtab /* %st is first entry of table */)
7797 if (is_space_char (*s))
7798 ++s;
7799 if (*s == '(')
7801 ++s;
7802 if (is_space_char (*s))
7803 ++s;
7804 if (*s >= '0' && *s <= '7')
7806 int fpr = *s - '0';
7807 ++s;
7808 if (is_space_char (*s))
7809 ++s;
7810 if (*s == ')')
7812 *end_op = s + 1;
7813 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
7814 know (r);
7815 return r + fpr;
7818 /* We have "%st(" then garbage. */
7819 return (const reg_entry *) NULL;
7823 if (r == NULL || allow_pseudo_reg)
7824 return r;
7826 if (operand_type_all_zero (&r->reg_type))
7827 return (const reg_entry *) NULL;
7829 if ((r->reg_type.bitfield.reg32
7830 || r->reg_type.bitfield.sreg3
7831 || r->reg_type.bitfield.control
7832 || r->reg_type.bitfield.debug
7833 || r->reg_type.bitfield.test)
7834 && !cpu_arch_flags.bitfield.cpui386)
7835 return (const reg_entry *) NULL;
7837 if (r->reg_type.bitfield.floatreg
7838 && !cpu_arch_flags.bitfield.cpu8087
7839 && !cpu_arch_flags.bitfield.cpu287
7840 && !cpu_arch_flags.bitfield.cpu387)
7841 return (const reg_entry *) NULL;
7843 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
7844 return (const reg_entry *) NULL;
7846 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
7847 return (const reg_entry *) NULL;
7849 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
7850 return (const reg_entry *) NULL;
7852 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7853 if (!allow_index_reg
7854 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
7855 return (const reg_entry *) NULL;
7857 if (((r->reg_flags & (RegRex64 | RegRex))
7858 || r->reg_type.bitfield.reg64)
7859 && (!cpu_arch_flags.bitfield.cpulm
7860 || !operand_type_equal (&r->reg_type, &control))
7861 && flag_code != CODE_64BIT)
7862 return (const reg_entry *) NULL;
7864 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
7865 return (const reg_entry *) NULL;
7867 return r;
7870 /* REG_STRING starts *before* REGISTER_PREFIX. */
7872 static const reg_entry *
7873 parse_register (char *reg_string, char **end_op)
7875 const reg_entry *r;
7877 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
7878 r = parse_real_register (reg_string, end_op);
7879 else
7880 r = NULL;
7881 if (!r)
7883 char *save = input_line_pointer;
7884 char c;
7885 symbolS *symbolP;
7887 input_line_pointer = reg_string;
7888 c = get_symbol_end ();
7889 symbolP = symbol_find (reg_string);
7890 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
7892 const expressionS *e = symbol_get_value_expression (symbolP);
7894 know (e->X_op == O_register);
7895 know (e->X_add_number >= 0
7896 && (valueT) e->X_add_number < i386_regtab_size);
7897 r = i386_regtab + e->X_add_number;
7898 *end_op = input_line_pointer;
7900 *input_line_pointer = c;
7901 input_line_pointer = save;
7903 return r;
7907 i386_parse_name (char *name, expressionS *e, char *nextcharP)
7909 const reg_entry *r;
7910 char *end = input_line_pointer;
7912 *end = *nextcharP;
7913 r = parse_register (name, &input_line_pointer);
7914 if (r && end <= input_line_pointer)
7916 *nextcharP = *input_line_pointer;
7917 *input_line_pointer = 0;
7918 e->X_op = O_register;
7919 e->X_add_number = r - i386_regtab;
7920 return 1;
7922 input_line_pointer = end;
7923 *end = 0;
7924 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
7927 void
7928 md_operand (expressionS *e)
7930 char *end;
7931 const reg_entry *r;
7933 switch (*input_line_pointer)
7935 case REGISTER_PREFIX:
7936 r = parse_real_register (input_line_pointer, &end);
7937 if (r)
7939 e->X_op = O_register;
7940 e->X_add_number = r - i386_regtab;
7941 input_line_pointer = end;
7943 break;
7945 case '[':
7946 gas_assert (intel_syntax);
7947 end = input_line_pointer++;
7948 expression (e);
7949 if (*input_line_pointer == ']')
7951 ++input_line_pointer;
7952 e->X_op_symbol = make_expr_symbol (e);
7953 e->X_add_symbol = NULL;
7954 e->X_add_number = 0;
7955 e->X_op = O_index;
7957 else
7959 e->X_op = O_absent;
7960 input_line_pointer = end;
7962 break;
7967 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7968 const char *md_shortopts = "kVQ:sqn";
7969 #else
7970 const char *md_shortopts = "qn";
7971 #endif
7973 #define OPTION_32 (OPTION_MD_BASE + 0)
7974 #define OPTION_64 (OPTION_MD_BASE + 1)
7975 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7976 #define OPTION_MARCH (OPTION_MD_BASE + 3)
7977 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
7978 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7979 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7980 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7981 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7982 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7983 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
7984 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7985 #define OPTION_MAVXSCALAR (OPTION_MSSE_CHECK + 11)
7987 struct option md_longopts[] =
7989 {"32", no_argument, NULL, OPTION_32},
7990 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
7991 || defined (TE_PE) || defined (TE_PEP))
7992 {"64", no_argument, NULL, OPTION_64},
7993 #endif
7994 {"divide", no_argument, NULL, OPTION_DIVIDE},
7995 {"march", required_argument, NULL, OPTION_MARCH},
7996 {"mtune", required_argument, NULL, OPTION_MTUNE},
7997 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7998 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7999 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
8000 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
8001 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
8002 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
8003 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
8004 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
8005 {NULL, no_argument, NULL, 0}
8007 size_t md_longopts_size = sizeof (md_longopts);
8010 md_parse_option (int c, char *arg)
8012 unsigned int j;
8013 char *arch, *next;
8015 switch (c)
8017 case 'n':
8018 optimize_align_code = 0;
8019 break;
8021 case 'q':
8022 quiet_warnings = 1;
8023 break;
8025 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8026 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8027 should be emitted or not. FIXME: Not implemented. */
8028 case 'Q':
8029 break;
8031 /* -V: SVR4 argument to print version ID. */
8032 case 'V':
8033 print_version_id ();
8034 break;
8036 /* -k: Ignore for FreeBSD compatibility. */
8037 case 'k':
8038 break;
8040 case 's':
8041 /* -s: On i386 Solaris, this tells the native assembler to use
8042 .stab instead of .stab.excl. We always use .stab anyhow. */
8043 break;
8044 #endif
8045 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8046 || defined (TE_PE) || defined (TE_PEP))
8047 case OPTION_64:
8049 const char **list, **l;
8051 list = bfd_target_list ();
8052 for (l = list; *l != NULL; l++)
8053 if (CONST_STRNEQ (*l, "elf64-x86-64")
8054 || strcmp (*l, "coff-x86-64") == 0
8055 || strcmp (*l, "pe-x86-64") == 0
8056 || strcmp (*l, "pei-x86-64") == 0)
8058 default_arch = "x86_64";
8059 break;
8061 if (*l == NULL)
8062 as_fatal (_("No compiled in support for x86_64"));
8063 free (list);
8065 break;
8066 #endif
8068 case OPTION_32:
8069 default_arch = "i386";
8070 break;
8072 case OPTION_DIVIDE:
8073 #ifdef SVR4_COMMENT_CHARS
8075 char *n, *t;
8076 const char *s;
8078 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
8079 t = n;
8080 for (s = i386_comment_chars; *s != '\0'; s++)
8081 if (*s != '/')
8082 *t++ = *s;
8083 *t = '\0';
8084 i386_comment_chars = n;
8086 #endif
8087 break;
8089 case OPTION_MARCH:
8090 arch = xstrdup (arg);
8093 if (*arch == '.')
8094 as_fatal (_("Invalid -march= option: `%s'"), arg);
8095 next = strchr (arch, '+');
8096 if (next)
8097 *next++ = '\0';
8098 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8100 if (strcmp (arch, cpu_arch [j].name) == 0)
8102 /* Processor. */
8103 cpu_arch_name = cpu_arch[j].name;
8104 cpu_sub_arch_name = NULL;
8105 cpu_arch_flags = cpu_arch[j].flags;
8106 cpu_arch_isa = cpu_arch[j].type;
8107 cpu_arch_isa_flags = cpu_arch[j].flags;
8108 if (!cpu_arch_tune_set)
8110 cpu_arch_tune = cpu_arch_isa;
8111 cpu_arch_tune_flags = cpu_arch_isa_flags;
8113 break;
8115 else if (*cpu_arch [j].name == '.'
8116 && strcmp (arch, cpu_arch [j].name + 1) == 0)
8118 /* ISA entension. */
8119 i386_cpu_flags flags;
8121 if (strncmp (arch, "no", 2))
8122 flags = cpu_flags_or (cpu_arch_flags,
8123 cpu_arch[j].flags);
8124 else
8125 flags = cpu_flags_and_not (cpu_arch_flags,
8126 cpu_arch[j].flags);
8127 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
8129 if (cpu_sub_arch_name)
8131 char *name = cpu_sub_arch_name;
8132 cpu_sub_arch_name = concat (name,
8133 cpu_arch[j].name,
8134 (const char *) NULL);
8135 free (name);
8137 else
8138 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
8139 cpu_arch_flags = flags;
8141 break;
8145 if (j >= ARRAY_SIZE (cpu_arch))
8146 as_fatal (_("Invalid -march= option: `%s'"), arg);
8148 arch = next;
8150 while (next != NULL );
8151 break;
8153 case OPTION_MTUNE:
8154 if (*arg == '.')
8155 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
8156 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8158 if (strcmp (arg, cpu_arch [j].name) == 0)
8160 cpu_arch_tune_set = 1;
8161 cpu_arch_tune = cpu_arch [j].type;
8162 cpu_arch_tune_flags = cpu_arch[j].flags;
8163 break;
8166 if (j >= ARRAY_SIZE (cpu_arch))
8167 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
8168 break;
8170 case OPTION_MMNEMONIC:
8171 if (strcasecmp (arg, "att") == 0)
8172 intel_mnemonic = 0;
8173 else if (strcasecmp (arg, "intel") == 0)
8174 intel_mnemonic = 1;
8175 else
8176 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
8177 break;
8179 case OPTION_MSYNTAX:
8180 if (strcasecmp (arg, "att") == 0)
8181 intel_syntax = 0;
8182 else if (strcasecmp (arg, "intel") == 0)
8183 intel_syntax = 1;
8184 else
8185 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
8186 break;
8188 case OPTION_MINDEX_REG:
8189 allow_index_reg = 1;
8190 break;
8192 case OPTION_MNAKED_REG:
8193 allow_naked_reg = 1;
8194 break;
8196 case OPTION_MOLD_GCC:
8197 old_gcc = 1;
8198 break;
8200 case OPTION_MSSE2AVX:
8201 sse2avx = 1;
8202 break;
8204 case OPTION_MSSE_CHECK:
8205 if (strcasecmp (arg, "error") == 0)
8206 sse_check = sse_check_error;
8207 else if (strcasecmp (arg, "warning") == 0)
8208 sse_check = sse_check_warning;
8209 else if (strcasecmp (arg, "none") == 0)
8210 sse_check = sse_check_none;
8211 else
8212 as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
8213 break;
8215 case OPTION_MAVXSCALAR:
8216 if (strcasecmp (arg, "128") == 0)
8217 avxscalar = vex128;
8218 else if (strcasecmp (arg, "256") == 0)
8219 avxscalar = vex256;
8220 else
8221 as_fatal (_("Invalid -mavxscalar= option: `%s'"), arg);
8222 break;
8224 default:
8225 return 0;
8227 return 1;
8230 #define MESSAGE_TEMPLATE \
8233 static void
8234 show_arch (FILE *stream, int ext)
8236 static char message[] = MESSAGE_TEMPLATE;
8237 char *start = message + 27;
8238 char *p;
8239 int size = sizeof (MESSAGE_TEMPLATE);
8240 int left;
8241 const char *name;
8242 int len;
8243 unsigned int j;
8245 p = start;
8246 left = size - (start - message);
8247 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
8249 /* Should it be skipped? */
8250 if (cpu_arch [j].skip)
8251 continue;
8253 name = cpu_arch [j].name;
8254 len = cpu_arch [j].len;
8255 if (*name == '.')
8257 /* It is an extension. Skip if we aren't asked to show it. */
8258 if (ext)
8260 name++;
8261 len--;
8263 else
8264 continue;
8266 else if (ext)
8268 /* It is an processor. Skip if we show only extension. */
8269 continue;
8272 /* Reserve 2 spaces for ", " or ",\0" */
8273 left -= len + 2;
8275 /* Check if there is any room. */
8276 if (left >= 0)
8278 if (p != start)
8280 *p++ = ',';
8281 *p++ = ' ';
8283 p = mempcpy (p, name, len);
8285 else
8287 /* Output the current message now and start a new one. */
8288 *p++ = ',';
8289 *p = '\0';
8290 fprintf (stream, "%s\n", message);
8291 p = start;
8292 left = size - (start - message) - len - 2;
8294 gas_assert (left >= 0);
8296 p = mempcpy (p, name, len);
8300 *p = '\0';
8301 fprintf (stream, "%s\n", message);
8304 void
8305 md_show_usage (FILE *stream)
8307 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8308 fprintf (stream, _("\
8309 -Q ignored\n\
8310 -V print assembler version number\n\
8311 -k ignored\n"));
8312 #endif
8313 fprintf (stream, _("\
8314 -n Do not optimize code alignment\n\
8315 -q quieten some warnings\n"));
8316 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8317 fprintf (stream, _("\
8318 -s ignored\n"));
8319 #endif
8320 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8321 || defined (TE_PE) || defined (TE_PEP))
8322 fprintf (stream, _("\
8323 --32/--64 generate 32bit/64bit code\n"));
8324 #endif
8325 #ifdef SVR4_COMMENT_CHARS
8326 fprintf (stream, _("\
8327 --divide do not treat `/' as a comment character\n"));
8328 #else
8329 fprintf (stream, _("\
8330 --divide ignored\n"));
8331 #endif
8332 fprintf (stream, _("\
8333 -march=CPU[,+EXTENSION...]\n\
8334 generate code for CPU and EXTENSION, CPU is one of:\n"));
8335 show_arch (stream, 0);
8336 fprintf (stream, _("\
8337 EXTENSION is combination of:\n"));
8338 show_arch (stream, 1);
8339 fprintf (stream, _("\
8340 -mtune=CPU optimize for CPU, CPU is one of:\n"));
8341 show_arch (stream, 0);
8342 fprintf (stream, _("\
8343 -msse2avx encode SSE instructions with VEX prefix\n"));
8344 fprintf (stream, _("\
8345 -msse-check=[none|error|warning]\n\
8346 check SSE instructions\n"));
8347 fprintf (stream, _("\
8348 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
8349 length\n"));
8350 fprintf (stream, _("\
8351 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8352 fprintf (stream, _("\
8353 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8354 fprintf (stream, _("\
8355 -mindex-reg support pseudo index registers\n"));
8356 fprintf (stream, _("\
8357 -mnaked-reg don't require `%%' prefix for registers\n"));
8358 fprintf (stream, _("\
8359 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8362 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8363 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
8364 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
8366 /* Pick the target format to use. */
8368 const char *
8369 i386_target_format (void)
8371 if (!strcmp (default_arch, "x86_64"))
8373 set_code_flag (CODE_64BIT);
8374 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8376 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8377 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8378 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8379 cpu_arch_isa_flags.bitfield.cpui486 = 1;
8380 cpu_arch_isa_flags.bitfield.cpui586 = 1;
8381 cpu_arch_isa_flags.bitfield.cpui686 = 1;
8382 cpu_arch_isa_flags.bitfield.cpuclflush = 1;
8383 cpu_arch_isa_flags.bitfield.cpummx= 1;
8384 cpu_arch_isa_flags.bitfield.cpusse = 1;
8385 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
8386 cpu_arch_isa_flags.bitfield.cpulm = 1;
8388 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8390 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8391 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8392 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8393 cpu_arch_tune_flags.bitfield.cpui486 = 1;
8394 cpu_arch_tune_flags.bitfield.cpui586 = 1;
8395 cpu_arch_tune_flags.bitfield.cpui686 = 1;
8396 cpu_arch_tune_flags.bitfield.cpuclflush = 1;
8397 cpu_arch_tune_flags.bitfield.cpummx= 1;
8398 cpu_arch_tune_flags.bitfield.cpusse = 1;
8399 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
8402 else if (!strcmp (default_arch, "i386"))
8404 set_code_flag (CODE_32BIT);
8405 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
8407 cpu_arch_isa_flags.bitfield.cpui186 = 1;
8408 cpu_arch_isa_flags.bitfield.cpui286 = 1;
8409 cpu_arch_isa_flags.bitfield.cpui386 = 1;
8411 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
8413 cpu_arch_tune_flags.bitfield.cpui186 = 1;
8414 cpu_arch_tune_flags.bitfield.cpui286 = 1;
8415 cpu_arch_tune_flags.bitfield.cpui386 = 1;
8418 else
8419 as_fatal (_("Unknown architecture"));
8420 switch (OUTPUT_FLAVOR)
8422 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
8423 case bfd_target_aout_flavour:
8424 return AOUT_TARGET_FORMAT;
8425 #endif
8426 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
8427 # if defined (TE_PE) || defined (TE_PEP)
8428 case bfd_target_coff_flavour:
8429 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
8430 # elif defined (TE_GO32)
8431 case bfd_target_coff_flavour:
8432 return "coff-go32";
8433 # else
8434 case bfd_target_coff_flavour:
8435 return "coff-i386";
8436 # endif
8437 #endif
8438 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8439 case bfd_target_elf_flavour:
8441 if (flag_code == CODE_64BIT)
8443 object_64bit = 1;
8444 use_rela_relocations = 1;
8446 if (cpu_arch_isa == PROCESSOR_L1OM)
8448 if (flag_code != CODE_64BIT)
8449 as_fatal (_("Intel L1OM is 64bit only"));
8450 return ELF_TARGET_L1OM_FORMAT;
8452 else
8453 return (flag_code == CODE_64BIT
8454 ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT);
8456 #endif
8457 #if defined (OBJ_MACH_O)
8458 case bfd_target_mach_o_flavour:
8459 return flag_code == CODE_64BIT ? "mach-o-x86-64" : "mach-o-i386";
8460 #endif
8461 default:
8462 abort ();
8463 return NULL;
8467 #endif /* OBJ_MAYBE_ more than one */
8469 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8470 void
8471 i386_elf_emit_arch_note (void)
8473 if (IS_ELF && cpu_arch_name != NULL)
8475 char *p;
8476 asection *seg = now_seg;
8477 subsegT subseg = now_subseg;
8478 Elf_Internal_Note i_note;
8479 Elf_External_Note e_note;
8480 asection *note_secp;
8481 int len;
8483 /* Create the .note section. */
8484 note_secp = subseg_new (".note", 0);
8485 bfd_set_section_flags (stdoutput,
8486 note_secp,
8487 SEC_HAS_CONTENTS | SEC_READONLY);
8489 /* Process the arch string. */
8490 len = strlen (cpu_arch_name);
8492 i_note.namesz = len + 1;
8493 i_note.descsz = 0;
8494 i_note.type = NT_ARCH;
8495 p = frag_more (sizeof (e_note.namesz));
8496 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
8497 p = frag_more (sizeof (e_note.descsz));
8498 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
8499 p = frag_more (sizeof (e_note.type));
8500 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
8501 p = frag_more (len + 1);
8502 strcpy (p, cpu_arch_name);
8504 frag_align (2, 0, 0);
8506 subseg_set (seg, subseg);
8509 #endif
8511 symbolS *
8512 md_undefined_symbol (name)
8513 char *name;
8515 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
8516 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
8517 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
8518 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
8520 if (!GOT_symbol)
8522 if (symbol_find (name))
8523 as_bad (_("GOT already in symbol table"));
8524 GOT_symbol = symbol_new (name, undefined_section,
8525 (valueT) 0, &zero_address_frag);
8527 return GOT_symbol;
8529 return 0;
8532 /* Round up a section size to the appropriate boundary. */
8534 valueT
8535 md_section_align (segment, size)
8536 segT segment ATTRIBUTE_UNUSED;
8537 valueT size;
8539 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8540 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
8542 /* For a.out, force the section size to be aligned. If we don't do
8543 this, BFD will align it for us, but it will not write out the
8544 final bytes of the section. This may be a bug in BFD, but it is
8545 easier to fix it here since that is how the other a.out targets
8546 work. */
8547 int align;
8549 align = bfd_get_section_alignment (stdoutput, segment);
8550 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
8552 #endif
8554 return size;
8557 /* On the i386, PC-relative offsets are relative to the start of the
8558 next instruction. That is, the address of the offset, plus its
8559 size, since the offset is always the last part of the insn. */
8561 long
8562 md_pcrel_from (fixS *fixP)
8564 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
8567 #ifndef I386COFF
8569 static void
8570 s_bss (int ignore ATTRIBUTE_UNUSED)
8572 int temp;
8574 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8575 if (IS_ELF)
8576 obj_elf_section_change_hook ();
8577 #endif
8578 temp = get_absolute_expression ();
8579 subseg_set (bss_section, (subsegT) temp);
8580 demand_empty_rest_of_line ();
8583 #endif
8585 void
8586 i386_validate_fix (fixS *fixp)
8588 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
8590 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
8592 if (!object_64bit)
8593 abort ();
8594 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
8596 else
8598 if (!object_64bit)
8599 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
8600 else
8601 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
8603 fixp->fx_subsy = 0;
8607 arelent *
8608 tc_gen_reloc (section, fixp)
8609 asection *section ATTRIBUTE_UNUSED;
8610 fixS *fixp;
8612 arelent *rel;
8613 bfd_reloc_code_real_type code;
8615 switch (fixp->fx_r_type)
8617 case BFD_RELOC_X86_64_PLT32:
8618 case BFD_RELOC_X86_64_GOT32:
8619 case BFD_RELOC_X86_64_GOTPCREL:
8620 case BFD_RELOC_386_PLT32:
8621 case BFD_RELOC_386_GOT32:
8622 case BFD_RELOC_386_GOTOFF:
8623 case BFD_RELOC_386_GOTPC:
8624 case BFD_RELOC_386_TLS_GD:
8625 case BFD_RELOC_386_TLS_LDM:
8626 case BFD_RELOC_386_TLS_LDO_32:
8627 case BFD_RELOC_386_TLS_IE_32:
8628 case BFD_RELOC_386_TLS_IE:
8629 case BFD_RELOC_386_TLS_GOTIE:
8630 case BFD_RELOC_386_TLS_LE_32:
8631 case BFD_RELOC_386_TLS_LE:
8632 case BFD_RELOC_386_TLS_GOTDESC:
8633 case BFD_RELOC_386_TLS_DESC_CALL:
8634 case BFD_RELOC_X86_64_TLSGD:
8635 case BFD_RELOC_X86_64_TLSLD:
8636 case BFD_RELOC_X86_64_DTPOFF32:
8637 case BFD_RELOC_X86_64_DTPOFF64:
8638 case BFD_RELOC_X86_64_GOTTPOFF:
8639 case BFD_RELOC_X86_64_TPOFF32:
8640 case BFD_RELOC_X86_64_TPOFF64:
8641 case BFD_RELOC_X86_64_GOTOFF64:
8642 case BFD_RELOC_X86_64_GOTPC32:
8643 case BFD_RELOC_X86_64_GOT64:
8644 case BFD_RELOC_X86_64_GOTPCREL64:
8645 case BFD_RELOC_X86_64_GOTPC64:
8646 case BFD_RELOC_X86_64_GOTPLT64:
8647 case BFD_RELOC_X86_64_PLTOFF64:
8648 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8649 case BFD_RELOC_X86_64_TLSDESC_CALL:
8650 case BFD_RELOC_RVA:
8651 case BFD_RELOC_VTABLE_ENTRY:
8652 case BFD_RELOC_VTABLE_INHERIT:
8653 #ifdef TE_PE
8654 case BFD_RELOC_32_SECREL:
8655 #endif
8656 code = fixp->fx_r_type;
8657 break;
8658 case BFD_RELOC_X86_64_32S:
8659 if (!fixp->fx_pcrel)
8661 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8662 code = fixp->fx_r_type;
8663 break;
8665 default:
8666 if (fixp->fx_pcrel)
8668 switch (fixp->fx_size)
8670 default:
8671 as_bad_where (fixp->fx_file, fixp->fx_line,
8672 _("can not do %d byte pc-relative relocation"),
8673 fixp->fx_size);
8674 code = BFD_RELOC_32_PCREL;
8675 break;
8676 case 1: code = BFD_RELOC_8_PCREL; break;
8677 case 2: code = BFD_RELOC_16_PCREL; break;
8678 case 4: code = BFD_RELOC_32_PCREL; break;
8679 #ifdef BFD64
8680 case 8: code = BFD_RELOC_64_PCREL; break;
8681 #endif
8684 else
8686 switch (fixp->fx_size)
8688 default:
8689 as_bad_where (fixp->fx_file, fixp->fx_line,
8690 _("can not do %d byte relocation"),
8691 fixp->fx_size);
8692 code = BFD_RELOC_32;
8693 break;
8694 case 1: code = BFD_RELOC_8; break;
8695 case 2: code = BFD_RELOC_16; break;
8696 case 4: code = BFD_RELOC_32; break;
8697 #ifdef BFD64
8698 case 8: code = BFD_RELOC_64; break;
8699 #endif
8702 break;
8705 if ((code == BFD_RELOC_32
8706 || code == BFD_RELOC_32_PCREL
8707 || code == BFD_RELOC_X86_64_32S)
8708 && GOT_symbol
8709 && fixp->fx_addsy == GOT_symbol)
8711 if (!object_64bit)
8712 code = BFD_RELOC_386_GOTPC;
8713 else
8714 code = BFD_RELOC_X86_64_GOTPC32;
8716 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
8717 && GOT_symbol
8718 && fixp->fx_addsy == GOT_symbol)
8720 code = BFD_RELOC_X86_64_GOTPC64;
8723 rel = (arelent *) xmalloc (sizeof (arelent));
8724 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
8725 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8727 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
8729 if (!use_rela_relocations)
8731 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8732 vtable entry to be used in the relocation's section offset. */
8733 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
8734 rel->address = fixp->fx_offset;
8735 #if defined (OBJ_COFF) && defined (TE_PE)
8736 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
8737 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
8738 else
8739 #endif
8740 rel->addend = 0;
8742 /* Use the rela in 64bit mode. */
8743 else
8745 if (!fixp->fx_pcrel)
8746 rel->addend = fixp->fx_offset;
8747 else
8748 switch (code)
8750 case BFD_RELOC_X86_64_PLT32:
8751 case BFD_RELOC_X86_64_GOT32:
8752 case BFD_RELOC_X86_64_GOTPCREL:
8753 case BFD_RELOC_X86_64_TLSGD:
8754 case BFD_RELOC_X86_64_TLSLD:
8755 case BFD_RELOC_X86_64_GOTTPOFF:
8756 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
8757 case BFD_RELOC_X86_64_TLSDESC_CALL:
8758 rel->addend = fixp->fx_offset - fixp->fx_size;
8759 break;
8760 default:
8761 rel->addend = (section->vma
8762 - fixp->fx_size
8763 + fixp->fx_addnumber
8764 + md_pcrel_from (fixp));
8765 break;
8769 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
8770 if (rel->howto == NULL)
8772 as_bad_where (fixp->fx_file, fixp->fx_line,
8773 _("cannot represent relocation type %s"),
8774 bfd_get_reloc_code_name (code));
8775 /* Set howto to a garbage value so that we can keep going. */
8776 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
8777 gas_assert (rel->howto != NULL);
8780 return rel;
8783 #include "tc-i386-intel.c"
8785 void
8786 tc_x86_parse_to_dw2regnum (expressionS *exp)
8788 int saved_naked_reg;
8789 char saved_register_dot;
8791 saved_naked_reg = allow_naked_reg;
8792 allow_naked_reg = 1;
8793 saved_register_dot = register_chars['.'];
8794 register_chars['.'] = '.';
8795 allow_pseudo_reg = 1;
8796 expression_and_evaluate (exp);
8797 allow_pseudo_reg = 0;
8798 register_chars['.'] = saved_register_dot;
8799 allow_naked_reg = saved_naked_reg;
8801 if (exp->X_op == O_register && exp->X_add_number >= 0)
8803 if ((addressT) exp->X_add_number < i386_regtab_size)
8805 exp->X_op = O_constant;
8806 exp->X_add_number = i386_regtab[exp->X_add_number]
8807 .dw2_regnum[flag_code >> 1];
8809 else
8810 exp->X_op = O_illegal;
8814 void
8815 tc_x86_frame_initial_instructions (void)
8817 static unsigned int sp_regno[2];
8819 if (!sp_regno[flag_code >> 1])
8821 char *saved_input = input_line_pointer;
8822 char sp[][4] = {"esp", "rsp"};
8823 expressionS exp;
8825 input_line_pointer = sp[flag_code >> 1];
8826 tc_x86_parse_to_dw2regnum (&exp);
8827 gas_assert (exp.X_op == O_constant);
8828 sp_regno[flag_code >> 1] = exp.X_add_number;
8829 input_line_pointer = saved_input;
8832 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
8833 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8837 i386_elf_section_type (const char *str, size_t len)
8839 if (flag_code == CODE_64BIT
8840 && len == sizeof ("unwind") - 1
8841 && strncmp (str, "unwind", 6) == 0)
8842 return SHT_X86_64_UNWIND;
8844 return -1;
8847 #ifdef TE_SOLARIS
8848 void
8849 i386_solaris_fix_up_eh_frame (segT sec)
8851 if (flag_code == CODE_64BIT)
8852 elf_section_type (sec) = SHT_X86_64_UNWIND;
8854 #endif
8856 #ifdef TE_PE
8857 void
8858 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8860 expressionS exp;
8862 exp.X_op = O_secrel;
8863 exp.X_add_symbol = symbol;
8864 exp.X_add_number = 0;
8865 emit_expr (&exp, size);
8867 #endif
8869 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8870 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8872 bfd_vma
8873 x86_64_section_letter (int letter, char **ptr_msg)
8875 if (flag_code == CODE_64BIT)
8877 if (letter == 'l')
8878 return SHF_X86_64_LARGE;
8880 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8882 else
8883 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8884 return -1;
8887 bfd_vma
8888 x86_64_section_word (char *str, size_t len)
8890 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8891 return SHF_X86_64_LARGE;
8893 return -1;
8896 static void
8897 handle_large_common (int small ATTRIBUTE_UNUSED)
8899 if (flag_code != CODE_64BIT)
8901 s_comm_internal (0, elf_common_parse);
8902 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8904 else
8906 static segT lbss_section;
8907 asection *saved_com_section_ptr = elf_com_section_ptr;
8908 asection *saved_bss_section = bss_section;
8910 if (lbss_section == NULL)
8912 flagword applicable;
8913 segT seg = now_seg;
8914 subsegT subseg = now_subseg;
8916 /* The .lbss section is for local .largecomm symbols. */
8917 lbss_section = subseg_new (".lbss", 0);
8918 applicable = bfd_applicable_section_flags (stdoutput);
8919 bfd_set_section_flags (stdoutput, lbss_section,
8920 applicable & SEC_ALLOC);
8921 seg_info (lbss_section)->bss = 1;
8923 subseg_set (seg, subseg);
8926 elf_com_section_ptr = &_bfd_elf_large_com_section;
8927 bss_section = lbss_section;
8929 s_comm_internal (0, elf_common_parse);
8931 elf_com_section_ptr = saved_com_section_ptr;
8932 bss_section = saved_bss_section;
8935 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */