
Introduction to User-Mode Linux

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial... 2
2. What is User-Mode Linux? ... 3
3. Installing UML... 4
4. Working with UML.. 7
5. Working with multiple UMLs.. 10
6. Networking .. 12
7. Advanced topics .. 15
8. Summary, resources, and feedback 19

Introduction to User-Mode Linux Page 1 of 20

Section 1. About this tutorial

What does this tutorial cover?
Ever wish you had a place to let your Linux applications play -- where they wouldn't hurt
anything else? Do your killer apps spend too much time killing each other? Originally
conceived as a kernel developer's tool, UML lets you set up multiple virtual machines that are
isolated from each other and from the hardware. Now, you can test applications all the way
to failure without breaking the host system -- or even requiring a reboot. Veteran
administrator Carla Schroder shows you how.

Who should take this tutorial?
You should be at least an intermediate Linux user: comfortable with working from the
command line and building software from source; familiar with the Linux filesystem structure;
mounting devices and filesystems; managing user accounts. User-Mode Linux (UML) is great
fun, and a wonderful teaching experience; if you understand the concepts in the tutorial well
enough to know how to research them more deeply, this is also for you.

About the author
Carla Schroder is a freelance PC tamer, administering Linux and Windows systems for small
businesses, and writes how-tos for real people. Loves computers and high tech, thinks
Linux/Open Source/Free Software is the best playground in the world. Carla discovered
computers and high-tech in 1994, her first PC was an Apple II. She progressed through
DOS/Windows, from 3.1 to XP. Discovered Linux in 1998. Carla is living proof that self-taught
middle-aged ole ladies can be fine computer gurus. You can contact Carla directly, or use
the Resources on page 19 form at the end of the tutorial.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 20 Introduction to User-Mode Linux

mailto:dworks@bratgrrl.com

Section 2. What is User-Mode Linux?

UML overview
The Linux kernel has the ability to run on top of itself in user-space. Lo and behold, instant
virtual machines. Of course it's not quite that simple; the principal author Jeff Dike, and a
horde of contributors have put a lot of work into UML.

It was originally designed as a kernel developer's tool, to speed up development times and
reduce hardware requirements. Each instance of User-Mode Linux is safely contained and
isolated from the interacting directly with hardware, and from all other instances of UML
running on the same computer. This enables all sorts of test-to-destruction scenarios, without
damaging the host system or neighboring VMs, and without requiring reboots when things go
blooey.

UML's many uses
UML is free and complete with source code, and users are continually coming up with
ever-more-imaginative ways to employ it:
• As a sandbox for testing new apps

• For testing development kernels safely

• As a way to run different Linux distributions simultaneously

• For creating various development environments, with different compilers, different libraries,
and different filesystems

• For virtual networking

• For virtual Web hosting

• For virtual clusters

• As supreme chroot jails

• To emulate hardware and resources not physically present

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 3 of 20

Section 3. Installing UML

Getting started
Required are a computer running Linux, a UML kernel, and a root filesystem. The host
operating system can be most any modern Linux with a 2.2.15 kernel or better. (Run the
command uname -a to get the kernel version.) I have it on two home-built PCs: an AMD
Duron 800 with 256MB of RAM and Red Hat 8.0; and an older system, a Celeron 333 with
256MB of RAM running Libranet 2.7. Not what I would characterize as brawny, but sufficient
for some serious UML tinkering.

The easiest way to get started is to download and install a UML RPM or deb and a
prefabricated filesystem. Both are available from the UML project page (see Resources on
page 19). The packages contain the kernel, documentation, and utilities. Of course, as with all
things Linux, there are endless customization options. We'll take the easy way first.

A word of caution: UML is evolving rapidly, and has some rough edges. It is mature enough
to use in a production environment, but it has a bit of a learning curve. Kernel hackers will
likely slip into it more comfortably than us ordinary mortals. Fear not, if an ol' country
sysadmin like me can use it, likely anyone can.

RPM-based installation
There is a single generic UML kernel RPM, the current one is
user_mode_linux-2.4.19.5um-0.i386.rpm (you can download this from the link in Resources
on page 19). Always use the latest package; UML is in a continual state of advancement. To
see what's inside, list the package files:

rpm -ql user_mode_linux

To install, run

rpm -ivh user_mode_linux-2.4.19.5um-0.i386.rpm

Verify installation by running /usr/bin/linux. It should boot partway, then kernel panic when it
doesn't find a root filesystem. Enjoy the moment- UML lets a person panic kernels all they
want, with no bad consequences.

Choose a filesystem
Prefab filesystems abound. They are compressed with bzip2, so expect a high compression
ratio. For example, root_fs.rh-7.2-full.pristine.20020312.bz2 expands from 170MB to 679MB.
This creates a complete Red Hat 7.2 installation. The smallest is root_fs_toms1.7.205.bz2,
Tom's root boot. For those unfamiliar with Tom's root boot, or tomsrtbt as it is officially
spelled, it is "the most GNU/Linux on one floppy disk," the most amazing collection of utilities
crammed onto a single bootable floppy disk you ever saw.

A fun show-off stunt is to take a bare machine with absolutely nothing installed on it and,

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 20 Introduction to User-Mode Linux

using only tomsrtbt, build a complete Linux system over FTP. User-Mode Linux is a
wonderful test bed to practice using tomsrtbt; hone your skills, then amaze and impress
friends on any machine.

A nice compact option is the Debian Woody download, Debian-3.0r0.ext2, it unpacks to
about 60MB. It's a complete root filesystem, ready for installing development tools and other
apps. One gotcha: UML needs devfs, which is not included in Woody. See the Debian
installation on page 17 section for what to do. (Hint: apt-get....)

Note that most UML operations on the host can be performed as a user, rather than root.
This is by design, for greater security on the host system, and ease of use.

Install the filesystem
Make a UML directory, like so:

mkdir /opt/uml
chmod 755 /opt/uml

Why /opt? No particular reason, except it's sitting there, doing nothing. If multiple users are
part of your plan, it's not a good idea to put shared things in /home directories. Instead, put
them out in a public directory. chmod 755 gives read and execute rights to everyone, and
write to root only. Adjust permissions according to your needs.

Unpack your chosen prefab filesystem:

$ bunzip2 root_fs.rh-7.2-full.pristine.20020312.bz2

Install the filesystem, continued
bunzip2 will automatically delete the compressed file, leaving only the unpacked file. See
man bzip2 for complete command options.

Make a soft link to /usr/bin/linux:

$ ln -s /usr/bin/linux /opt/uml/linux

My usual practice is to create a command directory containing symlinks, and store the actual
binaries and libs elsewhere. This caused some unpredictable behaviors with UML, which
may be related to the particular Linux used. Libranet let me link anyway I want; Red Hat 8
would not boot UML from a soft-linked filesytem. I found the most surefire way to make things
work smoothly was to boot from the directory containing the root filesystem.

[carla@localhost carla]$ cd /opt/uml
[carla@localhost uml]$ ls -lhs
total 680M

0 lrwxrwxrwx 1 carla carla 14 Dec 2 20:52 linux -> /usr/bin/linux
680M -r-xr-xr-x 1 root carla 679M Dec 2 19:27 root_fs.rh-7.2-full.pristine.20020312

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 5 of 20

Most Linuxes include /usr/bin in the default path, so having the symlink may not be
necessary. For simplicity, rename the filesystem root_fs. UML by default looks for
root_fs in the current directory.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 20 Introduction to User-Mode Linux

Section 4. Working with UML

Boot UML
To boot up a shiny new UML, all ready to go to work, type in this command:

[carla@localhost uml]$./linux

Passwords and image selection
The RPM filesystems come with two built-in accounts: root, with the password "root," and
user, with password "user." If you are not prompted to change passwords on first use, it's a
good idea to do so anyway. Add users the usual way:

bash-2.05# useradd alice
bash-2.05# passwd alice
Changing password for user alice
Enter new UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully

A collection of various root filesystem images can be assembled, selectable with a boot
option. The way to choose a different image at boot is to assign the filesystem name to ubd0,
using the syntax ubd0=rootfs_filename:

$./linux ubd0=/some/root/filesystem/image

Make sure you're booting UML to an image, rather than a mounted filesystem. ubd0 is UML's
boot device. ubd represents configured block devices. ubd is UML's designation for hd, fd,
cdrom, scd, and so forth. This is where devfs comes into play. /dev is limited and inflexible,
cluttered with hundreds of entries that have nothing to do with what's really installed on the
system. devfs is a virtual directory created at run time, containing only entries to block
devices actually present on the system. ubd devices are extremely flexible: You can map
them to partitions, directories, and volume managers, as well as hardware devices, and you
can load and unload devices from a running instance of UML with the management console,
mconsole.

Mounting devices
We have a nice instance of UML running, but it's rather limited. No swap, no CD, no floppy,
no networking. Take a gander in /dev/udb:

bash-2.05# cd /dev/ubd
bash-2.05# ls
0 disc0

Not much going on here. Adding devices is the same in UML as in any Linux: add entries to
/etc/fstab and create a directory in /mnt, or mount them manually. There is one additional
UML-specific step, which is to define devices at boot:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 7 of 20

$./linux ubd0=rootfs ubd1=swap ubd2=/dev/cdrom

Creating files inside UML is discussed below. Mounting devices manually inside UML uses
the usual "mount" syntax, with ubdn defining the device name:

mount /dev/ubd/2 /mnt/cdrom

Notice that the boot options are ubdn, whereas the mount command options are /ubd/n.

Creating elbow room using sparse files
Exit UML. Use the usual Linux commands, such as shutdown -h now. It's time to create
some dedicated elbow room for UML to run in by creating and formatting a sparse file. This is
a nice little bit of magic that allocates a fixed amount of space for a file without actually using
all of it.

$ dd if=/dev/zero of=uml_root count=1 bs=1k seek=$[2*1024*1024]
1+0 records in
1+0 records out

Let's call it uml_root instead of root_fs, as root_fs is often used in the UML docs as a
variable. Variables are in italics.

Confirm file creation:

$ ls -lhs
total 12k
12K -rw-r--r-- 1 root root 2.0G Dec 2 12:35 uml_root

See the wizardry? A 2GB file that occupies 12KB of space on disk. The "s" switch shows how
much space on disk a file actually occupies.

Any Linux file format will work. This formats as ext2:

$ /sbin/mkfs -t ext2 uml_root

Creating elbow room, continued
Now comes the tricky part. There are various ways to do this, but this one works nicely. I'm
not going to show the output here, just the commands. Remember, root_fs is the original
UML filesystem image. This copies it into the uml_root sparse file:

mkdir /mnt/m1
mkdir /mnt/m2
mount -o loop -t ext2 /opt/uml/root_fs /mnt/m1
mount -o loop -t ext2 uml_root /mnt/m2
cp -a /mnt/m1/* /mnt/m2/

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 20 Introduction to User-Mode Linux

Look, filesystems! Run ls -lhs on /mnt/m1 and /m2 to compare. Now unmount both:

umount /mnt/m1
umount /mnt/m2

If you get a "device busy" error, close out everything that may be reading the filesystem, such
as file managers and xterms, and try again. Now boot up UML in the normal fashion, pointing
to your shiny new filesystem:

[carla@localhost uml]$./linux ubd0=uml_root

Feel the power? Aside from its usefulness, UML is just plain fun.

Creating a filesystem inside UML
The filesystem can also be created inside UML, which is geekier and more fun. First, create
the sparse file on the host; I called it uml_root2. Then boot up a UML session:

$./linux ubd0=uml_root ubd2=/opt/umltest/uml_root2

As root, run these commands:

/sbin/mkfs -t ext2 /dev/ubd/2
mount /dev/ubd/2 /mnt
cp -ax / /mnt

Make sure to use an unassigned device; ubd1 is typically assigned to swap. Kick back and
take a walk. If your filesystem is a large one, the last step will hammer your CPU for a few
minutes. When it's all done, shut down then start up with the new filesystem:

$ cd /opt/umltest/
$ linux ubd0=uml_root2

File creation chores are not done yet, there is no actual swap partition, so we need to make
one:

dd if=/dev/zero/ of=swapfs bs=1k count=1 seek=$[512*1024]
/sbin/mkswap swapfs

On boot, be sure to specify ubd1=swapfs. It may also be necessary to run the swapon
command inside the UML session:

/sbin/swapon -a

All file creation chores can be done inside UML. This eliminates the need for root privileges
on the host and lets users manage UML sessions just as though they were on a stand-alone
system. The main reason for creating something like a 2GB sparse file on the host is to limit
disk space for your users.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 9 of 20

Section 5. Working with multiple UMLs

Have a COW, man
Playing with a single UML is okay, but the real fun comes with running a lot of UMLs. One
option is to install many separate, individual filesystems. Another option is Copy-On-Write, or
COW. All users share the same root filesystem, only data and user modifications to the root
filesystem are kept separate. One user can create many COW files, and run them
simultaneously. This is not suitable for testing different Linux distributions, or for users who
make extensive modifications to their root filesystems. It's perfect for the ace kernel hacker,
virtual Web hosting, sandboxes for application testing, or any environment where multiple
users don't need major modifications to the root filesystem.

Creating a COW filesystem is simple. Set the root filesystem to write-only:

[root@localhost uml] # chmod 444 uml_root

Then boot with this option:

[carla@localhost uml] $./linux ubd0=/home/carla/uml_root.cow,uml_root

Mind your spaces: there are none on either side of the comma. This creates a .cow file for
user carla on the host system, in carla's home directory. Now the original uml_root file will not
be written to. This is called the "backing" file. uml_root.cow is where changes for user carla
are recorded. Name the COW files anything you like. Subsequent logins can be made from
the user's home directory:

[carla@localhost carla] $./linux ubd0=uml_root.cow

COW files, continued
Let's see how much disk space we are saving:

[carla@localhost uml]$ ls -lhs
total 680M
lrwxrwxrwx 1 root carla 14 Dec 2 20:52 linux -> /usr/bin/linux
-r-xr-xr-x 1 root carla 679M Dec 2 19:27 uml_root

[carla@localhost carla]$ ls -lhs
total 2.9M
2.9M -rw-r--r-- 1 carla carla 641M Dec 2 22:27 uml_root.cow

677.1MB saved. Even with today's large hard drives, that's a tidy chunk. It is important that
the original backing filesystem be protected; if anything changes, UML will not mount the
device. This means it is not possible to upgrade the COW files by upgrading the backing
system. It is possible to merge a COW file with the backing file, using the uml_moo utility:

uml_moo cow_file new_backing_file

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 20 Introduction to User-Mode Linux

Keep a copy of the original backing file in case this gives bad results. COW files can be
stored anywhere your heart desires on the host system:

$./linux ubd0=/really/odd/file/location/root_fs.cow,root_fs

COW files are great for serious testing-to-destruction. Rather than wasting one's life fscking,
or waiting for reboots, simply delete and re-create COW files as needed.

mconsole
Give each UML instance a unique ID by adding this to the boot options:

umid=foo

For example, when I have a lot of UML sessions running, I name them umid=carla1,
umid=carla2, and so forth. This gives quick access to the management console, which lets
the user do things to a running UML session from the host:

$ uml_mconsole carla1 command

Look in your home directory on the host system. There's a .uml directory full of files with odd,
apparently random-character filenames. mconsole is always activated at boot. If the user
does not specify a umid, it is given one of those wacky random filenames:

mconsole (version 2) initialized on /home/carla/.uml/HUrvzP/mconsole

mconsole commands
Obviously, it's easier to find one given a sensible name. mconsole has a limited, but useful
set of commands. My favorite is "halt":

$ uml_mconsole carla1 halt

It's a drastic halt, akin to pulling the plug. Sometimes that's what it takes. "reboot" is just as
drastic.

• "help" displays the commands

• "config" adds devices to the VM on the fly, using the same syntax as the boot command
line: config eth0=tuntap, config eth1=mcast

• "remove" deletes devices, using the name of the device. For example: remove ubd2

• "sysrq" calls the kernel's SysRq driver. See documentation/sysrq.txt in your kernel tree for
command options. This is kernel hacker-land; other users mess with this at their peril. Well
no, it's inside UML, no worries, have at it.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 11 of 20

Section 6. Networking

Transports
The prefab kernels have virtual networking enabled. For custom-built kernels, enable
"Network device support" and the three transports. There are several networking transports:

• ethertap

• TUN/TAP

• Multicast

• switch daemon

• slip

• slirp

• pcap

We'll look at TUN/TAP, ethertap, and multicast. TUN/TAP allows exchanging packets
between the host and the virtual machines with 2.4 kernels. Multicast is purely virtual, for
networking the VMs only. Ethertap is for host access on 2.2 and 2.4 kernels, though officially
it is obsolete on 2.4. It works fine on 2.4; TUN/TAP gives better performance and security.

For both ethertap and TUN/TAP, two IPs are needed: one for the host, one for the UML. The
host IP acts as a gateway. If the host already has an IP, use it, or make up a totally new one
as you see fit. The kernel boot command looks likes this:

eth <n> = <transport> , <device> , <ethernet address> , <tap IP address>

Ethertap
Let's give our host the IP of 192.168.1.100. Add to the UML kernel boot options:

eth0=ethertap,tap0,fe:fd:0:0:0:1,192.168.1.100

fe:fd:0:0:0:1 is the Ethernet address assigned to the UML eth0, 192.168.1.100 is the IP. An
easier way is to omit fe:fd:0:0:0:1, and let the uml_net helper assign one. This resides in
/user/bin/uml_net, so it should be in your path and automatically available. Don't try to run it
manually. Warning: uml_net needs to run as root, so there are potential security problems.
It's the easiest way to get networking up and running, so please see the UML docs for more
advanced options.

eth0=ethertap,tap0,,192.168.1.100

That's the easy way, where the uml_net helper takes care of the host setup. Notice the
commas; all of them are needed. After logging in to UML, run ifconfig:

ifconfig eth0 192.168.1.101 up

Add a route to the host:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 20 Introduction to User-Mode Linux

route add default gw 192.168.0.1

TUN/TAP
First, see if the tun.o module is loaded in the kernel on the host system. The pre-fab kernels
will have it:

/sbin/lsmod

A long list should appear. The left-hand column says Modules. Look for:

Module Size Used by Not tainted
tun 5696 0 (unused)

If it's not there, use insmod to load it:

/sbin/insmod /filepath/tun.o

Same UML kernel boot command syntax as ethertap, with fewer arguments:

eth0=tuntap,,,192.168.1.100

Boot UML, run ifconfig and route just like with ethertap.

Two potential TUN/TAP problems to look out for:

• TUN/TAP seems not to work on 2.4.3 and earlier. Upgrade the host kernel or use ethertap.

• With an upgraded kernel, TUN/TAP may fail with "File descriptor in bad state." This is due
to a header mismatch between the upgraded kernel and the kernel that was originally
installed on the machine. The fix is to make sure that /usr/src/linux points to the headers
for the running kernel.

A quick review of TUN/TAP: TUN is a virtual point-to-point network driver, providing low-level
kernel support for Ethernet tunneling. TAP is the virtual Ethernet device. TUN speaks IP,
TAP speaks Ethernet, and TUN/TAP supports bridging. Lots of versatility in a small package.

Multicast
Networking the VMs is as easy as eating pie. This requires multicast in the host kernel. Most
likely it is there, but if not, enable "IP: multicasting" during kernel compilation. Also needed is
a multicast-capable network device on the host, like an Ethernet NIC, and eth0. On every
VM, add this boot option:

eth0=mcast

Log in, then configure eth0 in the usual way on each VM:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 13 of 20

ifconfig eth0 192.168.1.112
ifconfig eth0 192.168.1.113
ifconfig eth0 192.168.1.114

Available multicast parameters are: ethX=mcast,hwaddr,mcastgroup,port,ttl. mcastgroup has
a default of 239.192.168.1, the proper multi-cast address for local organizational use. The
default port is 1102, time to live is 1. Multicast TTL of 1 means packets will never leave the
local network segment. Change this to higher numbers as needed, for example when adding
routers to your multicast network.

Troubles
There are a number of silly little gotchas that bite even the best network guru:

• Make sure kernel modules are loaded.

• Mind spaces and cases.

• The host and the virtual machine need different IPs, on the same subnet, with the same
netmask, unless, of course, you set up routing. In fact this is a dandy mechanism for
practicing setting up routes.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 20 Introduction to User-Mode Linux

Section 7. Advanced topics

Accessing files on the host
The host's files can be mounted and accessed. Just like anything in UNIX, everything is a
file. Make sure hostfs is available on the VM:

$ cat /proc/filesystems
nodev hostfs

root-hostfs

The prefab kernels already have it. If it's not in the kernel, recompile to include it. Run mount:

mount none /mnt/host -t hostfs

If it complains that /mnt/host does not exist, mkdir /mnt/host and run mount again. And voila,
there it is. To specify a subdirectory:

mount none /mnt/home -t hostfs -o /home/carla

Running X
Now we come to The True Test, running X. It is possible to connect an X client directly to the
host X server, but Xnest is better. Xnest is an X server that is a client of the X server on the
host. (I don't know about you, but I'm starting to get that hall-of-mirrors feeling with this
project.) In other words, it acts as a local server to your UML session. Download and install
Xnest on the virtual machine. Debian users can simply run apt-get install xnest.
RPM- based systems can find it on RPMFind. Xnest is simple to install and set up, so let's
skip to how it works on our UML virtual machines.

Xnest must first connect to the host X server. On the host machine, run this command
pointing to the VM IP and display:

$ xhost 192.168.1.110:0

On the VM:

$ DISPLAY=host :0 Xnest &

Call up your favorite window manager. I like IceWM:

$ DISPLAY= :0 icewm &

Even with the efficiencies of Xnest and lightweight window managers, running lots of X
sessions sucks up system resources in a hurry. I consider this a fine reason for purchasing
the latest, greatest hardware. After all, over-stressing hardware leads to inefficiency, errors,
and vexation.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 15 of 20

Calculating system requirements
Before booting up UML, this is what free measured on the host system:

$ free
total used free shared buffers cached

Mem: 255408 212692 42716 0 8600 117304
-/+ buffers/cache: 86788 168620
Swap: 522072 33316 488756

After booting the Red Hat 7.2 UML:

$ free
total used free shared buffers cached

Mem: 255408 245528 9880 0 2844 149584
-/+ buffers/cache: 93100 162308
Swap: 522072 33308 488764

As you can see, it sucked up nearly 33MB of physical memory, without running any
applications. This is a rather fat filesystem; by default it loads every imaginable service:
squid, sshd, inetd, named, httpd, sendmail, telnet, you name it. Starting up more UML
sessions, running bloatier distros, and running programs will use even more. Even though
Linux manages system resources efficiently, there's no substitute for having brawny enough
hardware.

Building the kernel from scratch
I won't presume to teach real programmers what to do, but here are some tips and tricks for
all users. Download the latest UML patch, then download the matching kernel from a kernel
mirror. Unpack the kernel. Apply the patch:

$ bzcat patch.bz2 | patch -p1

Do not mingle this with the host kernel sources in /usr/src/linux. Keep it in a separate
directory. Test the patch first:

$ bzcat patch.bz2 | patch -p1 --dry-run

If you have problems with bzcat, unpack the patch first, then try cat:

$ cat patch.bz2 | patch -p1 --dry-run

Compile in the usual way, with one important addition:

$ make xconfig ARCH=um
$ make linux ARCH=um

Be sure to specify ARCH=um, since what we want is UML architecture.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 20 Introduction to User-Mode Linux

UML Builder
UML Builder is a dandy utility for installing different Linux distributions into UML, using their
native installation routines. This makes it possible to run and upgrade a Linux distribution just
as though it were a regular, stand-alone installation. Currently, 17 distributions are
supported. Ace developers who can add more are always welcome. After installing UML
Builder, on the host system run this:

umlbuilder

or

#umbuilder_gui

to get the pretty graphical version. Among other nice features, UML Builder sets up Xnest
and networking.

Debian installation
I tested UML on Libranet, a marvelous user-friendly distribution built on Debian. It has the
legendary Debian stability, a simplified install, and an extensive collection of desktop
applications. It's not necessary to run the Debian filesystems on a Debian host, I just felt like
doing it that way.

First, update the package directory database:

apt-get update

Then run

apt-get install user-mode-linux

The usual assortment of stable, testing, and unstable packages are available. The Libranet
default in /etc/apt/sources.list is Woody (stable). UML is bleeding-edge enough all on its own,
so I vote for stable. Or go to the Debian site (see the Resources on page 19 section for links)
to grab the packages manually.

Debian installation, continued
apt-get does all the work, so sit back and relax. When it's finished, the UML kernel will be
compiled and ready to run. To see what was installed on your system, see /var/lib/dpkg/info/
and look for user-mode-linux and uml-utilities.

Download a pre-fab root filesystem and away you go, just like on a RPM-based Linux. See
Resources on page 19 for a link to two Debian filesystems. (Of course, any filesystem will
work, it doesn't have to be Debian.) The one gotcha with these is the Debian Woody kernels
do not have devfs packaged with them, and UML needs devfs.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 17 of 20

Set up networking in the VM, then:

apt-get install devfsd

With or without devfs, it will boot up in the normal manner and fling an array of six virtual
consoles onto your screen, waiting for a login:

Debian GNU/Linux 3.0 (none) tty1
(none) login:

The Debian filesystems are a little different from the others. They do not come with the two
built-in "root" and "user" accounts. Just type root, hit enter, and you're in. It will not nag you to
do the right thing; be sure to add a user account (adduser) and give root a password
(passwd) before you do anything else. It is possible to run UML without using devfs, but that
means you'll have to create and make entries in /dev/udb. /etc/fstab and /etc/inittab will have
to edited as well.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 20 Introduction to User-Mode Linux

Section 8. Summary, resources, and feedback

Summary
User-Mode Linux is endlessly adaptable, but this should get you off to a good start. Please
visit the Resources on page 19 section and the User-Mode Linux home page for bales of
additional excellent information. Visit the mailing lists and the IRC channel for help, and
mingle with other UML users. Please note the Help! section on the UML front page, and take
advantage of the many opportunities to make a contribution to this excellent project.

Resources
Here are some resources you may find helpful:

• Get more information on UML from the UML home page on SourceForge.

• You can download Libranet, a user-friendly distribution based on Debian, from the Libranet
site.

• "Tom's floppy, which has a root filesystem and is also bootable" (Tomsrtbt) is a useful set
of utilities, all on a single bootable floppy.

• UML Builder is a tool that lets you install RPM-based Linux distributions for use with UML.

• SourceForge provides more information on Virtual Point-to-Point (TUN) and Ethernet
(TAP) devices.

• Get more information on Xnest on xfree86.org. You can download the Xnest RPM from
rpmfind.net.

• The Linux Kernel Archives is the main site for Linux kernel source.

• You can download the Debian UML kernel and utilities on debian.org. You'll also find two
Debian filesystems.

• VMware is a similar technology, allowing users to run multiple operating systems in
independent partitions. Get more information on running the VMware ESX server on IBM
xSeries servers.

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

For questions about the content of this tutorial, contact the author, Carla Schroder.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Introduction to User-Mode Linux Page 19 of 20

http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://www.libranet.com/
http://www.libranet.com/
http://www.toms.net/rb/
http://umlbuilder.sourceforge.net/index.shtml
http://umlbuilder.sourceforge.net/index.shtml
http://vtun.sourceforge.net/tun/
http://vtun.sourceforge.net/tun/
http://vtun.sourceforge.net/tun/
http://vtun.sourceforge.net/tun/
http://vtun.sourceforge.net/tun/
http://vtun.sourceforge.net/tun/
http://vtun.sourceforge.net/tun/
http://www.xfree86.org/4.2.1/Xnest.1.html
http://rpmfind.net/linux/rpm2html/search.php?query=xnest
http://rpmfind.net/linux/rpm2html/search.php?query=xnest
http://rpmfind.net/linux/rpm2html/search.php?query=xnest
http://rpmfind.net/linux/rpm2html/search.php?query=xnest
http://www.kernel.org/
http://www.kernel.org/
http://www.kernel.org/
http://packages.debian.org/user-mode-linux
http://packages.debian.org/user-mode-linux
http://packages.debian.org/user-mode-linux
http://packages.debian.org/uml-utilities
http://people.debian.org/~mdz/uml/
http://people.debian.org/~mdz/uml/
http://people.debian.org/~mdz/uml/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.pc.ibm.com/ww/eserver/xseries/vmware.html&origin=l
mailto:carla@bratgrrl.com
mailto:carla@bratgrrl.com

production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 20 Introduction to User-Mode Linux

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	About this tutorial
	What does this tutorial cover?
	Who should take this tutorial?
	About the author

	What is User-Mode Linux?
	UML overview
	UML's many uses

	Installing UML
	Getting started
	RPM-based installation
	Choose a filesystem
	Install the filesystem
	Install the filesystem, continued

	Working with UML
	Boot UML
	Passwords and image selection
	Mounting devices
	Creating elbow room using sparse files
	Creating elbow room, continued
	
Creating a filesystem inside UML

	Working with multiple UMLs
	Have a COW, man
	COW files, continued
	mconsole
	mconsole commands

	Networking
	Transports
	Ethertap
	TUN/TAP
	Multicast
	Troubles

	Advanced topics
	Accessing files on the host
	Running X
	Calculating system requirements
	Building the kernel from scratch
	UML Builder
	Debian installation
	Debian installation, continued

	Summary, resources, and feedback
	Summary
	Resources
	Your feedback

