Initial revision
[sb-simd.git] / sbcl-src / src-093 / compiler / x86 / insts.lisp
blob9eed6f847aa130c34310df73626d0f66a7e11aab
1 ;;;; that part of the description of the x86 instruction set (for
2 ;;;; 80386 and above) which can live on the cross-compilation host
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!VM")
14 ;;; FIXME: SB!DISASSEM: prefixes are used so widely in this file that
15 ;;; I wonder whether the separation of the disassembler from the
16 ;;; virtual machine is valid or adds value.
18 ;;; Note: In CMU CL, this used to be a call to SET-DISASSEM-PARAMS.
19 (setf sb!disassem:*disassem-inst-alignment-bytes* 1)
21 (deftype reg () '(unsigned-byte 3))
23 (def!constant +default-operand-size+ :dword)
25 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
27 (defun offset-next (value dstate)
28 (declare (type integer value)
29 (type sb!disassem:disassem-state dstate))
30 (+ (sb!disassem:dstate-next-addr dstate) value))
32 (defparameter *default-address-size*
33 ;; Actually, :DWORD is the only one really supported.
34 :dword)
36 (defparameter *byte-reg-names*
37 #(al cl dl bl ah ch dh bh))
38 (defparameter *word-reg-names*
39 #(ax cx dx bx sp bp si di))
40 (defparameter *dword-reg-names*
41 #(eax ecx edx ebx esp ebp esi edi))
43 (defun print-reg-with-width (value width stream dstate)
44 (declare (ignore dstate))
45 (princ (aref (ecase width
46 (:byte *byte-reg-names*)
47 (:word *word-reg-names*)
48 (:dword *dword-reg-names*))
49 value)
50 stream)
51 ;; XXX plus should do some source-var notes
54 (defun print-reg (value stream dstate)
55 (declare (type reg value)
56 (type stream stream)
57 (type sb!disassem:disassem-state dstate))
58 (print-reg-with-width value
59 (sb!disassem:dstate-get-prop dstate 'width)
60 stream
61 dstate))
63 (defun print-word-reg (value stream dstate)
64 (declare (type reg value)
65 (type stream stream)
66 (type sb!disassem:disassem-state dstate))
67 (print-reg-with-width value
68 (or (sb!disassem:dstate-get-prop dstate 'word-width)
69 +default-operand-size+)
70 stream
71 dstate))
73 (defun print-byte-reg (value stream dstate)
74 (declare (type reg value)
75 (type stream stream)
76 (type sb!disassem:disassem-state dstate))
77 (print-reg-with-width value :byte stream dstate))
79 (defun print-addr-reg (value stream dstate)
80 (declare (type reg value)
81 (type stream stream)
82 (type sb!disassem:disassem-state dstate))
83 (print-reg-with-width value *default-address-size* stream dstate))
85 (defun print-reg/mem (value stream dstate)
86 (declare (type (or list reg) value)
87 (type stream stream)
88 (type sb!disassem:disassem-state dstate))
89 (if (typep value 'reg)
90 (print-reg value stream dstate)
91 (print-mem-access value stream nil dstate)))
93 ;; Same as print-reg/mem, but prints an explicit size indicator for
94 ;; memory references.
95 (defun print-sized-reg/mem (value stream dstate)
96 (declare (type (or list reg) value)
97 (type stream stream)
98 (type sb!disassem:disassem-state dstate))
99 (if (typep value 'reg)
100 (print-reg value stream dstate)
101 (print-mem-access value stream t dstate)))
103 (defun print-byte-reg/mem (value stream dstate)
104 (declare (type (or list reg) value)
105 (type stream stream)
106 (type sb!disassem:disassem-state dstate))
107 (if (typep value 'reg)
108 (print-byte-reg value stream dstate)
109 (print-mem-access value stream t dstate)))
111 (defun print-word-reg/mem (value stream dstate)
112 (declare (type (or list reg) value)
113 (type stream stream)
114 (type sb!disassem:disassem-state dstate))
115 (if (typep value 'reg)
116 (print-word-reg value stream dstate)
117 (print-mem-access value stream nil dstate)))
119 (defun print-label (value stream dstate)
120 (declare (ignore dstate))
121 (sb!disassem:princ16 value stream))
123 ;;; Returns either an integer, meaning a register, or a list of
124 ;;; (BASE-REG OFFSET INDEX-REG INDEX-SCALE), where any component
125 ;;; may be missing or nil to indicate that it's not used or has the
126 ;;; obvious default value (e.g., 1 for the index-scale).
127 (defun prefilter-reg/mem (value dstate)
128 (declare (type list value)
129 (type sb!disassem:disassem-state dstate))
130 (let ((mod (car value))
131 (r/m (cadr value)))
132 (declare (type (unsigned-byte 2) mod)
133 (type (unsigned-byte 3) r/m))
134 (cond ((= mod #b11)
135 ;; registers
136 r/m)
137 ((= r/m #b100)
138 ;; sib byte
139 (let ((sib (sb!disassem:read-suffix 8 dstate)))
140 (declare (type (unsigned-byte 8) sib))
141 (let ((base-reg (ldb (byte 3 0) sib))
142 (index-reg (ldb (byte 3 3) sib))
143 (index-scale (ldb (byte 2 6) sib)))
144 (declare (type (unsigned-byte 3) base-reg index-reg)
145 (type (unsigned-byte 2) index-scale))
146 (let* ((offset
147 (case mod
148 (#b00
149 (if (= base-reg #b101)
150 (sb!disassem:read-signed-suffix 32 dstate)
151 nil))
152 (#b01
153 (sb!disassem:read-signed-suffix 8 dstate))
154 (#b10
155 (sb!disassem:read-signed-suffix 32 dstate)))))
156 (list (if (and (= mod #b00) (= base-reg #b101)) nil base-reg)
157 offset
158 (if (= index-reg #b100) nil index-reg)
159 (ash 1 index-scale))))))
160 ((and (= mod #b00) (= r/m #b101))
161 (list nil (sb!disassem:read-signed-suffix 32 dstate)) )
162 ((= mod #b00)
163 (list r/m))
164 ((= mod #b01)
165 (list r/m (sb!disassem:read-signed-suffix 8 dstate)))
166 (t ; (= mod #b10)
167 (list r/m (sb!disassem:read-signed-suffix 32 dstate))))))
170 ;;; This is a sort of bogus prefilter that just stores the info globally for
171 ;;; other people to use; it probably never gets printed.
172 (defun prefilter-width (value dstate)
173 (setf (sb!disassem:dstate-get-prop dstate 'width)
174 (if (zerop value)
175 :byte
176 (let ((word-width
177 ;; set by a prefix instruction
178 (or (sb!disassem:dstate-get-prop dstate 'word-width)
179 +default-operand-size+)))
180 (when (not (eql word-width +default-operand-size+))
181 ;; Reset it.
182 (setf (sb!disassem:dstate-get-prop dstate 'word-width)
183 +default-operand-size+))
184 word-width))))
186 (defun read-address (value dstate)
187 (declare (ignore value)) ; always nil anyway
188 (sb!disassem:read-suffix (width-bits *default-address-size*) dstate))
190 (defun width-bits (width)
191 (ecase width
192 (:byte 8)
193 (:word 16)
194 (:dword 32)
195 (:float 32)
196 (:double 64)))
198 ) ; EVAL-WHEN
200 ;;;; disassembler argument types
202 (sb!disassem:define-arg-type displacement
203 :sign-extend t
204 :use-label #'offset-next
205 :printer (lambda (value stream dstate)
206 (sb!disassem:maybe-note-assembler-routine value nil dstate)
207 (print-label value stream dstate)))
209 (sb!disassem:define-arg-type accum
210 :printer (lambda (value stream dstate)
211 (declare (ignore value)
212 (type stream stream)
213 (type sb!disassem:disassem-state dstate))
214 (print-reg 0 stream dstate)))
216 (sb!disassem:define-arg-type word-accum
217 :printer (lambda (value stream dstate)
218 (declare (ignore value)
219 (type stream stream)
220 (type sb!disassem:disassem-state dstate))
221 (print-word-reg 0 stream dstate)))
223 (sb!disassem:define-arg-type reg
224 :printer #'print-reg)
226 (sb!disassem:define-arg-type addr-reg
227 :printer #'print-addr-reg)
229 (sb!disassem:define-arg-type word-reg
230 :printer #'print-word-reg)
232 (sb!disassem:define-arg-type imm-addr
233 :prefilter #'read-address
234 :printer #'print-label)
236 (sb!disassem:define-arg-type imm-data
237 :prefilter (lambda (value dstate)
238 (declare (ignore value)) ; always nil anyway
239 (sb!disassem:read-suffix
240 (width-bits (sb!disassem:dstate-get-prop dstate 'width))
241 dstate)))
243 (sb!disassem:define-arg-type signed-imm-data
244 :prefilter (lambda (value dstate)
245 (declare (ignore value)) ; always nil anyway
246 (let ((width (sb!disassem:dstate-get-prop dstate 'width)))
247 (sb!disassem:read-signed-suffix (width-bits width) dstate))))
249 (sb!disassem:define-arg-type signed-imm-byte
250 :prefilter (lambda (value dstate)
251 (declare (ignore value)) ; always nil anyway
252 (sb!disassem:read-signed-suffix 8 dstate)))
254 (sb!disassem:define-arg-type signed-imm-dword
255 :prefilter (lambda (value dstate)
256 (declare (ignore value)) ; always nil anyway
257 (sb!disassem:read-signed-suffix 32 dstate)))
259 (sb!disassem:define-arg-type imm-word
260 :prefilter (lambda (value dstate)
261 (declare (ignore value)) ; always nil anyway
262 (let ((width
263 (or (sb!disassem:dstate-get-prop dstate 'word-width)
264 +default-operand-size+)))
265 (sb!disassem:read-suffix (width-bits width) dstate))))
267 (sb!disassem:define-arg-type signed-imm-word
268 :prefilter (lambda (value dstate)
269 (declare (ignore value)) ; always nil anyway
270 (let ((width
271 (or (sb!disassem:dstate-get-prop dstate 'word-width)
272 +default-operand-size+)))
273 (sb!disassem:read-signed-suffix (width-bits width) dstate))))
275 ;;; needed for the ret imm16 instruction
276 (sb!disassem:define-arg-type imm-word-16
277 :prefilter (lambda (value dstate)
278 (declare (ignore value)) ; always nil anyway
279 (sb!disassem:read-suffix 16 dstate)))
281 (sb!disassem:define-arg-type reg/mem
282 :prefilter #'prefilter-reg/mem
283 :printer #'print-reg/mem)
284 (sb!disassem:define-arg-type sized-reg/mem
285 ;; Same as reg/mem, but prints an explicit size indicator for
286 ;; memory references.
287 :prefilter #'prefilter-reg/mem
288 :printer #'print-sized-reg/mem)
289 (sb!disassem:define-arg-type byte-reg/mem
290 :prefilter #'prefilter-reg/mem
291 :printer #'print-byte-reg/mem)
292 (sb!disassem:define-arg-type word-reg/mem
293 :prefilter #'prefilter-reg/mem
294 :printer #'print-word-reg/mem)
296 ;;; added by jrd
297 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
298 (defun print-fp-reg (value stream dstate)
299 (declare (ignore dstate))
300 (format stream "FR~D" value))
301 (defun prefilter-fp-reg (value dstate)
302 ;; just return it
303 (declare (ignore dstate))
304 value)
305 ) ; EVAL-WHEN
306 (sb!disassem:define-arg-type fp-reg
307 :prefilter #'prefilter-fp-reg
308 :printer #'print-fp-reg)
310 (sb!disassem:define-arg-type width
311 :prefilter #'prefilter-width
312 :printer (lambda (value stream dstate)
313 (if;; (zerop value)
314 (or (null value)
315 (and (numberp value) (zerop value))) ; zzz jrd
316 (princ 'b stream)
317 (let ((word-width
318 ;; set by a prefix instruction
319 (or (sb!disassem:dstate-get-prop dstate 'word-width)
320 +default-operand-size+)))
321 (princ (schar (symbol-name word-width) 0) stream)))))
323 (eval-when (:compile-toplevel :load-toplevel :execute)
324 (defparameter *conditions*
325 '((:o . 0)
326 (:no . 1)
327 (:b . 2) (:nae . 2) (:c . 2)
328 (:nb . 3) (:ae . 3) (:nc . 3)
329 (:eq . 4) (:e . 4) (:z . 4)
330 (:ne . 5) (:nz . 5)
331 (:be . 6) (:na . 6)
332 (:nbe . 7) (:a . 7)
333 (:s . 8)
334 (:ns . 9)
335 (:p . 10) (:pe . 10)
336 (:np . 11) (:po . 11)
337 (:l . 12) (:nge . 12)
338 (:nl . 13) (:ge . 13)
339 (:le . 14) (:ng . 14)
340 (:nle . 15) (:g . 15)))
341 (defparameter *condition-name-vec*
342 (let ((vec (make-array 16 :initial-element nil)))
343 (dolist (cond *conditions*)
344 (when (null (aref vec (cdr cond)))
345 (setf (aref vec (cdr cond)) (car cond))))
346 vec))
347 ) ; EVAL-WHEN
349 ;;; Set assembler parameters. (In CMU CL, this was done with
350 ;;; a call to a macro DEF-ASSEMBLER-PARAMS.)
351 (eval-when (:compile-toplevel :load-toplevel :execute)
352 (setf sb!assem:*assem-scheduler-p* nil))
354 (sb!disassem:define-arg-type condition-code
355 :printer *condition-name-vec*)
357 (defun conditional-opcode (condition)
358 (cdr (assoc condition *conditions* :test #'eq)))
360 ;;;; disassembler instruction formats
362 (eval-when (:compile-toplevel :execute)
363 (defun swap-if (direction field1 separator field2)
364 `(:if (,direction :constant 0)
365 (,field1 ,separator ,field2)
366 (,field2 ,separator ,field1))))
368 (sb!disassem:define-instruction-format (byte 8 :default-printer '(:name))
369 (op :field (byte 8 0))
370 ;; optional fields
371 (accum :type 'accum)
372 (imm))
374 (sb!disassem:define-instruction-format (simple 8)
375 (op :field (byte 7 1))
376 (width :field (byte 1 0) :type 'width)
377 ;; optional fields
378 (accum :type 'accum)
379 (imm))
381 ;;; Same as simple, but with direction bit
382 (sb!disassem:define-instruction-format (simple-dir 8 :include 'simple)
383 (op :field (byte 6 2))
384 (dir :field (byte 1 1)))
386 ;;; Same as simple, but with the immediate value occurring by default,
387 ;;; and with an appropiate printer.
388 (sb!disassem:define-instruction-format (accum-imm 8
389 :include 'simple
390 :default-printer '(:name
391 :tab accum ", " imm))
392 (imm :type 'imm-data))
394 (sb!disassem:define-instruction-format (reg-no-width 8
395 :default-printer '(:name :tab reg))
396 (op :field (byte 5 3))
397 (reg :field (byte 3 0) :type 'word-reg)
398 ;; optional fields
399 (accum :type 'word-accum)
400 (imm))
402 ;;; adds a width field to reg-no-width
403 (sb!disassem:define-instruction-format (reg 8
404 :default-printer '(:name :tab reg))
405 (op :field (byte 4 4))
406 (width :field (byte 1 3) :type 'width)
407 (reg :field (byte 3 0) :type 'reg)
408 ;; optional fields
409 (accum :type 'accum)
410 (imm)
413 ;;; Same as reg, but with direction bit
414 (sb!disassem:define-instruction-format (reg-dir 8 :include 'reg)
415 (op :field (byte 3 5))
416 (dir :field (byte 1 4)))
418 (sb!disassem:define-instruction-format (two-bytes 16
419 :default-printer '(:name))
420 (op :fields (list (byte 8 0) (byte 8 8))))
422 (sb!disassem:define-instruction-format (reg-reg/mem 16
423 :default-printer
424 `(:name :tab reg ", " reg/mem))
425 (op :field (byte 7 1))
426 (width :field (byte 1 0) :type 'width)
427 (reg/mem :fields (list (byte 2 14) (byte 3 8))
428 :type 'reg/mem)
429 (reg :field (byte 3 11) :type 'reg)
430 ;; optional fields
431 (imm))
433 ;;; same as reg-reg/mem, but with direction bit
434 (sb!disassem:define-instruction-format (reg-reg/mem-dir 16
435 :include 'reg-reg/mem
436 :default-printer
437 `(:name
438 :tab
439 ,(swap-if 'dir 'reg/mem ", " 'reg)))
440 (op :field (byte 6 2))
441 (dir :field (byte 1 1)))
443 ;;; Same as reg-rem/mem, but uses the reg field as a second op code.
444 (sb!disassem:define-instruction-format (reg/mem 16
445 :default-printer '(:name :tab reg/mem))
446 (op :fields (list (byte 7 1) (byte 3 11)))
447 (width :field (byte 1 0) :type 'width)
448 (reg/mem :fields (list (byte 2 14) (byte 3 8))
449 :type 'sized-reg/mem)
450 ;; optional fields
451 (imm))
453 ;;; Same as reg/mem, but with the immediate value occurring by default,
454 ;;; and with an appropiate printer.
455 (sb!disassem:define-instruction-format (reg/mem-imm 16
456 :include 'reg/mem
457 :default-printer
458 '(:name :tab reg/mem ", " imm))
459 (reg/mem :type 'sized-reg/mem)
460 (imm :type 'imm-data))
462 ;;; Same as reg/mem, but with using the accumulator in the default printer
463 (sb!disassem:define-instruction-format
464 (accum-reg/mem 16
465 :include 'reg/mem :default-printer '(:name :tab accum ", " reg/mem))
466 (reg/mem :type 'reg/mem) ; don't need a size
467 (accum :type 'accum))
469 ;;; Same as reg-reg/mem, but with a prefix of #b00001111
470 (sb!disassem:define-instruction-format (ext-reg-reg/mem 24
471 :default-printer
472 `(:name :tab reg ", " reg/mem))
473 (prefix :field (byte 8 0) :value #b00001111)
474 (op :field (byte 7 9))
475 (width :field (byte 1 8) :type 'width)
476 (reg/mem :fields (list (byte 2 22) (byte 3 16))
477 :type 'reg/mem)
478 (reg :field (byte 3 19) :type 'reg)
479 ;; optional fields
480 (imm))
482 ;;; Same as reg/mem, but with a prefix of #b00001111
483 (sb!disassem:define-instruction-format (ext-reg/mem 24
484 :default-printer '(:name :tab reg/mem))
485 (prefix :field (byte 8 0) :value #b00001111)
486 (op :fields (list (byte 7 9) (byte 3 19)))
487 (width :field (byte 1 8) :type 'width)
488 (reg/mem :fields (list (byte 2 22) (byte 3 16))
489 :type 'sized-reg/mem)
490 ;; optional fields
491 (imm))
493 (sb!disassem:define-instruction-format (ext-reg/mem-imm 24
494 :include 'ext-reg/mem
495 :default-printer
496 '(:name :tab reg/mem ", " imm))
497 (imm :type 'imm-data))
499 ;;;; This section was added by jrd, for fp instructions.
501 ;;; regular fp inst to/from registers/memory
502 (sb!disassem:define-instruction-format (floating-point 16
503 :default-printer
504 `(:name :tab reg/mem))
505 (prefix :field (byte 5 3) :value #b11011)
506 (op :fields (list (byte 3 0) (byte 3 11)))
507 (reg/mem :fields (list (byte 2 14) (byte 3 8)) :type 'reg/mem))
509 ;;; fp insn to/from fp reg
510 (sb!disassem:define-instruction-format (floating-point-fp 16
511 :default-printer `(:name :tab fp-reg))
512 (prefix :field (byte 5 3) :value #b11011)
513 (suffix :field (byte 2 14) :value #b11)
514 (op :fields (list (byte 3 0) (byte 3 11)))
515 (fp-reg :field (byte 3 8) :type 'fp-reg))
517 ;;; fp insn to/from fp reg, with the reversed source/destination flag.
518 (sb!disassem:define-instruction-format
519 (floating-point-fp-d 16
520 :default-printer `(:name :tab ,(swap-if 'd "ST0" ", " 'fp-reg)))
521 (prefix :field (byte 5 3) :value #b11011)
522 (suffix :field (byte 2 14) :value #b11)
523 (op :fields (list (byte 2 0) (byte 3 11)))
524 (d :field (byte 1 2))
525 (fp-reg :field (byte 3 8) :type 'fp-reg))
528 ;;; (added by (?) pfw)
529 ;;; fp no operand isns
530 (sb!disassem:define-instruction-format (floating-point-no 16
531 :default-printer '(:name))
532 (prefix :field (byte 8 0) :value #b11011001)
533 (suffix :field (byte 3 13) :value #b111)
534 (op :field (byte 5 8)))
536 (sb!disassem:define-instruction-format (floating-point-3 16
537 :default-printer '(:name))
538 (prefix :field (byte 5 3) :value #b11011)
539 (suffix :field (byte 2 14) :value #b11)
540 (op :fields (list (byte 3 0) (byte 6 8))))
542 (sb!disassem:define-instruction-format (floating-point-5 16
543 :default-printer '(:name))
544 (prefix :field (byte 8 0) :value #b11011011)
545 (suffix :field (byte 3 13) :value #b111)
546 (op :field (byte 5 8)))
548 (sb!disassem:define-instruction-format (floating-point-st 16
549 :default-printer '(:name))
550 (prefix :field (byte 8 0) :value #b11011111)
551 (suffix :field (byte 3 13) :value #b111)
552 (op :field (byte 5 8)))
554 (sb!disassem:define-instruction-format (string-op 8
555 :include 'simple
556 :default-printer '(:name width)))
558 (sb!disassem:define-instruction-format (short-cond-jump 16)
559 (op :field (byte 4 4))
560 (cc :field (byte 4 0) :type 'condition-code)
561 (label :field (byte 8 8) :type 'displacement))
563 (sb!disassem:define-instruction-format (short-jump 16
564 :default-printer '(:name :tab label))
565 (const :field (byte 4 4) :value #b1110)
566 (op :field (byte 4 0))
567 (label :field (byte 8 8) :type 'displacement))
569 (sb!disassem:define-instruction-format (near-cond-jump 16)
570 (op :fields (list (byte 8 0) (byte 4 12)) :value '(#b00001111 #b1000))
571 (cc :field (byte 4 8) :type 'condition-code)
572 ;; The disassembler currently doesn't let you have an instruction > 32 bits
573 ;; long, so we fake it by using a prefilter to read the offset.
574 (label :type 'displacement
575 :prefilter (lambda (value dstate)
576 (declare (ignore value)) ; always nil anyway
577 (sb!disassem:read-signed-suffix 32 dstate))))
579 (sb!disassem:define-instruction-format (near-jump 8
580 :default-printer '(:name :tab label))
581 (op :field (byte 8 0))
582 ;; The disassembler currently doesn't let you have an instruction > 32 bits
583 ;; long, so we fake it by using a prefilter to read the address.
584 (label :type 'displacement
585 :prefilter (lambda (value dstate)
586 (declare (ignore value)) ; always nil anyway
587 (sb!disassem:read-signed-suffix 32 dstate))))
590 (sb!disassem:define-instruction-format (cond-set 24
591 :default-printer '('set cc :tab reg/mem))
592 (prefix :field (byte 8 0) :value #b00001111)
593 (op :field (byte 4 12) :value #b1001)
594 (cc :field (byte 4 8) :type 'condition-code)
595 (reg/mem :fields (list (byte 2 22) (byte 3 16))
596 :type 'byte-reg/mem)
597 (reg :field (byte 3 19) :value #b000))
599 (sb!disassem:define-instruction-format (cond-move 24
600 :default-printer
601 '('cmov cc :tab reg ", " reg/mem))
602 (prefix :field (byte 8 0) :value #b00001111)
603 (op :field (byte 4 12) :value #b0100)
604 (cc :field (byte 4 8) :type 'condition-code)
605 (reg/mem :fields (list (byte 2 22) (byte 3 16))
606 :type 'reg/mem)
607 (reg :field (byte 3 19) :type 'reg))
609 (sb!disassem:define-instruction-format (enter-format 32
610 :default-printer '(:name
611 :tab disp
612 (:unless (:constant 0)
613 ", " level)))
614 (op :field (byte 8 0))
615 (disp :field (byte 16 8))
616 (level :field (byte 8 24)))
618 (sb!disassem:define-instruction-format (prefetch 24
619 :default-printer
620 '(:name ", " reg/mem))
621 (prefix :field (byte 8 0) :value #b00001111)
622 (op :field (byte 8 8) :value #b00011000)
623 (reg/mem :fields (list (byte 2 22) (byte 3 16)) :type 'byte-reg/mem)
624 (reg :field (byte 3 19) :type 'reg))
626 ;;; Single byte instruction with an immediate byte argument.
627 (sb!disassem:define-instruction-format (byte-imm 16
628 :default-printer '(:name :tab code))
629 (op :field (byte 8 0))
630 (code :field (byte 8 8)))
632 ;;;; primitive emitters
634 (define-bitfield-emitter emit-word 16
635 (byte 16 0))
637 (define-bitfield-emitter emit-dword 32
638 (byte 32 0))
640 (define-bitfield-emitter emit-byte-with-reg 8
641 (byte 5 3) (byte 3 0))
643 (define-bitfield-emitter emit-mod-reg-r/m-byte 8
644 (byte 2 6) (byte 3 3) (byte 3 0))
646 (define-bitfield-emitter emit-sib-byte 8
647 (byte 2 6) (byte 3 3) (byte 3 0))
649 ;;;; fixup emitters
651 (defun emit-absolute-fixup (segment fixup)
652 (note-fixup segment :absolute fixup)
653 (let ((offset (fixup-offset fixup)))
654 (if (label-p offset)
655 (emit-back-patch segment
656 4 ; FIXME: n-word-bytes
657 (lambda (segment posn)
658 (declare (ignore posn))
659 (emit-dword segment
660 (- (+ (component-header-length)
661 (or (label-position offset)
663 other-pointer-lowtag))))
664 (emit-dword segment (or offset 0)))))
666 (defun emit-relative-fixup (segment fixup)
667 (note-fixup segment :relative fixup)
668 (emit-dword segment (or (fixup-offset fixup) 0)))
670 ;;;; the effective-address (ea) structure
672 (defun reg-tn-encoding (tn)
673 (declare (type tn tn))
674 (aver (eq (sb-name (sc-sb (tn-sc tn))) 'registers))
675 (let ((offset (tn-offset tn)))
676 (logior (ash (logand offset 1) 2)
677 (ash offset -1))))
679 (defstruct (ea (:constructor make-ea (size &key base index scale disp))
680 (:copier nil))
681 (size nil :type (member :byte :word :dword))
682 (base nil :type (or tn null))
683 (index nil :type (or tn null))
684 (scale 1 :type (member 1 2 4 8))
685 (disp 0 :type (or (unsigned-byte 32) (signed-byte 32) fixup)))
686 (def!method print-object ((ea ea) stream)
687 (cond ((or *print-escape* *print-readably*)
688 (print-unreadable-object (ea stream :type t)
689 (format stream
690 "~S~@[ base=~S~]~@[ index=~S~]~@[ scale=~S~]~@[ disp=~S~]"
691 (ea-size ea)
692 (ea-base ea)
693 (ea-index ea)
694 (let ((scale (ea-scale ea)))
695 (if (= scale 1) nil scale))
696 (ea-disp ea))))
698 (format stream "~A PTR [" (symbol-name (ea-size ea)))
699 (when (ea-base ea)
700 (write-string (sb!c::location-print-name (ea-base ea)) stream)
701 (when (ea-index ea)
702 (write-string "+" stream)))
703 (when (ea-index ea)
704 (write-string (sb!c::location-print-name (ea-index ea)) stream))
705 (unless (= (ea-scale ea) 1)
706 (format stream "*~A" (ea-scale ea)))
707 (typecase (ea-disp ea)
708 (null)
709 (integer
710 (format stream "~@D" (ea-disp ea)))
712 (format stream "+~A" (ea-disp ea))))
713 (write-char #\] stream))))
715 (defun emit-ea (segment thing reg &optional allow-constants)
716 (etypecase thing
718 (ecase (sb-name (sc-sb (tn-sc thing)))
719 (registers
720 (emit-mod-reg-r/m-byte segment #b11 reg (reg-tn-encoding thing)))
721 (stack
722 ;; Convert stack tns into an index off of EBP.
723 (let ((disp (- (* (1+ (tn-offset thing)) n-word-bytes))))
724 (cond ((< -128 disp 127)
725 (emit-mod-reg-r/m-byte segment #b01 reg #b101)
726 (emit-byte segment disp))
728 (emit-mod-reg-r/m-byte segment #b10 reg #b101)
729 (emit-dword segment disp)))))
730 (constant
731 (unless allow-constants
732 (error
733 "Constant TNs can only be directly used in MOV, PUSH, and CMP."))
734 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
735 (emit-absolute-fixup segment
736 (make-fixup nil
737 :code-object
738 (- (* (tn-offset thing) n-word-bytes)
739 other-pointer-lowtag))))))
741 (let* ((base (ea-base thing))
742 (index (ea-index thing))
743 (scale (ea-scale thing))
744 (disp (ea-disp thing))
745 (mod (cond ((or (null base)
746 (and (eql disp 0)
747 (not (= (reg-tn-encoding base) #b101))))
748 #b00)
749 ((and (fixnump disp) (<= -128 disp 127))
750 #b01)
752 #b10)))
753 (r/m (cond (index #b100)
754 ((null base) #b101)
755 (t (reg-tn-encoding base)))))
756 (emit-mod-reg-r/m-byte segment mod reg r/m)
757 (when (= r/m #b100)
758 (let ((ss (1- (integer-length scale)))
759 (index (if (null index)
760 #b100
761 (let ((index (reg-tn-encoding index)))
762 (if (= index #b100)
763 (error "can't index off of ESP")
764 index))))
765 (base (if (null base)
766 #b101
767 (reg-tn-encoding base))))
768 (emit-sib-byte segment ss index base)))
769 (cond ((= mod #b01)
770 (emit-byte segment disp))
771 ((or (= mod #b10) (null base))
772 (if (fixup-p disp)
773 (emit-absolute-fixup segment disp)
774 (emit-dword segment disp))))))
775 (fixup
776 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
777 (emit-absolute-fixup segment thing))))
779 (defun fp-reg-tn-p (thing)
780 (and (tn-p thing)
781 (eq (sb-name (sc-sb (tn-sc thing))) 'float-registers)))
783 ;;; like the above, but for fp-instructions--jrd
784 (defun emit-fp-op (segment thing op)
785 (if (fp-reg-tn-p thing)
786 (emit-byte segment (dpb op (byte 3 3) (dpb (tn-offset thing)
787 (byte 3 0)
788 #b11000000)))
789 (emit-ea segment thing op)))
791 (defun byte-reg-p (thing)
792 (and (tn-p thing)
793 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
794 (member (sc-name (tn-sc thing)) *byte-sc-names*)
797 (defun byte-ea-p (thing)
798 (typecase thing
799 (ea (eq (ea-size thing) :byte))
801 (and (member (sc-name (tn-sc thing)) *byte-sc-names*) t))
802 (t nil)))
804 (defun word-reg-p (thing)
805 (and (tn-p thing)
806 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
807 (member (sc-name (tn-sc thing)) *word-sc-names*)
810 (defun word-ea-p (thing)
811 (typecase thing
812 (ea (eq (ea-size thing) :word))
813 (tn (and (member (sc-name (tn-sc thing)) *word-sc-names*) t))
814 (t nil)))
816 (defun dword-reg-p (thing)
817 (and (tn-p thing)
818 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
819 (member (sc-name (tn-sc thing)) *dword-sc-names*)
822 (defun dword-ea-p (thing)
823 (typecase thing
824 (ea (eq (ea-size thing) :dword))
826 (and (member (sc-name (tn-sc thing)) *dword-sc-names*) t))
827 (t nil)))
829 (defun register-p (thing)
830 (and (tn-p thing)
831 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)))
833 (defun accumulator-p (thing)
834 (and (register-p thing)
835 (= (tn-offset thing) 0)))
837 ;;;; utilities
839 (def!constant +operand-size-prefix-byte+ #b01100110)
841 (defun maybe-emit-operand-size-prefix (segment size)
842 (unless (or (eq size :byte) (eq size +default-operand-size+))
843 (emit-byte segment +operand-size-prefix-byte+)))
845 (defun operand-size (thing)
846 (typecase thing
848 ;; FIXME: might as well be COND instead of having to use #. readmacro
849 ;; to hack up the code
850 (case (sc-name (tn-sc thing))
851 (#.*dword-sc-names*
852 :dword)
853 (#.*word-sc-names*
854 :word)
855 (#.*byte-sc-names*
856 :byte)
857 ;; added by jrd: float-registers is a separate size (?)
858 (#.*float-sc-names*
859 :float)
860 (#.*double-sc-names*
861 :double)
863 (error "can't tell the size of ~S ~S" thing (sc-name (tn-sc thing))))))
865 (ea-size thing))
867 nil)))
869 (defun matching-operand-size (dst src)
870 (let ((dst-size (operand-size dst))
871 (src-size (operand-size src)))
872 (if dst-size
873 (if src-size
874 (if (eq dst-size src-size)
875 dst-size
876 (error "size mismatch: ~S is a ~S and ~S is a ~S."
877 dst dst-size src src-size))
878 dst-size)
879 (if src-size
880 src-size
881 (error "can't tell the size of either ~S or ~S" dst src)))))
883 (defun emit-sized-immediate (segment size value)
884 (ecase size
885 (:byte
886 (emit-byte segment value))
887 (:word
888 (emit-word segment value))
889 (:dword
890 (emit-dword segment value))))
892 ;;;; general data transfer
894 (define-instruction mov (segment dst src)
895 ;; immediate to register
896 (:printer reg ((op #b1011) (imm nil :type 'imm-data))
897 '(:name :tab reg ", " imm))
898 ;; absolute mem to/from accumulator
899 (:printer simple-dir ((op #b101000) (imm nil :type 'imm-addr))
900 `(:name :tab ,(swap-if 'dir 'accum ", " '("[" imm "]"))))
901 ;; register to/from register/memory
902 (:printer reg-reg/mem-dir ((op #b100010)))
903 ;; immediate to register/memory
904 (:printer reg/mem-imm ((op '(#b1100011 #b000))))
906 (:emitter
907 (let ((size (matching-operand-size dst src)))
908 (maybe-emit-operand-size-prefix segment size)
909 (cond ((register-p dst)
910 (cond ((integerp src)
911 (emit-byte-with-reg segment
912 (if (eq size :byte)
913 #b10110
914 #b10111)
915 (reg-tn-encoding dst))
916 (emit-sized-immediate segment size src))
917 ((and (fixup-p src) (accumulator-p dst))
918 (emit-byte segment
919 (if (eq size :byte)
920 #b10100000
921 #b10100001))
922 (emit-absolute-fixup segment src))
924 (emit-byte segment
925 (if (eq size :byte)
926 #b10001010
927 #b10001011))
928 (emit-ea segment src (reg-tn-encoding dst) t))))
929 ((and (fixup-p dst) (accumulator-p src))
930 (emit-byte segment (if (eq size :byte) #b10100010 #b10100011))
931 (emit-absolute-fixup segment dst))
932 ((integerp src)
933 (emit-byte segment (if (eq size :byte) #b11000110 #b11000111))
934 (emit-ea segment dst #b000)
935 (emit-sized-immediate segment size src))
936 ((register-p src)
937 (emit-byte segment (if (eq size :byte) #b10001000 #b10001001))
938 (emit-ea segment dst (reg-tn-encoding src)))
939 ((fixup-p src)
940 (aver (eq size :dword))
941 (emit-byte segment #b11000111)
942 (emit-ea segment dst #b000)
943 (emit-absolute-fixup segment src))
945 (error "bogus arguments to MOV: ~S ~S" dst src))))))
947 (defun emit-move-with-extension (segment dst src opcode)
948 (aver (register-p dst))
949 (let ((dst-size (operand-size dst))
950 (src-size (operand-size src)))
951 (ecase dst-size
952 (:word
953 (aver (eq src-size :byte))
954 (maybe-emit-operand-size-prefix segment :word)
955 (emit-byte segment #b00001111)
956 (emit-byte segment opcode)
957 (emit-ea segment src (reg-tn-encoding dst)))
958 (:dword
959 (ecase src-size
960 (:byte
961 (maybe-emit-operand-size-prefix segment :dword)
962 (emit-byte segment #b00001111)
963 (emit-byte segment opcode)
964 (emit-ea segment src (reg-tn-encoding dst)))
965 (:word
966 (emit-byte segment #b00001111)
967 (emit-byte segment (logior opcode 1))
968 (emit-ea segment src (reg-tn-encoding dst))))))))
970 (define-instruction movsx (segment dst src)
971 (:printer ext-reg-reg/mem ((op #b1011111) (reg nil :type 'word-reg)))
972 (:emitter (emit-move-with-extension segment dst src #b10111110)))
974 (define-instruction movzx (segment dst src)
975 (:printer ext-reg-reg/mem ((op #b1011011) (reg nil :type 'word-reg)))
976 (:emitter (emit-move-with-extension segment dst src #b10110110)))
978 (define-instruction push (segment src)
979 ;; register
980 (:printer reg-no-width ((op #b01010)))
981 ;; register/memory
982 (:printer reg/mem ((op '(#b1111111 #b110)) (width 1)))
983 ;; immediate
984 (:printer byte ((op #b01101010) (imm nil :type 'signed-imm-byte))
985 '(:name :tab imm))
986 (:printer byte ((op #b01101000) (imm nil :type 'imm-word))
987 '(:name :tab imm))
988 ;; ### segment registers?
990 (:emitter
991 (cond ((integerp src)
992 (cond ((<= -128 src 127)
993 (emit-byte segment #b01101010)
994 (emit-byte segment src))
996 (emit-byte segment #b01101000)
997 (emit-dword segment src))))
998 ((fixup-p src)
999 ;; Interpret the fixup as an immediate dword to push.
1000 (emit-byte segment #b01101000)
1001 (emit-absolute-fixup segment src))
1003 (let ((size (operand-size src)))
1004 (aver (not (eq size :byte)))
1005 (maybe-emit-operand-size-prefix segment size)
1006 (cond ((register-p src)
1007 (emit-byte-with-reg segment #b01010 (reg-tn-encoding src)))
1009 (emit-byte segment #b11111111)
1010 (emit-ea segment src #b110 t))))))))
1012 (define-instruction pusha (segment)
1013 (:printer byte ((op #b01100000)))
1014 (:emitter
1015 (emit-byte segment #b01100000)))
1017 (define-instruction pop (segment dst)
1018 (:printer reg-no-width ((op #b01011)))
1019 (:printer reg/mem ((op '(#b1000111 #b000)) (width 1)))
1020 (:emitter
1021 (let ((size (operand-size dst)))
1022 (aver (not (eq size :byte)))
1023 (maybe-emit-operand-size-prefix segment size)
1024 (cond ((register-p dst)
1025 (emit-byte-with-reg segment #b01011 (reg-tn-encoding dst)))
1027 (emit-byte segment #b10001111)
1028 (emit-ea segment dst #b000))))))
1030 (define-instruction popa (segment)
1031 (:printer byte ((op #b01100001)))
1032 (:emitter
1033 (emit-byte segment #b01100001)))
1035 (define-instruction xchg (segment operand1 operand2)
1036 ;; Register with accumulator.
1037 (:printer reg-no-width ((op #b10010)) '(:name :tab accum ", " reg))
1038 ;; Register/Memory with Register.
1039 (:printer reg-reg/mem ((op #b1000011)))
1040 (:emitter
1041 (let ((size (matching-operand-size operand1 operand2)))
1042 (maybe-emit-operand-size-prefix segment size)
1043 (labels ((xchg-acc-with-something (acc something)
1044 (if (and (not (eq size :byte)) (register-p something))
1045 (emit-byte-with-reg segment
1046 #b10010
1047 (reg-tn-encoding something))
1048 (xchg-reg-with-something acc something)))
1049 (xchg-reg-with-something (reg something)
1050 (emit-byte segment (if (eq size :byte) #b10000110 #b10000111))
1051 (emit-ea segment something (reg-tn-encoding reg))))
1052 (cond ((accumulator-p operand1)
1053 (xchg-acc-with-something operand1 operand2))
1054 ((accumulator-p operand2)
1055 (xchg-acc-with-something operand2 operand1))
1056 ((register-p operand1)
1057 (xchg-reg-with-something operand1 operand2))
1058 ((register-p operand2)
1059 (xchg-reg-with-something operand2 operand1))
1061 (error "bogus args to XCHG: ~S ~S" operand1 operand2)))))))
1063 (define-instruction lea (segment dst src)
1064 (:printer reg-reg/mem ((op #b1000110) (width 1)))
1065 (:emitter
1066 (aver (dword-reg-p dst))
1067 (emit-byte segment #b10001101)
1068 (emit-ea segment src (reg-tn-encoding dst))))
1070 (define-instruction cmpxchg (segment dst src)
1071 ;; Register/Memory with Register.
1072 (:printer ext-reg-reg/mem ((op #b1011000)) '(:name :tab reg/mem ", " reg))
1073 (:emitter
1074 (aver (register-p src))
1075 (let ((size (matching-operand-size src dst)))
1076 (maybe-emit-operand-size-prefix segment size)
1077 (emit-byte segment #b00001111)
1078 (emit-byte segment (if (eq size :byte) #b10110000 #b10110001))
1079 (emit-ea segment dst (reg-tn-encoding src)))))
1083 (define-instruction fs-segment-prefix (segment)
1084 (:emitter
1085 (emit-byte segment #x64)))
1087 ;;;; flag control instructions
1089 ;;; CLC -- Clear Carry Flag.
1090 (define-instruction clc (segment)
1091 (:printer byte ((op #b11111000)))
1092 (:emitter
1093 (emit-byte segment #b11111000)))
1095 ;;; CLD -- Clear Direction Flag.
1096 (define-instruction cld (segment)
1097 (:printer byte ((op #b11111100)))
1098 (:emitter
1099 (emit-byte segment #b11111100)))
1101 ;;; CLI -- Clear Iterrupt Enable Flag.
1102 (define-instruction cli (segment)
1103 (:printer byte ((op #b11111010)))
1104 (:emitter
1105 (emit-byte segment #b11111010)))
1107 ;;; CMC -- Complement Carry Flag.
1108 (define-instruction cmc (segment)
1109 (:printer byte ((op #b11110101)))
1110 (:emitter
1111 (emit-byte segment #b11110101)))
1113 ;;; LAHF -- Load AH into flags.
1114 (define-instruction lahf (segment)
1115 (:printer byte ((op #b10011111)))
1116 (:emitter
1117 (emit-byte segment #b10011111)))
1119 ;;; POPF -- Pop flags.
1120 (define-instruction popf (segment)
1121 (:printer byte ((op #b10011101)))
1122 (:emitter
1123 (emit-byte segment #b10011101)))
1125 ;;; PUSHF -- push flags.
1126 (define-instruction pushf (segment)
1127 (:printer byte ((op #b10011100)))
1128 (:emitter
1129 (emit-byte segment #b10011100)))
1131 ;;; SAHF -- Store AH into flags.
1132 (define-instruction sahf (segment)
1133 (:printer byte ((op #b10011110)))
1134 (:emitter
1135 (emit-byte segment #b10011110)))
1137 ;;; STC -- Set Carry Flag.
1138 (define-instruction stc (segment)
1139 (:printer byte ((op #b11111001)))
1140 (:emitter
1141 (emit-byte segment #b11111001)))
1143 ;;; STD -- Set Direction Flag.
1144 (define-instruction std (segment)
1145 (:printer byte ((op #b11111101)))
1146 (:emitter
1147 (emit-byte segment #b11111101)))
1149 ;;; STI -- Set Interrupt Enable Flag.
1150 (define-instruction sti (segment)
1151 (:printer byte ((op #b11111011)))
1152 (:emitter
1153 (emit-byte segment #b11111011)))
1155 ;;;; arithmetic
1157 (defun emit-random-arith-inst (name segment dst src opcode
1158 &optional allow-constants)
1159 (let ((size (matching-operand-size dst src)))
1160 (maybe-emit-operand-size-prefix segment size)
1161 (cond
1162 ((integerp src)
1163 (cond ((and (not (eq size :byte)) (<= -128 src 127))
1164 (emit-byte segment #b10000011)
1165 (emit-ea segment dst opcode allow-constants)
1166 (emit-byte segment src))
1167 ((accumulator-p dst)
1168 (emit-byte segment
1169 (dpb opcode
1170 (byte 3 3)
1171 (if (eq size :byte)
1172 #b00000100
1173 #b00000101)))
1174 (emit-sized-immediate segment size src))
1176 (emit-byte segment (if (eq size :byte) #b10000000 #b10000001))
1177 (emit-ea segment dst opcode allow-constants)
1178 (emit-sized-immediate segment size src))))
1179 ((register-p src)
1180 (emit-byte segment
1181 (dpb opcode
1182 (byte 3 3)
1183 (if (eq size :byte) #b00000000 #b00000001)))
1184 (emit-ea segment dst (reg-tn-encoding src) allow-constants))
1185 ((register-p dst)
1186 (emit-byte segment
1187 (dpb opcode
1188 (byte 3 3)
1189 (if (eq size :byte) #b00000010 #b00000011)))
1190 (emit-ea segment src (reg-tn-encoding dst) allow-constants))
1192 (error "bogus operands to ~A" name)))))
1194 (eval-when (:compile-toplevel :execute)
1195 (defun arith-inst-printer-list (subop)
1196 `((accum-imm ((op ,(dpb subop (byte 3 2) #b0000010))))
1197 (reg/mem-imm ((op (#b1000000 ,subop))))
1198 (reg/mem-imm ((op (#b1000001 ,subop))
1199 (imm nil :type signed-imm-byte)))
1200 (reg-reg/mem-dir ((op ,(dpb subop (byte 3 1) #b000000))))))
1203 (define-instruction add (segment dst src)
1204 (:printer-list (arith-inst-printer-list #b000))
1205 (:emitter (emit-random-arith-inst "ADD" segment dst src #b000)))
1207 (define-instruction adc (segment dst src)
1208 (:printer-list (arith-inst-printer-list #b010))
1209 (:emitter (emit-random-arith-inst "ADC" segment dst src #b010)))
1211 (define-instruction sub (segment dst src)
1212 (:printer-list (arith-inst-printer-list #b101))
1213 (:emitter (emit-random-arith-inst "SUB" segment dst src #b101)))
1215 (define-instruction sbb (segment dst src)
1216 (:printer-list (arith-inst-printer-list #b011))
1217 (:emitter (emit-random-arith-inst "SBB" segment dst src #b011)))
1219 (define-instruction cmp (segment dst src)
1220 (:printer-list (arith-inst-printer-list #b111))
1221 (:emitter (emit-random-arith-inst "CMP" segment dst src #b111 t)))
1223 (define-instruction inc (segment dst)
1224 ;; Register.
1225 (:printer reg-no-width ((op #b01000)))
1226 ;; Register/Memory
1227 (:printer reg/mem ((op '(#b1111111 #b000))))
1228 (:emitter
1229 (let ((size (operand-size dst)))
1230 (maybe-emit-operand-size-prefix segment size)
1231 (cond ((and (not (eq size :byte)) (register-p dst))
1232 (emit-byte-with-reg segment #b01000 (reg-tn-encoding dst)))
1234 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
1235 (emit-ea segment dst #b000))))))
1237 (define-instruction dec (segment dst)
1238 ;; Register.
1239 (:printer reg-no-width ((op #b01001)))
1240 ;; Register/Memory
1241 (:printer reg/mem ((op '(#b1111111 #b001))))
1242 (:emitter
1243 (let ((size (operand-size dst)))
1244 (maybe-emit-operand-size-prefix segment size)
1245 (cond ((and (not (eq size :byte)) (register-p dst))
1246 (emit-byte-with-reg segment #b01001 (reg-tn-encoding dst)))
1248 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
1249 (emit-ea segment dst #b001))))))
1251 (define-instruction neg (segment dst)
1252 (:printer reg/mem ((op '(#b1111011 #b011))))
1253 (:emitter
1254 (let ((size (operand-size dst)))
1255 (maybe-emit-operand-size-prefix segment size)
1256 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
1257 (emit-ea segment dst #b011))))
1259 (define-instruction aaa (segment)
1260 (:printer byte ((op #b00110111)))
1261 (:emitter
1262 (emit-byte segment #b00110111)))
1264 (define-instruction aas (segment)
1265 (:printer byte ((op #b00111111)))
1266 (:emitter
1267 (emit-byte segment #b00111111)))
1269 (define-instruction daa (segment)
1270 (:printer byte ((op #b00100111)))
1271 (:emitter
1272 (emit-byte segment #b00100111)))
1274 (define-instruction das (segment)
1275 (:printer byte ((op #b00101111)))
1276 (:emitter
1277 (emit-byte segment #b00101111)))
1279 (define-instruction mul (segment dst src)
1280 (:printer accum-reg/mem ((op '(#b1111011 #b100))))
1281 (:emitter
1282 (let ((size (matching-operand-size dst src)))
1283 (aver (accumulator-p dst))
1284 (maybe-emit-operand-size-prefix segment size)
1285 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
1286 (emit-ea segment src #b100))))
1288 (define-instruction imul (segment dst &optional src1 src2)
1289 (:printer accum-reg/mem ((op '(#b1111011 #b101))))
1290 (:printer ext-reg-reg/mem ((op #b1010111)))
1291 (:printer reg-reg/mem ((op #b0110100) (width 1)
1292 (imm nil :type 'signed-imm-word))
1293 '(:name :tab reg ", " reg/mem ", " imm))
1294 (:printer reg-reg/mem ((op #b0110101) (width 1)
1295 (imm nil :type 'signed-imm-byte))
1296 '(:name :tab reg ", " reg/mem ", " imm))
1297 (:emitter
1298 (flet ((r/m-with-immed-to-reg (reg r/m immed)
1299 (let* ((size (matching-operand-size reg r/m))
1300 (sx (and (not (eq size :byte)) (<= -128 immed 127))))
1301 (maybe-emit-operand-size-prefix segment size)
1302 (emit-byte segment (if sx #b01101011 #b01101001))
1303 (emit-ea segment r/m (reg-tn-encoding reg))
1304 (if sx
1305 (emit-byte segment immed)
1306 (emit-sized-immediate segment size immed)))))
1307 (cond (src2
1308 (r/m-with-immed-to-reg dst src1 src2))
1309 (src1
1310 (if (integerp src1)
1311 (r/m-with-immed-to-reg dst dst src1)
1312 (let ((size (matching-operand-size dst src1)))
1313 (maybe-emit-operand-size-prefix segment size)
1314 (emit-byte segment #b00001111)
1315 (emit-byte segment #b10101111)
1316 (emit-ea segment src1 (reg-tn-encoding dst)))))
1318 (let ((size (operand-size dst)))
1319 (maybe-emit-operand-size-prefix segment size)
1320 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
1321 (emit-ea segment dst #b101)))))))
1323 (define-instruction div (segment dst src)
1324 (:printer accum-reg/mem ((op '(#b1111011 #b110))))
1325 (:emitter
1326 (let ((size (matching-operand-size dst src)))
1327 (aver (accumulator-p dst))
1328 (maybe-emit-operand-size-prefix segment size)
1329 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
1330 (emit-ea segment src #b110))))
1332 (define-instruction idiv (segment dst src)
1333 (:printer accum-reg/mem ((op '(#b1111011 #b111))))
1334 (:emitter
1335 (let ((size (matching-operand-size dst src)))
1336 (aver (accumulator-p dst))
1337 (maybe-emit-operand-size-prefix segment size)
1338 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
1339 (emit-ea segment src #b111))))
1341 (define-instruction aad (segment)
1342 (:printer two-bytes ((op '(#b11010101 #b00001010))))
1343 (:emitter
1344 (emit-byte segment #b11010101)
1345 (emit-byte segment #b00001010)))
1347 (define-instruction aam (segment)
1348 (:printer two-bytes ((op '(#b11010100 #b00001010))))
1349 (:emitter
1350 (emit-byte segment #b11010100)
1351 (emit-byte segment #b00001010)))
1353 ;;; CBW -- Convert Byte to Word. AX <- sign_xtnd(AL)
1354 (define-instruction cbw (segment)
1355 (:emitter
1356 (maybe-emit-operand-size-prefix segment :word)
1357 (emit-byte segment #b10011000)))
1359 ;;; CWDE -- Convert Word To Double Word Extened. EAX <- sign_xtnd(AX)
1360 (define-instruction cwde (segment)
1361 (:emitter
1362 (maybe-emit-operand-size-prefix segment :dword)
1363 (emit-byte segment #b10011000)))
1365 ;;; CWD -- Convert Word to Double Word. DX:AX <- sign_xtnd(AX)
1366 (define-instruction cwd (segment)
1367 (:emitter
1368 (maybe-emit-operand-size-prefix segment :word)
1369 (emit-byte segment #b10011001)))
1371 ;;; CDQ -- Convert Double Word to Quad Word. EDX:EAX <- sign_xtnd(EAX)
1372 (define-instruction cdq (segment)
1373 (:printer byte ((op #b10011001)))
1374 (:emitter
1375 (maybe-emit-operand-size-prefix segment :dword)
1376 (emit-byte segment #b10011001)))
1378 (define-instruction xadd (segment dst src)
1379 ;; Register/Memory with Register.
1380 (:printer ext-reg-reg/mem ((op #b1100000)) '(:name :tab reg/mem ", " reg))
1381 (:emitter
1382 (aver (register-p src))
1383 (let ((size (matching-operand-size src dst)))
1384 (maybe-emit-operand-size-prefix segment size)
1385 (emit-byte segment #b00001111)
1386 (emit-byte segment (if (eq size :byte) #b11000000 #b11000001))
1387 (emit-ea segment dst (reg-tn-encoding src)))))
1390 ;;;; logic
1392 (defun emit-shift-inst (segment dst amount opcode)
1393 (let ((size (operand-size dst)))
1394 (maybe-emit-operand-size-prefix segment size)
1395 (multiple-value-bind (major-opcode immed)
1396 (case amount
1397 (:cl (values #b11010010 nil))
1398 (1 (values #b11010000 nil))
1399 (t (values #b11000000 t)))
1400 (emit-byte segment
1401 (if (eq size :byte) major-opcode (logior major-opcode 1)))
1402 (emit-ea segment dst opcode)
1403 (when immed
1404 (emit-byte segment amount)))))
1406 (eval-when (:compile-toplevel :execute)
1407 (defun shift-inst-printer-list (subop)
1408 `((reg/mem ((op (#b1101000 ,subop)))
1409 (:name :tab reg/mem ", 1"))
1410 (reg/mem ((op (#b1101001 ,subop)))
1411 (:name :tab reg/mem ", " 'cl))
1412 (reg/mem-imm ((op (#b1100000 ,subop))
1413 (imm nil :type signed-imm-byte))))))
1415 (define-instruction rol (segment dst amount)
1416 (:printer-list
1417 (shift-inst-printer-list #b000))
1418 (:emitter
1419 (emit-shift-inst segment dst amount #b000)))
1421 (define-instruction ror (segment dst amount)
1422 (:printer-list
1423 (shift-inst-printer-list #b001))
1424 (:emitter
1425 (emit-shift-inst segment dst amount #b001)))
1427 (define-instruction rcl (segment dst amount)
1428 (:printer-list
1429 (shift-inst-printer-list #b010))
1430 (:emitter
1431 (emit-shift-inst segment dst amount #b010)))
1433 (define-instruction rcr (segment dst amount)
1434 (:printer-list
1435 (shift-inst-printer-list #b011))
1436 (:emitter
1437 (emit-shift-inst segment dst amount #b011)))
1439 (define-instruction shl (segment dst amount)
1440 (:printer-list
1441 (shift-inst-printer-list #b100))
1442 (:emitter
1443 (emit-shift-inst segment dst amount #b100)))
1445 (define-instruction shr (segment dst amount)
1446 (:printer-list
1447 (shift-inst-printer-list #b101))
1448 (:emitter
1449 (emit-shift-inst segment dst amount #b101)))
1451 (define-instruction sar (segment dst amount)
1452 (:printer-list
1453 (shift-inst-printer-list #b111))
1454 (:emitter
1455 (emit-shift-inst segment dst amount #b111)))
1457 (defun emit-double-shift (segment opcode dst src amt)
1458 (let ((size (matching-operand-size dst src)))
1459 (when (eq size :byte)
1460 (error "Double shifts can only be used with words."))
1461 (maybe-emit-operand-size-prefix segment size)
1462 (emit-byte segment #b00001111)
1463 (emit-byte segment (dpb opcode (byte 1 3)
1464 (if (eq amt :cl) #b10100101 #b10100100)))
1465 #+nil
1466 (emit-ea segment dst src)
1467 (emit-ea segment dst (reg-tn-encoding src)) ; pw tries this
1468 (unless (eq amt :cl)
1469 (emit-byte segment amt))))
1471 (eval-when (:compile-toplevel :execute)
1472 (defun double-shift-inst-printer-list (op)
1473 `(#+nil
1474 (ext-reg-reg/mem-imm ((op ,(logior op #b10))
1475 (imm nil :type signed-imm-byte)))
1476 (ext-reg-reg/mem ((op ,(logior op #b10)))
1477 (:name :tab reg/mem ", " reg ", " 'cl)))))
1479 (define-instruction shld (segment dst src amt)
1480 (:declare (type (or (member :cl) (mod 32)) amt))
1481 (:printer-list (double-shift-inst-printer-list #b1010000))
1482 (:emitter
1483 (emit-double-shift segment #b0 dst src amt)))
1485 (define-instruction shrd (segment dst src amt)
1486 (:declare (type (or (member :cl) (mod 32)) amt))
1487 (:printer-list (double-shift-inst-printer-list #b1010100))
1488 (:emitter
1489 (emit-double-shift segment #b1 dst src amt)))
1491 (define-instruction and (segment dst src)
1492 (:printer-list
1493 (arith-inst-printer-list #b100))
1494 (:emitter
1495 (emit-random-arith-inst "AND" segment dst src #b100)))
1497 (define-instruction test (segment this that)
1498 (:printer accum-imm ((op #b1010100)))
1499 (:printer reg/mem-imm ((op '(#b1111011 #b000))))
1500 (:printer reg-reg/mem ((op #b1000010)))
1501 (:emitter
1502 (let ((size (matching-operand-size this that)))
1503 (maybe-emit-operand-size-prefix segment size)
1504 (flet ((test-immed-and-something (immed something)
1505 (cond ((accumulator-p something)
1506 (emit-byte segment
1507 (if (eq size :byte) #b10101000 #b10101001))
1508 (emit-sized-immediate segment size immed))
1510 (emit-byte segment
1511 (if (eq size :byte) #b11110110 #b11110111))
1512 (emit-ea segment something #b000)
1513 (emit-sized-immediate segment size immed))))
1514 (test-reg-and-something (reg something)
1515 (emit-byte segment (if (eq size :byte) #b10000100 #b10000101))
1516 (emit-ea segment something (reg-tn-encoding reg))))
1517 (cond ((integerp that)
1518 (test-immed-and-something that this))
1519 ((integerp this)
1520 (test-immed-and-something this that))
1521 ((register-p this)
1522 (test-reg-and-something this that))
1523 ((register-p that)
1524 (test-reg-and-something that this))
1526 (error "bogus operands for TEST: ~S and ~S" this that)))))))
1528 (define-instruction or (segment dst src)
1529 (:printer-list
1530 (arith-inst-printer-list #b001))
1531 (:emitter
1532 (emit-random-arith-inst "OR" segment dst src #b001)))
1534 (define-instruction xor (segment dst src)
1535 (:printer-list
1536 (arith-inst-printer-list #b110))
1537 (:emitter
1538 (emit-random-arith-inst "XOR" segment dst src #b110)))
1540 (define-instruction not (segment dst)
1541 (:printer reg/mem ((op '(#b1111011 #b010))))
1542 (:emitter
1543 (let ((size (operand-size dst)))
1544 (maybe-emit-operand-size-prefix segment size)
1545 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
1546 (emit-ea segment dst #b010))))
1548 ;;;; string manipulation
1550 (define-instruction cmps (segment size)
1551 (:printer string-op ((op #b1010011)))
1552 (:emitter
1553 (maybe-emit-operand-size-prefix segment size)
1554 (emit-byte segment (if (eq size :byte) #b10100110 #b10100111))))
1556 (define-instruction ins (segment acc)
1557 (:printer string-op ((op #b0110110)))
1558 (:emitter
1559 (let ((size (operand-size acc)))
1560 (aver (accumulator-p acc))
1561 (maybe-emit-operand-size-prefix segment size)
1562 (emit-byte segment (if (eq size :byte) #b01101100 #b01101101)))))
1564 (define-instruction lods (segment acc)
1565 (:printer string-op ((op #b1010110)))
1566 (:emitter
1567 (let ((size (operand-size acc)))
1568 (aver (accumulator-p acc))
1569 (maybe-emit-operand-size-prefix segment size)
1570 (emit-byte segment (if (eq size :byte) #b10101100 #b10101101)))))
1572 (define-instruction movs (segment size)
1573 (:printer string-op ((op #b1010010)))
1574 (:emitter
1575 (maybe-emit-operand-size-prefix segment size)
1576 (emit-byte segment (if (eq size :byte) #b10100100 #b10100101))))
1578 (define-instruction outs (segment acc)
1579 (:printer string-op ((op #b0110111)))
1580 (:emitter
1581 (let ((size (operand-size acc)))
1582 (aver (accumulator-p acc))
1583 (maybe-emit-operand-size-prefix segment size)
1584 (emit-byte segment (if (eq size :byte) #b01101110 #b01101111)))))
1586 (define-instruction scas (segment acc)
1587 (:printer string-op ((op #b1010111)))
1588 (:emitter
1589 (let ((size (operand-size acc)))
1590 (aver (accumulator-p acc))
1591 (maybe-emit-operand-size-prefix segment size)
1592 (emit-byte segment (if (eq size :byte) #b10101110 #b10101111)))))
1594 (define-instruction stos (segment acc)
1595 (:printer string-op ((op #b1010101)))
1596 (:emitter
1597 (let ((size (operand-size acc)))
1598 (aver (accumulator-p acc))
1599 (maybe-emit-operand-size-prefix segment size)
1600 (emit-byte segment (if (eq size :byte) #b10101010 #b10101011)))))
1602 (define-instruction xlat (segment)
1603 (:printer byte ((op #b11010111)))
1604 (:emitter
1605 (emit-byte segment #b11010111)))
1607 (define-instruction rep (segment)
1608 (:emitter
1609 (emit-byte segment #b11110010)))
1611 (define-instruction repe (segment)
1612 (:printer byte ((op #b11110011)))
1613 (:emitter
1614 (emit-byte segment #b11110011)))
1616 (define-instruction repne (segment)
1617 (:printer byte ((op #b11110010)))
1618 (:emitter
1619 (emit-byte segment #b11110010)))
1622 ;;;; bit manipulation
1624 (define-instruction bsf (segment dst src)
1625 (:printer ext-reg-reg/mem ((op #b1011110) (width 0)))
1626 (:emitter
1627 (let ((size (matching-operand-size dst src)))
1628 (when (eq size :byte)
1629 (error "can't scan bytes: ~S" src))
1630 (maybe-emit-operand-size-prefix segment size)
1631 (emit-byte segment #b00001111)
1632 (emit-byte segment #b10111100)
1633 (emit-ea segment src (reg-tn-encoding dst)))))
1635 (define-instruction bsr (segment dst src)
1636 (:printer ext-reg-reg/mem ((op #b1011110) (width 1)))
1637 (:emitter
1638 (let ((size (matching-operand-size dst src)))
1639 (when (eq size :byte)
1640 (error "can't scan bytes: ~S" src))
1641 (maybe-emit-operand-size-prefix segment size)
1642 (emit-byte segment #b00001111)
1643 (emit-byte segment #b10111101)
1644 (emit-ea segment src (reg-tn-encoding dst)))))
1646 (defun emit-bit-test-and-mumble (segment src index opcode)
1647 (let ((size (operand-size src)))
1648 (when (eq size :byte)
1649 (error "can't scan bytes: ~S" src))
1650 (maybe-emit-operand-size-prefix segment size)
1651 (emit-byte segment #b00001111)
1652 (cond ((integerp index)
1653 (emit-byte segment #b10111010)
1654 (emit-ea segment src opcode)
1655 (emit-byte segment index))
1657 (emit-byte segment (dpb opcode (byte 3 3) #b10000011))
1658 (emit-ea segment src (reg-tn-encoding index))))))
1660 (eval-when (:compile-toplevel :execute)
1661 (defun bit-test-inst-printer-list (subop)
1662 `((ext-reg/mem-imm ((op (#b1011101 ,subop))
1663 (reg/mem nil :type word-reg/mem)
1664 (imm nil :type imm-data)
1665 (width 0)))
1666 (ext-reg-reg/mem ((op ,(dpb subop (byte 3 2) #b1000001))
1667 (width 1))
1668 (:name :tab reg/mem ", " reg)))))
1670 (define-instruction bt (segment src index)
1671 (:printer-list (bit-test-inst-printer-list #b100))
1672 (:emitter
1673 (emit-bit-test-and-mumble segment src index #b100)))
1675 (define-instruction btc (segment src index)
1676 (:printer-list (bit-test-inst-printer-list #b111))
1677 (:emitter
1678 (emit-bit-test-and-mumble segment src index #b111)))
1680 (define-instruction btr (segment src index)
1681 (:printer-list (bit-test-inst-printer-list #b110))
1682 (:emitter
1683 (emit-bit-test-and-mumble segment src index #b110)))
1685 (define-instruction bts (segment src index)
1686 (:printer-list (bit-test-inst-printer-list #b101))
1687 (:emitter
1688 (emit-bit-test-and-mumble segment src index #b101)))
1691 ;;;; control transfer
1693 (define-instruction call (segment where)
1694 (:printer near-jump ((op #b11101000)))
1695 (:printer reg/mem ((op '(#b1111111 #b010)) (width 1)))
1696 (:emitter
1697 (typecase where
1698 (label
1699 (emit-byte segment #b11101000)
1700 (emit-back-patch segment
1702 (lambda (segment posn)
1703 (emit-dword segment
1704 (- (label-position where)
1705 (+ posn 4))))))
1706 (fixup
1707 (emit-byte segment #b11101000)
1708 (emit-relative-fixup segment where))
1710 (emit-byte segment #b11111111)
1711 (emit-ea segment where #b010)))))
1713 (defun emit-byte-displacement-backpatch (segment target)
1714 (emit-back-patch segment
1716 (lambda (segment posn)
1717 (let ((disp (- (label-position target) (1+ posn))))
1718 (aver (<= -128 disp 127))
1719 (emit-byte segment disp)))))
1721 (define-instruction jmp (segment cond &optional where)
1722 ;; conditional jumps
1723 (:printer short-cond-jump ((op #b0111)) '('j cc :tab label))
1724 (:printer near-cond-jump () '('j cc :tab label))
1725 ;; unconditional jumps
1726 (:printer short-jump ((op #b1011)))
1727 (:printer near-jump ((op #b11101001)) )
1728 (:printer reg/mem ((op '(#b1111111 #b100)) (width 1)))
1729 (:emitter
1730 (cond (where
1731 (emit-chooser
1732 segment 6 2
1733 (lambda (segment posn delta-if-after)
1734 (let ((disp (- (label-position where posn delta-if-after)
1735 (+ posn 2))))
1736 (when (<= -128 disp 127)
1737 (emit-byte segment
1738 (dpb (conditional-opcode cond)
1739 (byte 4 0)
1740 #b01110000))
1741 (emit-byte-displacement-backpatch segment where)
1742 t)))
1743 (lambda (segment posn)
1744 (let ((disp (- (label-position where) (+ posn 6))))
1745 (emit-byte segment #b00001111)
1746 (emit-byte segment
1747 (dpb (conditional-opcode cond)
1748 (byte 4 0)
1749 #b10000000))
1750 (emit-dword segment disp)))))
1751 ((label-p (setq where cond))
1752 (emit-chooser
1753 segment 5 0
1754 (lambda (segment posn delta-if-after)
1755 (let ((disp (- (label-position where posn delta-if-after)
1756 (+ posn 2))))
1757 (when (<= -128 disp 127)
1758 (emit-byte segment #b11101011)
1759 (emit-byte-displacement-backpatch segment where)
1760 t)))
1761 (lambda (segment posn)
1762 (let ((disp (- (label-position where) (+ posn 5))))
1763 (emit-byte segment #b11101001)
1764 (emit-dword segment disp)))))
1765 ((fixup-p where)
1766 (emit-byte segment #b11101001)
1767 (emit-relative-fixup segment where))
1769 (unless (or (ea-p where) (tn-p where))
1770 (error "don't know what to do with ~A" where))
1771 (emit-byte segment #b11111111)
1772 (emit-ea segment where #b100)))))
1774 (define-instruction jmp-short (segment label)
1775 (:emitter
1776 (emit-byte segment #b11101011)
1777 (emit-byte-displacement-backpatch segment label)))
1779 (define-instruction ret (segment &optional stack-delta)
1780 (:printer byte ((op #b11000011)))
1781 (:printer byte ((op #b11000010) (imm nil :type 'imm-word-16))
1782 '(:name :tab imm))
1783 (:emitter
1784 (cond (stack-delta
1785 (emit-byte segment #b11000010)
1786 (emit-word segment stack-delta))
1788 (emit-byte segment #b11000011)))))
1790 (define-instruction jecxz (segment target)
1791 (:printer short-jump ((op #b0011)))
1792 (:emitter
1793 (emit-byte segment #b11100011)
1794 (emit-byte-displacement-backpatch segment target)))
1796 (define-instruction loop (segment target)
1797 (:printer short-jump ((op #b0010)))
1798 (:emitter
1799 (emit-byte segment #b11100010) ; pfw this was 11100011, or jecxz!!!!
1800 (emit-byte-displacement-backpatch segment target)))
1802 (define-instruction loopz (segment target)
1803 (:printer short-jump ((op #b0001)))
1804 (:emitter
1805 (emit-byte segment #b11100001)
1806 (emit-byte-displacement-backpatch segment target)))
1808 (define-instruction loopnz (segment target)
1809 (:printer short-jump ((op #b0000)))
1810 (:emitter
1811 (emit-byte segment #b11100000)
1812 (emit-byte-displacement-backpatch segment target)))
1814 ;;;; conditional move
1815 (define-instruction cmov (segment cond dst src)
1816 (:printer cond-move ())
1817 (:emitter
1818 (aver (register-p dst))
1819 (let ((size (matching-operand-size dst src)))
1820 (aver (or (eq size :word) (eq size :dword)))
1821 (maybe-emit-operand-size-prefix segment size))
1822 (emit-byte segment #b00001111)
1823 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b01000000))
1824 (emit-ea segment src (reg-tn-encoding dst))))
1826 ;;;; conditional byte set
1828 (define-instruction set (segment dst cond)
1829 (:printer cond-set ())
1830 (:emitter
1831 (emit-byte segment #b00001111)
1832 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b10010000))
1833 (emit-ea segment dst #b000)))
1835 ;;;; enter/leave
1837 (define-instruction enter (segment disp &optional (level 0))
1838 (:declare (type (unsigned-byte 16) disp)
1839 (type (unsigned-byte 8) level))
1840 (:printer enter-format ((op #b11001000)))
1841 (:emitter
1842 (emit-byte segment #b11001000)
1843 (emit-word segment disp)
1844 (emit-byte segment level)))
1846 (define-instruction leave (segment)
1847 (:printer byte ((op #b11001001)))
1848 (:emitter
1849 (emit-byte segment #b11001001)))
1851 ;;;; prefetch
1852 (define-instruction prefetchnta (segment ea)
1853 (:printer prefetch ((op #b00011000) (reg #b000)))
1854 (:emitter
1855 (aver (typep ea 'ea))
1856 (aver (eq :byte (ea-size ea)))
1857 (emit-byte segment #b00001111)
1858 (emit-byte segment #b00011000)
1859 (emit-ea segment ea #b000)))
1861 (define-instruction prefetcht0 (segment ea)
1862 (:printer prefetch ((op #b00011000) (reg #b001)))
1863 (:emitter
1864 (aver (typep ea 'ea))
1865 (aver (eq :byte (ea-size ea)))
1866 (emit-byte segment #b00001111)
1867 (emit-byte segment #b00011000)
1868 (emit-ea segment ea #b001)))
1870 (define-instruction prefetcht1 (segment ea)
1871 (:printer prefetch ((op #b00011000) (reg #b010)))
1872 (:emitter
1873 (aver (typep ea 'ea))
1874 (aver (eq :byte (ea-size ea)))
1875 (emit-byte segment #b00001111)
1876 (emit-byte segment #b00011000)
1877 (emit-ea segment ea #b010)))
1879 (define-instruction prefetcht2 (segment ea)
1880 (:printer prefetch ((op #b00011000) (reg #b011)))
1881 (:emitter
1882 (aver (typep ea 'ea))
1883 (aver (eq :byte (ea-size ea)))
1884 (emit-byte segment #b00001111)
1885 (emit-byte segment #b00011000)
1886 (emit-ea segment ea #b011)))
1888 ;;;; interrupt instructions
1890 (defun snarf-error-junk (sap offset &optional length-only)
1891 (let* ((length (sb!sys:sap-ref-8 sap offset))
1892 (vector (make-array length :element-type '(unsigned-byte 8))))
1893 (declare (type sb!sys:system-area-pointer sap)
1894 (type (unsigned-byte 8) length)
1895 (type (simple-array (unsigned-byte 8) (*)) vector))
1896 (cond (length-only
1897 (values 0 (1+ length) nil nil))
1899 (sb!kernel:copy-ub8-from-system-area sap (1+ offset)
1900 vector 0 length)
1901 (collect ((sc-offsets)
1902 (lengths))
1903 (lengths 1) ; the length byte
1904 (let* ((index 0)
1905 (error-number (sb!c:read-var-integer vector index)))
1906 (lengths index)
1907 (loop
1908 (when (>= index length)
1909 (return))
1910 (let ((old-index index))
1911 (sc-offsets (sb!c:read-var-integer vector index))
1912 (lengths (- index old-index))))
1913 (values error-number
1914 (1+ length)
1915 (sc-offsets)
1916 (lengths))))))))
1919 (defmacro break-cases (breaknum &body cases)
1920 (let ((bn-temp (gensym)))
1921 (collect ((clauses))
1922 (dolist (case cases)
1923 (clauses `((= ,bn-temp ,(car case)) ,@(cdr case))))
1924 `(let ((,bn-temp ,breaknum))
1925 (cond ,@(clauses))))))
1928 (defun break-control (chunk inst stream dstate)
1929 (declare (ignore inst))
1930 (flet ((nt (x) (if stream (sb!disassem:note x dstate))))
1931 ;; FIXME: Make sure that BYTE-IMM-CODE is defined. The genesis
1932 ;; map has it undefined; and it should be easier to look in the target
1933 ;; Lisp (with (DESCRIBE 'BYTE-IMM-CODE)) than to definitively deduce
1934 ;; from first principles whether it's defined in some way that genesis
1935 ;; can't grok.
1936 (case (byte-imm-code chunk dstate)
1937 (#.error-trap
1938 (nt "error trap")
1939 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
1940 (#.cerror-trap
1941 (nt "cerror trap")
1942 (sb!disassem:handle-break-args #'snarf-error-junk stream dstate))
1943 (#.breakpoint-trap
1944 (nt "breakpoint trap"))
1945 (#.pending-interrupt-trap
1946 (nt "pending interrupt trap"))
1947 (#.halt-trap
1948 (nt "halt trap"))
1949 (#.fun-end-breakpoint-trap
1950 (nt "function end breakpoint trap")))))
1952 (define-instruction break (segment code)
1953 (:declare (type (unsigned-byte 8) code))
1954 (:printer byte-imm ((op #b11001100)) '(:name :tab code)
1955 :control #'break-control)
1956 (:emitter
1957 (emit-byte segment #b11001100)
1958 (emit-byte segment code)))
1960 (define-instruction int (segment number)
1961 (:declare (type (unsigned-byte 8) number))
1962 (:printer byte-imm ((op #b11001101)))
1963 (:emitter
1964 (etypecase number
1965 ((member 3)
1966 (emit-byte segment #b11001100))
1967 ((unsigned-byte 8)
1968 (emit-byte segment #b11001101)
1969 (emit-byte segment number)))))
1971 (define-instruction into (segment)
1972 (:printer byte ((op #b11001110)))
1973 (:emitter
1974 (emit-byte segment #b11001110)))
1976 (define-instruction bound (segment reg bounds)
1977 (:emitter
1978 (let ((size (matching-operand-size reg bounds)))
1979 (when (eq size :byte)
1980 (error "can't bounds-test bytes: ~S" reg))
1981 (maybe-emit-operand-size-prefix segment size)
1982 (emit-byte segment #b01100010)
1983 (emit-ea segment bounds (reg-tn-encoding reg)))))
1985 (define-instruction iret (segment)
1986 (:printer byte ((op #b11001111)))
1987 (:emitter
1988 (emit-byte segment #b11001111)))
1990 ;;;; processor control
1992 (define-instruction hlt (segment)
1993 (:printer byte ((op #b11110100)))
1994 (:emitter
1995 (emit-byte segment #b11110100)))
1997 (define-instruction nop (segment)
1998 (:printer byte ((op #b10010000)))
1999 (:emitter
2000 (emit-byte segment #b10010000)))
2002 (define-instruction wait (segment)
2003 (:printer byte ((op #b10011011)))
2004 (:emitter
2005 (emit-byte segment #b10011011)))
2007 (define-instruction lock (segment)
2008 (:printer byte ((op #b11110000)))
2009 (:emitter
2010 (emit-byte segment #b11110000)))
2012 ;;;; miscellaneous hackery
2014 (define-instruction byte (segment byte)
2015 (:emitter
2016 (emit-byte segment byte)))
2018 (define-instruction word (segment word)
2019 (:emitter
2020 (emit-word segment word)))
2022 (define-instruction dword (segment dword)
2023 (:emitter
2024 (emit-dword segment dword)))
2026 (defun emit-header-data (segment type)
2027 (emit-back-patch segment
2029 (lambda (segment posn)
2030 (emit-dword segment
2031 (logior type
2032 (ash (+ posn
2033 (component-header-length))
2034 (- n-widetag-bits
2035 word-shift)))))))
2037 (define-instruction simple-fun-header-word (segment)
2038 (:emitter
2039 (emit-header-data segment simple-fun-header-widetag)))
2041 (define-instruction lra-header-word (segment)
2042 (:emitter
2043 (emit-header-data segment return-pc-header-widetag)))
2045 ;;;; fp instructions
2046 ;;;;
2047 ;;;; FIXME: This section said "added by jrd", which should end up in CREDITS.
2048 ;;;;
2049 ;;;; Note: We treat the single-precision and double-precision variants
2050 ;;;; as separate instructions.
2052 ;;; Load single to st(0).
2053 (define-instruction fld (segment source)
2054 (:printer floating-point ((op '(#b001 #b000))))
2055 (:emitter
2056 (emit-byte segment #b11011001)
2057 (emit-fp-op segment source #b000)))
2059 ;;; Load double to st(0).
2060 (define-instruction fldd (segment source)
2061 (:printer floating-point ((op '(#b101 #b000))))
2062 (:printer floating-point-fp ((op '(#b001 #b000))))
2063 (:emitter
2064 (if (fp-reg-tn-p source)
2065 (emit-byte segment #b11011001)
2066 (emit-byte segment #b11011101))
2067 (emit-fp-op segment source #b000)))
2069 ;;; Load long to st(0).
2070 (define-instruction fldl (segment source)
2071 (:printer floating-point ((op '(#b011 #b101))))
2072 (:emitter
2073 (emit-byte segment #b11011011)
2074 (emit-fp-op segment source #b101)))
2076 ;;; Store single from st(0).
2077 (define-instruction fst (segment dest)
2078 (:printer floating-point ((op '(#b001 #b010))))
2079 (:emitter
2080 (cond ((fp-reg-tn-p dest)
2081 (emit-byte segment #b11011101)
2082 (emit-fp-op segment dest #b010))
2084 (emit-byte segment #b11011001)
2085 (emit-fp-op segment dest #b010)))))
2087 ;;; Store double from st(0).
2088 (define-instruction fstd (segment dest)
2089 (:printer floating-point ((op '(#b101 #b010))))
2090 (:printer floating-point-fp ((op '(#b101 #b010))))
2091 (:emitter
2092 (cond ((fp-reg-tn-p dest)
2093 (emit-byte segment #b11011101)
2094 (emit-fp-op segment dest #b010))
2096 (emit-byte segment #b11011101)
2097 (emit-fp-op segment dest #b010)))))
2099 ;;; Arithmetic ops are all done with at least one operand at top of
2100 ;;; stack. The other operand is is another register or a 32/64 bit
2101 ;;; memory loc.
2103 ;;; dtc: I've tried to follow the Intel ASM386 conventions, but note
2104 ;;; that these conflict with the Gdb conventions for binops. To reduce
2105 ;;; the confusion I've added comments showing the mathamatical
2106 ;;; operation and the two syntaxes. By the ASM386 convention the
2107 ;;; instruction syntax is:
2109 ;;; Fop Source
2110 ;;; or Fop Destination, Source
2112 ;;; If only one operand is given then it is the source and the
2113 ;;; destination is ST(0). There are reversed forms of the fsub and
2114 ;;; fdiv instructions inducated by an 'R' suffix.
2116 ;;; The mathematical operation for the non-reverse form is always:
2117 ;;; destination = destination op source
2119 ;;; For the reversed form it is:
2120 ;;; destination = source op destination
2122 ;;; The instructions below only accept one operand at present which is
2123 ;;; usually the source. I've hack in extra instructions to implement
2124 ;;; the fops with a ST(i) destination, these have a -sti suffix and
2125 ;;; the operand is the destination with the source being ST(0).
2127 ;;; Add single:
2128 ;;; st(0) = st(0) + memory or st(i).
2129 (define-instruction fadd (segment source)
2130 (:printer floating-point ((op '(#b000 #b000))))
2131 (:emitter
2132 (emit-byte segment #b11011000)
2133 (emit-fp-op segment source #b000)))
2135 ;;; Add double:
2136 ;;; st(0) = st(0) + memory or st(i).
2137 (define-instruction faddd (segment source)
2138 (:printer floating-point ((op '(#b100 #b000))))
2139 (:printer floating-point-fp ((op '(#b000 #b000))))
2140 (:emitter
2141 (if (fp-reg-tn-p source)
2142 (emit-byte segment #b11011000)
2143 (emit-byte segment #b11011100))
2144 (emit-fp-op segment source #b000)))
2146 ;;; Add double destination st(i):
2147 ;;; st(i) = st(0) + st(i).
2148 (define-instruction fadd-sti (segment destination)
2149 (:printer floating-point-fp ((op '(#b100 #b000))))
2150 (:emitter
2151 (aver (fp-reg-tn-p destination))
2152 (emit-byte segment #b11011100)
2153 (emit-fp-op segment destination #b000)))
2154 ;;; with pop
2155 (define-instruction faddp-sti (segment destination)
2156 (:printer floating-point-fp ((op '(#b110 #b000))))
2157 (:emitter
2158 (aver (fp-reg-tn-p destination))
2159 (emit-byte segment #b11011110)
2160 (emit-fp-op segment destination #b000)))
2162 ;;; Subtract single:
2163 ;;; st(0) = st(0) - memory or st(i).
2164 (define-instruction fsub (segment source)
2165 (:printer floating-point ((op '(#b000 #b100))))
2166 (:emitter
2167 (emit-byte segment #b11011000)
2168 (emit-fp-op segment source #b100)))
2170 ;;; Subtract single, reverse:
2171 ;;; st(0) = memory or st(i) - st(0).
2172 (define-instruction fsubr (segment source)
2173 (:printer floating-point ((op '(#b000 #b101))))
2174 (:emitter
2175 (emit-byte segment #b11011000)
2176 (emit-fp-op segment source #b101)))
2178 ;;; Subtract double:
2179 ;;; st(0) = st(0) - memory or st(i).
2180 (define-instruction fsubd (segment source)
2181 (:printer floating-point ((op '(#b100 #b100))))
2182 (:printer floating-point-fp ((op '(#b000 #b100))))
2183 (:emitter
2184 (if (fp-reg-tn-p source)
2185 (emit-byte segment #b11011000)
2186 (emit-byte segment #b11011100))
2187 (emit-fp-op segment source #b100)))
2189 ;;; Subtract double, reverse:
2190 ;;; st(0) = memory or st(i) - st(0).
2191 (define-instruction fsubrd (segment source)
2192 (:printer floating-point ((op '(#b100 #b101))))
2193 (:printer floating-point-fp ((op '(#b000 #b101))))
2194 (:emitter
2195 (if (fp-reg-tn-p source)
2196 (emit-byte segment #b11011000)
2197 (emit-byte segment #b11011100))
2198 (emit-fp-op segment source #b101)))
2200 ;;; Subtract double, destination st(i):
2201 ;;; st(i) = st(i) - st(0).
2203 ;;; ASM386 syntax: FSUB ST(i), ST
2204 ;;; Gdb syntax: fsubr %st,%st(i)
2205 (define-instruction fsub-sti (segment destination)
2206 (:printer floating-point-fp ((op '(#b100 #b101))))
2207 (:emitter
2208 (aver (fp-reg-tn-p destination))
2209 (emit-byte segment #b11011100)
2210 (emit-fp-op segment destination #b101)))
2211 ;;; with a pop
2212 (define-instruction fsubp-sti (segment destination)
2213 (:printer floating-point-fp ((op '(#b110 #b101))))
2214 (:emitter
2215 (aver (fp-reg-tn-p destination))
2216 (emit-byte segment #b11011110)
2217 (emit-fp-op segment destination #b101)))
2219 ;;; Subtract double, reverse, destination st(i):
2220 ;;; st(i) = st(0) - st(i).
2222 ;;; ASM386 syntax: FSUBR ST(i), ST
2223 ;;; Gdb syntax: fsub %st,%st(i)
2224 (define-instruction fsubr-sti (segment destination)
2225 (:printer floating-point-fp ((op '(#b100 #b100))))
2226 (:emitter
2227 (aver (fp-reg-tn-p destination))
2228 (emit-byte segment #b11011100)
2229 (emit-fp-op segment destination #b100)))
2230 ;;; with a pop
2231 (define-instruction fsubrp-sti (segment destination)
2232 (:printer floating-point-fp ((op '(#b110 #b100))))
2233 (:emitter
2234 (aver (fp-reg-tn-p destination))
2235 (emit-byte segment #b11011110)
2236 (emit-fp-op segment destination #b100)))
2238 ;;; Multiply single:
2239 ;;; st(0) = st(0) * memory or st(i).
2240 (define-instruction fmul (segment source)
2241 (:printer floating-point ((op '(#b000 #b001))))
2242 (:emitter
2243 (emit-byte segment #b11011000)
2244 (emit-fp-op segment source #b001)))
2246 ;;; Multiply double:
2247 ;;; st(0) = st(0) * memory or st(i).
2248 (define-instruction fmuld (segment source)
2249 (:printer floating-point ((op '(#b100 #b001))))
2250 (:printer floating-point-fp ((op '(#b000 #b001))))
2251 (:emitter
2252 (if (fp-reg-tn-p source)
2253 (emit-byte segment #b11011000)
2254 (emit-byte segment #b11011100))
2255 (emit-fp-op segment source #b001)))
2257 ;;; Multiply double, destination st(i):
2258 ;;; st(i) = st(i) * st(0).
2259 (define-instruction fmul-sti (segment destination)
2260 (:printer floating-point-fp ((op '(#b100 #b001))))
2261 (:emitter
2262 (aver (fp-reg-tn-p destination))
2263 (emit-byte segment #b11011100)
2264 (emit-fp-op segment destination #b001)))
2266 ;;; Divide single:
2267 ;;; st(0) = st(0) / memory or st(i).
2268 (define-instruction fdiv (segment source)
2269 (:printer floating-point ((op '(#b000 #b110))))
2270 (:emitter
2271 (emit-byte segment #b11011000)
2272 (emit-fp-op segment source #b110)))
2274 ;;; Divide single, reverse:
2275 ;;; st(0) = memory or st(i) / st(0).
2276 (define-instruction fdivr (segment source)
2277 (:printer floating-point ((op '(#b000 #b111))))
2278 (:emitter
2279 (emit-byte segment #b11011000)
2280 (emit-fp-op segment source #b111)))
2282 ;;; Divide double:
2283 ;;; st(0) = st(0) / memory or st(i).
2284 (define-instruction fdivd (segment source)
2285 (:printer floating-point ((op '(#b100 #b110))))
2286 (:printer floating-point-fp ((op '(#b000 #b110))))
2287 (:emitter
2288 (if (fp-reg-tn-p source)
2289 (emit-byte segment #b11011000)
2290 (emit-byte segment #b11011100))
2291 (emit-fp-op segment source #b110)))
2293 ;;; Divide double, reverse:
2294 ;;; st(0) = memory or st(i) / st(0).
2295 (define-instruction fdivrd (segment source)
2296 (:printer floating-point ((op '(#b100 #b111))))
2297 (:printer floating-point-fp ((op '(#b000 #b111))))
2298 (:emitter
2299 (if (fp-reg-tn-p source)
2300 (emit-byte segment #b11011000)
2301 (emit-byte segment #b11011100))
2302 (emit-fp-op segment source #b111)))
2304 ;;; Divide double, destination st(i):
2305 ;;; st(i) = st(i) / st(0).
2307 ;;; ASM386 syntax: FDIV ST(i), ST
2308 ;;; Gdb syntax: fdivr %st,%st(i)
2309 (define-instruction fdiv-sti (segment destination)
2310 (:printer floating-point-fp ((op '(#b100 #b111))))
2311 (:emitter
2312 (aver (fp-reg-tn-p destination))
2313 (emit-byte segment #b11011100)
2314 (emit-fp-op segment destination #b111)))
2316 ;;; Divide double, reverse, destination st(i):
2317 ;;; st(i) = st(0) / st(i).
2319 ;;; ASM386 syntax: FDIVR ST(i), ST
2320 ;;; Gdb syntax: fdiv %st,%st(i)
2321 (define-instruction fdivr-sti (segment destination)
2322 (:printer floating-point-fp ((op '(#b100 #b110))))
2323 (:emitter
2324 (aver (fp-reg-tn-p destination))
2325 (emit-byte segment #b11011100)
2326 (emit-fp-op segment destination #b110)))
2328 ;;; Exchange fr0 with fr(n). (There is no double precision variant.)
2329 (define-instruction fxch (segment source)
2330 (:printer floating-point-fp ((op '(#b001 #b001))))
2331 (:emitter
2332 (unless (and (tn-p source)
2333 (eq (sb-name (sc-sb (tn-sc source))) 'float-registers))
2334 (cl:break))
2335 (emit-byte segment #b11011001)
2336 (emit-fp-op segment source #b001)))
2338 ;;; Push 32-bit integer to st0.
2339 (define-instruction fild (segment source)
2340 (:printer floating-point ((op '(#b011 #b000))))
2341 (:emitter
2342 (emit-byte segment #b11011011)
2343 (emit-fp-op segment source #b000)))
2345 ;;; Push 64-bit integer to st0.
2346 (define-instruction fildl (segment source)
2347 (:printer floating-point ((op '(#b111 #b101))))
2348 (:emitter
2349 (emit-byte segment #b11011111)
2350 (emit-fp-op segment source #b101)))
2352 ;;; Store 32-bit integer.
2353 (define-instruction fist (segment dest)
2354 (:printer floating-point ((op '(#b011 #b010))))
2355 (:emitter
2356 (emit-byte segment #b11011011)
2357 (emit-fp-op segment dest #b010)))
2359 ;;; Store and pop 32-bit integer.
2360 (define-instruction fistp (segment dest)
2361 (:printer floating-point ((op '(#b011 #b011))))
2362 (:emitter
2363 (emit-byte segment #b11011011)
2364 (emit-fp-op segment dest #b011)))
2366 ;;; Store and pop 64-bit integer.
2367 (define-instruction fistpl (segment dest)
2368 (:printer floating-point ((op '(#b111 #b111))))
2369 (:emitter
2370 (emit-byte segment #b11011111)
2371 (emit-fp-op segment dest #b111)))
2373 ;;; Store single from st(0) and pop.
2374 (define-instruction fstp (segment dest)
2375 (:printer floating-point ((op '(#b001 #b011))))
2376 (:emitter
2377 (cond ((fp-reg-tn-p dest)
2378 (emit-byte segment #b11011101)
2379 (emit-fp-op segment dest #b011))
2381 (emit-byte segment #b11011001)
2382 (emit-fp-op segment dest #b011)))))
2384 ;;; Store double from st(0) and pop.
2385 (define-instruction fstpd (segment dest)
2386 (:printer floating-point ((op '(#b101 #b011))))
2387 (:printer floating-point-fp ((op '(#b101 #b011))))
2388 (:emitter
2389 (cond ((fp-reg-tn-p dest)
2390 (emit-byte segment #b11011101)
2391 (emit-fp-op segment dest #b011))
2393 (emit-byte segment #b11011101)
2394 (emit-fp-op segment dest #b011)))))
2396 ;;; Store long from st(0) and pop.
2397 (define-instruction fstpl (segment dest)
2398 (:printer floating-point ((op '(#b011 #b111))))
2399 (:emitter
2400 (emit-byte segment #b11011011)
2401 (emit-fp-op segment dest #b111)))
2403 ;;; Decrement stack-top pointer.
2404 (define-instruction fdecstp (segment)
2405 (:printer floating-point-no ((op #b10110)))
2406 (:emitter
2407 (emit-byte segment #b11011001)
2408 (emit-byte segment #b11110110)))
2410 ;;; Increment stack-top pointer.
2411 (define-instruction fincstp (segment)
2412 (:printer floating-point-no ((op #b10111)))
2413 (:emitter
2414 (emit-byte segment #b11011001)
2415 (emit-byte segment #b11110111)))
2417 ;;; Free fp register.
2418 (define-instruction ffree (segment dest)
2419 (:printer floating-point-fp ((op '(#b101 #b000))))
2420 (:emitter
2421 (emit-byte segment #b11011101)
2422 (emit-fp-op segment dest #b000)))
2424 (define-instruction fabs (segment)
2425 (:printer floating-point-no ((op #b00001)))
2426 (:emitter
2427 (emit-byte segment #b11011001)
2428 (emit-byte segment #b11100001)))
2430 (define-instruction fchs (segment)
2431 (:printer floating-point-no ((op #b00000)))
2432 (:emitter
2433 (emit-byte segment #b11011001)
2434 (emit-byte segment #b11100000)))
2436 (define-instruction frndint(segment)
2437 (:printer floating-point-no ((op #b11100)))
2438 (:emitter
2439 (emit-byte segment #b11011001)
2440 (emit-byte segment #b11111100)))
2442 ;;; Initialize NPX.
2443 (define-instruction fninit(segment)
2444 (:printer floating-point-5 ((op #b00011)))
2445 (:emitter
2446 (emit-byte segment #b11011011)
2447 (emit-byte segment #b11100011)))
2449 ;;; Store Status Word to AX.
2450 (define-instruction fnstsw(segment)
2451 (:printer floating-point-st ((op #b00000)))
2452 (:emitter
2453 (emit-byte segment #b11011111)
2454 (emit-byte segment #b11100000)))
2456 ;;; Load Control Word.
2458 ;;; src must be a memory location
2459 (define-instruction fldcw(segment src)
2460 (:printer floating-point ((op '(#b001 #b101))))
2461 (:emitter
2462 (emit-byte segment #b11011001)
2463 (emit-fp-op segment src #b101)))
2465 ;;; Store Control Word.
2466 (define-instruction fnstcw(segment dst)
2467 (:printer floating-point ((op '(#b001 #b111))))
2468 (:emitter
2469 (emit-byte segment #b11011001)
2470 (emit-fp-op segment dst #b111)))
2472 ;;; Store FP Environment.
2473 (define-instruction fstenv(segment dst)
2474 (:printer floating-point ((op '(#b001 #b110))))
2475 (:emitter
2476 (emit-byte segment #b11011001)
2477 (emit-fp-op segment dst #b110)))
2479 ;;; Restore FP Environment.
2480 (define-instruction fldenv(segment src)
2481 (:printer floating-point ((op '(#b001 #b100))))
2482 (:emitter
2483 (emit-byte segment #b11011001)
2484 (emit-fp-op segment src #b100)))
2486 ;;; Save FP State.
2487 (define-instruction fsave(segment dst)
2488 (:printer floating-point ((op '(#b101 #b110))))
2489 (:emitter
2490 (emit-byte segment #b11011101)
2491 (emit-fp-op segment dst #b110)))
2493 ;;; Restore FP State.
2494 (define-instruction frstor(segment src)
2495 (:printer floating-point ((op '(#b101 #b100))))
2496 (:emitter
2497 (emit-byte segment #b11011101)
2498 (emit-fp-op segment src #b100)))
2500 ;;; Clear exceptions.
2501 (define-instruction fnclex(segment)
2502 (:printer floating-point-5 ((op #b00010)))
2503 (:emitter
2504 (emit-byte segment #b11011011)
2505 (emit-byte segment #b11100010)))
2507 ;;; comparison
2508 (define-instruction fcom (segment src)
2509 (:printer floating-point ((op '(#b000 #b010))))
2510 (:emitter
2511 (emit-byte segment #b11011000)
2512 (emit-fp-op segment src #b010)))
2514 (define-instruction fcomd (segment src)
2515 (:printer floating-point ((op '(#b100 #b010))))
2516 (:printer floating-point-fp ((op '(#b000 #b010))))
2517 (:emitter
2518 (if (fp-reg-tn-p src)
2519 (emit-byte segment #b11011000)
2520 (emit-byte segment #b11011100))
2521 (emit-fp-op segment src #b010)))
2523 ;;; Compare ST1 to ST0, popping the stack twice.
2524 (define-instruction fcompp (segment)
2525 (:printer floating-point-3 ((op '(#b110 #b011001))))
2526 (:emitter
2527 (emit-byte segment #b11011110)
2528 (emit-byte segment #b11011001)))
2530 ;;; unordered comparison
2531 (define-instruction fucom (segment src)
2532 (:printer floating-point-fp ((op '(#b101 #b100))))
2533 (:emitter
2534 (aver (fp-reg-tn-p src))
2535 (emit-byte segment #b11011101)
2536 (emit-fp-op segment src #b100)))
2538 (define-instruction ftst (segment)
2539 (:printer floating-point-no ((op #b00100)))
2540 (:emitter
2541 (emit-byte segment #b11011001)
2542 (emit-byte segment #b11100100)))
2544 ;;;; 80387 specials
2546 (define-instruction fsqrt(segment)
2547 (:printer floating-point-no ((op #b11010)))
2548 (:emitter
2549 (emit-byte segment #b11011001)
2550 (emit-byte segment #b11111010)))
2552 (define-instruction fscale(segment)
2553 (:printer floating-point-no ((op #b11101)))
2554 (:emitter
2555 (emit-byte segment #b11011001)
2556 (emit-byte segment #b11111101)))
2558 (define-instruction fxtract(segment)
2559 (:printer floating-point-no ((op #b10100)))
2560 (:emitter
2561 (emit-byte segment #b11011001)
2562 (emit-byte segment #b11110100)))
2564 (define-instruction fsin(segment)
2565 (:printer floating-point-no ((op #b11110)))
2566 (:emitter
2567 (emit-byte segment #b11011001)
2568 (emit-byte segment #b11111110)))
2570 (define-instruction fcos(segment)
2571 (:printer floating-point-no ((op #b11111)))
2572 (:emitter
2573 (emit-byte segment #b11011001)
2574 (emit-byte segment #b11111111)))
2576 (define-instruction fprem1(segment)
2577 (:printer floating-point-no ((op #b10101)))
2578 (:emitter
2579 (emit-byte segment #b11011001)
2580 (emit-byte segment #b11110101)))
2582 (define-instruction fprem(segment)
2583 (:printer floating-point-no ((op #b11000)))
2584 (:emitter
2585 (emit-byte segment #b11011001)
2586 (emit-byte segment #b11111000)))
2588 (define-instruction fxam (segment)
2589 (:printer floating-point-no ((op #b00101)))
2590 (:emitter
2591 (emit-byte segment #b11011001)
2592 (emit-byte segment #b11100101)))
2594 ;;; These do push/pop to stack and need special handling
2595 ;;; in any VOPs that use them. See the book.
2597 ;;; st0 <- st1*log2(st0)
2598 (define-instruction fyl2x(segment) ; pops stack
2599 (:printer floating-point-no ((op #b10001)))
2600 (:emitter
2601 (emit-byte segment #b11011001)
2602 (emit-byte segment #b11110001)))
2604 (define-instruction fyl2xp1(segment)
2605 (:printer floating-point-no ((op #b11001)))
2606 (:emitter
2607 (emit-byte segment #b11011001)
2608 (emit-byte segment #b11111001)))
2610 (define-instruction f2xm1(segment)
2611 (:printer floating-point-no ((op #b10000)))
2612 (:emitter
2613 (emit-byte segment #b11011001)
2614 (emit-byte segment #b11110000)))
2616 (define-instruction fptan(segment) ; st(0) <- 1; st(1) <- tan
2617 (:printer floating-point-no ((op #b10010)))
2618 (:emitter
2619 (emit-byte segment #b11011001)
2620 (emit-byte segment #b11110010)))
2622 (define-instruction fpatan(segment) ; POPS STACK
2623 (:printer floating-point-no ((op #b10011)))
2624 (:emitter
2625 (emit-byte segment #b11011001)
2626 (emit-byte segment #b11110011)))
2628 ;;;; loading constants
2630 (define-instruction fldz(segment)
2631 (:printer floating-point-no ((op #b01110)))
2632 (:emitter
2633 (emit-byte segment #b11011001)
2634 (emit-byte segment #b11101110)))
2636 (define-instruction fld1(segment)
2637 (:printer floating-point-no ((op #b01000)))
2638 (:emitter
2639 (emit-byte segment #b11011001)
2640 (emit-byte segment #b11101000)))
2642 (define-instruction fldpi(segment)
2643 (:printer floating-point-no ((op #b01011)))
2644 (:emitter
2645 (emit-byte segment #b11011001)
2646 (emit-byte segment #b11101011)))
2648 (define-instruction fldl2t(segment)
2649 (:printer floating-point-no ((op #b01001)))
2650 (:emitter
2651 (emit-byte segment #b11011001)
2652 (emit-byte segment #b11101001)))
2654 (define-instruction fldl2e(segment)
2655 (:printer floating-point-no ((op #b01010)))
2656 (:emitter
2657 (emit-byte segment #b11011001)
2658 (emit-byte segment #b11101010)))
2660 (define-instruction fldlg2(segment)
2661 (:printer floating-point-no ((op #b01100)))
2662 (:emitter
2663 (emit-byte segment #b11011001)
2664 (emit-byte segment #b11101100)))
2666 (define-instruction fldln2(segment)
2667 (:printer floating-point-no ((op #b01101)))
2668 (:emitter
2669 (emit-byte segment #b11011001)
2670 (emit-byte segment #b11101101)))