
RICE
version 4.0

Routines for Implementation of C Expert systems

Copyright © 1992-1993

 3 May 1999

René Jager

R.Jager@ET.TUdelft.NL

Delft University of Technology
Department of Electrical Engineering

Control Laboratory

Mekelweg 4
P.O. Box 5031
2600 GA  Delft

The Netherlands



Preface
RICE stands for Routines for Implementation of C Expert systems. The general idea of the software is to 
provide a tool for easy implementing small, but powerful, (fuzzy) expert systems within C or C++ programs. 
The software is supposed to take away all worries about the inference mechanism: the user provides the 
knowledge on a high level, but is still able to call plain C-code (or C++) from within the knowledge base. 
This means in fact that you can build a program or a part of a program in which the execution order of plain 
C-code is completely determined by the knowledge base which is inferred.

By the way, the inference engine is not the hardest part to make when building a (fuzzy) expert system: 
designing a knowledge base that makes some sense is the hardest part. But that problem is completely for 
you to solve...
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1 Introduction
In this introduction the general properties of expert systems, logic and reasoning will be discussed. Both 
propositional logic and fuzzy logic will be explained as well as several common reasoning methods. How 
these things are implemented in RICE is not part of this introduction, but the chapters after this.

1.1 Separation of knowledge and inference 

Typical of experts systems is the separation of knowledge and inference. Unlike other computer programs an 
expert system has a predefined part, namely the inference engine, and a variable part, namely the knowledge 
base. In fact an expert system can be described by:

expert system = knowledge base + inference engine

The following two sections will describe the knowledge base and inference engine respectively.

1.1.1 The knowledge base 

The knowledge base of an expert system contains knowledge of a specific domain. For example, an expert 
system for medical diagnosis contains expert knowledge for a set of diseases. The knowledge is normally 
stored in the knowledge base using a symbolic representation, for example:

if there is smoke then there is fire

This representation is known as a production rule, or rule for short. Other representations are frames and 
objects. The main advantage of having a separation between the knowledge base and the inference engine is 
the fact that an iterative development of the expert system is possible in a more natural way than in case of 
normal computer programs. The production rule is specifically suitable for implementing heuristic 
knowledge. 

It is possible that the knowledge base contains knowledge about knowledge within itself; this is called meta-
knowledge. Examples of meta-knowledge are rules which, when fired, will focus on a certain part of the 
knowledge base (focus of attention). Also possible is knowledge which adapts other knowledge within the 
knowledge base, for example, a rule which changes the degree of certainty of another rule.

The knowledge base is filled with rules like the one in the example above and the inference engine will acts 
on this knowledge base to obtain new information. The next section will go into more details of the inference 
engine.

1.1.2 Inference engine

The inference engine is the part of the expert system that is not changed by expert system developers. It is an 
already provided part of an expert system shell or toolbox. The main task of the inference engine is inferring 
new information using the knowledge base and (already) stored information. When we take the example 
from the previous section, the inference engine is able to infer the fact there is fire when the fact there is 
smoke is true, using the rule from the example.

To be able to obtain new information using existing information and knowledge from the knowledge base, 
the inference engine needs logic, to be able to perform the task in a logical sense, and reasoning methods to 
use the knowledge base in a consisting way. Both aspects will be discussed in the following sections.



1.2 Propositional and fuzzy logic 

Normally rule-based expert systems use propositional logic. Within propositional logic facts are either true 
(1) or false (0). To represent knowledge using propositional logic, five connectives are available:

- negation: ¬
- conjunction: ∧
- disjunction: ∨
- implication: ⇒
- bi-implication: ⇔

The precendence of these connectives is: ¬, ∧, ∨, ⇒ and ⇔. Normally the inference engine is able to deal with 
if-then rules, but they can be translated in the connectives of propositional logic. In the following table one 
can see the result of propositions:

A B ¬A A∧B A∨B A⇒B A⇔B

0 0  1   0   0    1    1
0 1  1   0   1    1    0
1 0  0   0   1    0    0
1 1  0   1   1    1    1

For using propositional logic several laws are available: commutativity, associativity, distributivity and De 
Morgan laws. The next table shows those laws:

¬(¬A)  ≡ A
A∧B ≡ B∧A
A∨B ≡ B∨A
(A∧B)∧C ≡ A∧(B∧C)
(A∨B)∨C ≡ A∨(B∨C)
A∨(B∧C) ≡ (A∨B)∧(A∨C)
A∧(B∨C) ≡ (A∧B)∨(A∧C)
A⇔B  ≡ (A⇒B)∧(A⇒B)
A⇒B ≡ ¬A∧B
¬(A∧B) ≡ ¬A∨¬B
¬(A∨B) ≡ ¬A∧¬B

However, only dealing with facts that are either true or false is normally not sufficient. To overcome this 
drawback an inference engine should be able to deal with fuzzy logic. This allows facts to be true, false or 
having some degree of truth in between. This results in an infinite number of possible operators for the 
logical and and logical or. Commonly used within the field of fuzzy logic are:

a∧b : min(a, b)
a∨b : max(a, b)

The and and or operations are called T-norm and S-norm (or T-conorm), respectively. In fact every function 
of two variables can be used as a fuzzy and-operation (T-norm) as long as the following criteria are met:

T(a, 1) = a
T(a, b) ≤  T(c, d), whenever a ≤  c and b ≤  d
T(a, b) = T(b, a)
T(T(a, b), c) = T(a, T(b, c))

Examples of such T-norms are: min(a, b), ab and max(a+b-1, 0). For the S-norm the same criteria, except for 
the first, should be met:



S(a, 0) = a
S(a, b) ≤  S(c, d), whenever a ≤  c and b ≤  d
S(a, b) = S(b, a)
S(T(a, b), c) = S(a, S(b, c))

Examples of S-norms are: max(a, b), a+b-ab and min(a+b, 1). Many families of T- and S-norms exist, where 
a parameter is used to alter the behaviour (but still meeting the criteria) of the operator/norm.

1.3 Modus ponens and modus tollens

In the field of logic two main ways of inferring information using existing information and an in implication 
(knowledge): the modus ponens and the modus tollens. The modus ponens is in classical (true-false) logic 
defined as:

A A⇒B B
1   1 1
0   1 ?

So if we have a rule if there is smoke then there is fire we can conclude there is fire when we know there is  
smoke. However, we cannot conclude there is no fire in case there is no smoke. The modus tollens is defined 
by:

B A⇒B A
1   1 ?
0   1 0

The modus tollens provides a mechanism to let us conclude, using the previous example, that there is no 
smoke when we know there is no fire.

However, when using fuzzy logic there is no clear separation between completely true or false. In many 
applications of fuzzy logic in (small) expert systems there will be no separation. This results in concluding 
there is no fire, when knowing there is no smoke. Using fuzzy logic the rule from the above mentioned 
example would more act like: if there is smoke then there is fire else there is no fire. Such an implication is 
in fact an relational implication: a sort of bi-implication with prescribed direction of inference. For example, 
in fuzzy control relational implications are used to describe the control rules.

1.4 Reasoning and search methods

In the design of expert systems several reasoning and search methods can be chosen. It depends on the 
application which methods and techniques are used. More detailed information about the design of expert 
systems can be found in [Luger and Stubblefield 1989].

1.4.1 Standard methods

In expert systems two main reasoning methods can be found: forward and backward reasoning. Forward 
reasoning, also known as data-driven or bottom-up reasoning or chaining, uses initial data and infers new 
data from the known data. The inference of new data is done by applying rules from the rule base. The 
inference of new knowledge stops in case some predefined goal is reached or no new knowledge can be 
inferred. Backward reasoning, also called goal-driven or top-down reasoning or chaining, starts with certain 
goals and in order to solve (read: prove) these goals their subgoals are tried to be solved. This mechanism 
goes on until no subgoals are present or the initial goals are solved. The combination of forward and 
backward reasoning in one inference engine within an expert system is possible, but not found often in 



literature.

Additional to the above two reasoning methods one can distinguish, besides the simple exhaustive search 
method, three main search methods: depth-first, breadth-first and heuristic search. The depth-first search 
method is normally used in combination with backward reasoning, the breadth-first method with forward 
reasoning. Whenever it is possible, depth-first search goes deeper into the search tree. The search stops in 
case no lower levels within the search tree exist or a stop criterium is met. The breadth-first search method 
however, searches level by level within the search tree. The exploration of the next level of a search tree is 
started in case in the current level no more states can be solved or a certain stop criterium is met. Combining 
depth-first and breadth-first is possible, but, just like the combination of backward and forward reasoning, 
not found often in literature. Heuristic search is applied to guide the search within the search tree and 
therefore can be seen as meta-knowledge: knowledge about knowledge.
The best-first search method is an example of heuristic search. In this search method the 'most promising' 
branch of a search tree is chosen for further search. Confidence factors can be used to indicate which branch 
is more promising to lead to a satisfying result than others.

1.4.2 Real-time issues

A real-time behaviour is often easier to recognize than to define. As discussed in [O'Reilly 19??] many 
definitions of real time exist. Real time is mostly related to 'fast': meaning that a system processes data 
quickly. A formal definition of real time is offered:

a hard real-time system is defined as a system in which correctness of the system not only  
depends on the logical results of a computation, but also on the time at which the results are 
produced.

The most important item is the response time, if events are not handled timely, the process can get out of 
control. Thus, the feature that defines a real-time system is the system's ability to guarantee a response before 
a certain time has elapsed, where that time related to the dynamic behaviour of the system. If, given an 
arbitrary event or state of the system, the system always produces a response by the time it is needed, then 
the system is said to be real-time. Due to the real-time aspect the fuzzy expert system should be able to 
perform non-monotonic, temporal and progressive reasoning. Non-monotonic reasoning introduces the 
ability to change already proven data and all the inferred data that depend on it. Assumptions which later on 
in the reasoning process appear to be erroneous can be changed and all the data which depend those 
assumptions must be reexamined and possibly withdrawn from the data base. The reexamination of the data 
base is done by a truth-maintenance system [Doyle 1979]. Non-monotonic reasoning is more like the 
reasoning of humans than monotonic reasoning is, in which previously added knowledge or data can not be 
reexamined.

In case the expert system deals with past, present and future, it has to be able to outdate previous and accept 
new data as the time window connected to the present time is moving. This principle is called temporal 
reasoning [Krijgsman et al. 1991] and an essential aspect of real-time expert systems.

Also an important aspect of the real-time expert systems is the progressive reasoning principle [Lattimer et 
al. 1986]. In case of progressive reasoning the rule base is divided in several layers, which are in fact also 
rule bases. The inference engine starts with the inference of the first layer and proceeds with the next 
(higher) layer in case the inference of the first layer is finished. Each layer is able to use the data inferred by 
the lower layers as well as the rules within that layer. In case the real-time environment aborts the reasoning 
by means of an interrupt, the data inferred by the last layer which completed its inference can be used. In this 
way the more time available, the 'better' the conclusions get. This aspect has also close resemblance to 
human reasoning.

1.5 Fuzzy expert systems



The theoretical approach of fuzzy inference is based on the idea of relational implications rather than on the 
idea of classical implications. A fuzzy controller is a function of more than one variable, which is a 
combination (union) of the functions representing the individual fuzzy rules. The 'direction' of inference is 
dictated by the fuzzy rules. A typical rule i can be stated as:

IF x
1
 is X

1

i

 AND ... AND x
j
 is X

j

i

 AND ... AND x
N
 is X

N

i

 THEN y is Y

i

The complete fuzzy controller, however, is a multi-dimensional relation, combining all individual fuzzy 
rules:

R = ∨ R
i

where the membership of every relation describing a fuzzy rule is given by:
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As can be seen from these equations the resulting fuzzy system has no longer a direction like in rules (if ...  
then ...): it is a relation. This is why, for example, fuzzy models can be used for predictions as well as inverse 
control [Brown et al. 1991]. By applying the compositional-rule-of-inference:

Y = X m R

and using a fuzzification of the inputs, which results in fact also in a relation, a fuzzy output is obtained. The 
most commonly used inference rule is the max-min-rule. One could also denote the compositional-rule-of-
inference as an OR-AND operation, which is a more general interpretation. In practical applications 
however, usually a more efficient method is used [Harris and Moore 1989]. This method is based on the 
assumption that the fuzzification of an input is represented by a singleton. Applying the compositional-rule-
of-inference on the relation, using the fuzzified input, results in a fuzzy output. The fuzzified input is 
represented by the union of all the singletons describing the individual (numerical) inputs. The same fuzzy 
output can be obtained by determining for every fuzzy rule i the individual fuzzy output:
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Combination of those individual fuzzy outputs by applying a union results in the complete fuzzy output of 
the system:

Y(y) = ∨ Y
i

'(y)

Note that the inputs in are represented in a numerical way and the output is represented in a fuzzy way. 
Several defuzzification methods are available to translate the fuzzy output into a crisp, numerical output 
value [Jager et al. 1992a].

Based on this practical way of applying fuzzy rules and inference, a generalization of the inference 
mechanism can be made allowing to apply fuzzy rules and inference in a way rules and inference 
mechanisms are used in conventional expert systems.

In case of using a fuzzy inference engine it is possible that the conditions of rules are actions of other rules. 
The first question that arises is: what happens with the intermediate results?. The relevance of this question 
depends on the way the rule base is composed. Rules with actions which are used as conditions in other rules 
can be regarded as a kind of short hand notation for implementing more complex rules. In another 
perspective one can conclude that such a rule actually has defined a new imaginary membership function for 



a specific input. The correctness of this interpretation depends on the conditions and actions defined in the 
rule. Whether or not the result of the fuzzy inference engine is in agreement with the compositional rule of 
inference, depends on the correctness of the fuzzy rules implemented and the coherence between them.

Another possibility is the fact that a rule does not have a condition for every input available, which is 
however not relevant when assuming the following:

    - the antecedent of every rule should imaginary contain a classification of every input;
    - the membership grade of a missing input classification in the rule antecedent is assumed 

true.

From this point of view, rules are defined for every possible symbolic combination of the inputs, although 
not every rule is really individually provided in the rule base. Because missing input classifications are 
assumed to have a membership grade of true, in fact the union according to Lukasiewicz is applied on all 
classifications of the input in question, assuming consistent choices of membership functions for those 
classifications. So in fact a large imaginary rule base is defined which has a fuzzy rule for every situation, 
but only the relevant parts are actually provided. In this way it is possible to design fuzzy controllers which 
use different inputs in different situations: the inputs which are not relevant are simply ignored by the 
system.

2 The knowledge base
The knowledge base consists of rules and relations, which represent the knowledge in a logical way. The 
complete knowledge base can be divided into knowledge layers. The most primitive object is a fact. Rules 
and relations operate by means of conditions, actions and dimensions on objects, and thus can operate on 
facts.

2.1 Facts

The basic objects within the knowledge base are facts. Those facts can be pure abstract or can be linked with 
C-code. Each fact has a grade value, which denotes the truth of that fact. This value can be unknown or in 
the range from false (0) to true (1). A fact can be linked with C-code. This is done by using a RICE_Linker 
function. An example of linking a few facts with some C-code is

RICE_Linker(myLinker)
{

RICE_Link("is this true?", RICE_grade = 0.6);
RICE_Link("show truth value", printf("grade: %f\n", RICE_grade));

}

where RICE_grade is the grade value of the fact. The macro RICE_Linker starts a fact linker function and 
RICE_Link actually links a fact with some C-code. Assigning a value to the variable RICE_grade means 
that the inference engine gets that truth value returned when this fact is for example part of a condition. In 
this case the inference would get a truth value of 0.6 returned when testing the fact is this true? in a 
condition. When the fact is used in an action the variable RICE_grade holds the truth value at that moment. 
So in the second linked fact in the above example concluding the fact show truth value in an action will 
result in printing the string "grade: " followed by the current truth value and a carriage return. When this fact 
is situated in an action the execution of the action will depend on several other things. In section Actions this 
will be explained. In the chapter on how to build an application the RICE_Linker function will be discussed 
in more detail.



2.2 Rules

Rules consist of conditions and actions, which on their turn operate on an object, for example a fact. The 
basic form of a rule in general is

if <antecedent> then <consequent>

in which the antecedent is a set of conditions and the consequent a set of actions. The antecedent can be an 
intersection by using the And operator or a union in case of using the Or operator. Because of reasons 
founded in fuzzy set theory the type of operator should be the same. The next section will go deeper into 
those operators. The complete syntax of a rule is:

[Rule [<symbolic> [: <status = On>]]]
<condition>
...
<condition>
<action>
...
<action>

As can be seen a rule can optionally have a name and an initial status (default On). An example of a rule 
within RICE is:

Rule a rule for decreasing control signal
IfRun error is positive small
AndRun error change is negative big
ThenRun change control signal negative medium
ThenInf control signal is decreased

In the next section the conditions and actions used within rules will be discussed and will explain why a rule 
looks like the one in this example.

2.3 Conditions

Conditions form the antecedent of rules. The syntax of a condition is:

[Condition [<symbolic> [: <status = On>]]]
<type>(If | And | Or)[If][Not][<options>] <symbolic> [: <cut = 0.0>]

which could be used to represent a most simple condition like:

ZAnd weather is nice

where the type of the And operator is of the Z type, which means the Zadeh like implementation: min(a, b). 
This type of And operator is default, so the Z is redundant. An example of a more complex condition is:

Condition my condition : Off
POrIfNotRun some C-coded condition : 0.34

This condition needs probably some explanation. First of all this condition has a name my condition and an 
initial status of Off, which means the condition is initially not active. The default is an active condition (On). 
Secondly the second keyword construction consists of several parts. First of all the type of Or operator is of 
the P type, which means a union from probability theory: a+b-ab. The If added right after the Or will 
prevent the  optional run-time optimization algorithm moving this condition within the antecedent. So if this 
condition was for example the third within the antecedent, it will be so after optimization. The Not part 



within the keyword speaks for itself: a negation of the condition. The addition of Run to the keyword will 
force the inference engine to execute the corresponding C-code. After the colon a level-cut value is given. 
This means that if the returned grade value of the fact is lower than this level-cut it will be set to false (0). 
Another example of a condition is:

LOrLayOff some layer

This will test if the layer some layer is inactive. The type in this condition is of the L type (Lukasiewicz): 
max(a+b, 1). This condition shows how a condition can be used to get data from another object within the 
knowledge base.

2.4 Actions

Actions are the basic elements of the consequent of rules. The complete syntax of an action is:

[Action [<symbolic> [: <status = On>]]]
<type>(Then | Else)[Not][<options>] [: <grade = 1.0> [: <cut = 0.5>]]

A simple example of an action is:

PThen have a nice day

where the intersection is of the P type (see previous section). This intersection is performed on the resulting 
truth value of the antecedent of the rule and the grade provided for this specific action (default set to true 
(1)). The P type is the default type, so in this example redundant. Another more complicated example is:

ThenRulOff a rule with a name : 0.9 : 0.8

which will inactivate the rule a rule with a name in case the truth value of the antecedent part of the rule 
times 0.9 (because of P type) is not below 0.8.

2.5 Relations

Relations consist of dimensions, which, like condition and actions, will operate on objects. Relations provide 
a way to combine a set of facts of which one can be inferred from the others. This means that a dimension 
can be used like a condition as well as an action, depending upon the way of inference is applied on the 
relation. The syntax of a relation is:

[Relation <symbolic> [: <status = On>]]]
<dimension>
...
<dimension>

A relation defined as above can be compared with an algebraic equation: when all but one elements are 
known the unknown one can be calculated/inferred. For example, a bi-implication can be implemented by a 
relation using two dimensions. The next section will explain what dimensions look like.

2.6 Dimensions

A dimension is part of a set of dimension, forming together a relation. They can be regarded as a condition as 
well as an action. Whether a dimension is used as a condition or an action depends on how the relation is 
used by the inference engine: which fact is needed in case of backward reasoning, which facts are known in 
case of forward reasoning. The syntax of a dimension is:



[Dimension [<symbolic> [: <status = On>]]]
<type><type>Dim[Not][<opts>] <symbolic> [: <grade = 1.0> [: <cut = 0.0>]]

which is in fact a mix of the syntax of a condition and an action. For example, the dimension:

ZPDimNotRun an example dimension : 0.8 : 0.1

has a Z type of intersection when used as a condition and a P type of intersection when used as an action. 
Dimension inferred as conditions has a as default the Z intersection type and executed as action the default 
implication type is P. So a short notation for this example is:

DimNotRun an example dimension : 0.8 : 0.1

The grade value only has any meaning when the dimension is used as an action. The meaning of the level-cut 
value depends on the use of the dimension (conditions and actions both have a level-cut value). As can be 
seen from the syntax, dimensions can be named and assigned an initial status (default On). It is just another 
type of object in the knowledge base.

2.7 Layers

The knowledge in the knowledge base is seperated in one or more knowledge layers, which are inferred 
sequentially in the order as found in the knowledge base. Each layer is able to use all data inferred in the 
previous layers as well as it is able to use rules and relations from previous layers. So each layer can be seen 
as an extension of the previous layer(s). In each layer it is possible to perform initial actions. This is done by 
using the Init keyword. An example of this is:

Init initialize system

where initialize system can be linked with some C-code performing initialization tasks. In fact INIT can be 
seen as an action, so every construction of the Then or Else keyword allowed, can be used in combination 
with Init. For example:

InitRelOff some relation

will inactivate the relation some relation. You could use the Init keyword also to set the truth value of some 
facts to an initial value, like:

Init one of the facts : 0.3

which will set the initial truth value of the fact one of the facts to a value of 0.3.

3 Inference, reasoning and search
To inference your knowledge base the inference engine needs to perform reasoning and search methods. 
Currently depth-first backward and breadth-first forward reasoning is implemented. For real-time application 
the layers provide a way to apply the progressive reasoning principle. The forward and backward reasoning 
methods and how you will invoke those mechanisms in your knowledge base will be discussed in the 
following sections. The inference of the knowledge base is done by sequentially inferencing all layers. In 
case a layer is not active (Off) it will be skipped.



3.1 Breadth-first forward reasoning

In order to perform forward reasoning you need to specify starting data. With this starting data the forward 
reasoning mechanism will fire as much rules and relations as possible, using a breadth-first search method. 
Many times this can result in almost an exhaustive search. Starting data is denoted by the Data keyword:

Data <fact>

The inference engine will first check if this starting data is known. If not, it will perform depth-first 
backward reasoning (see next section) to get the starting data. In this example:

Data you are ok?

If you are ok?
Then keep it that way!

the inference engine will first get the starting data are you ok? and then perform forward reasoning, which 
will result in firing the rule. It is possible to have more than one facts as starting data. The inference engine 
will not use any rules and relations from succeeding knowledge layers. They will be regarded as inactive.

3.2 Depth-first backward reasoning

In order to inform the inference engine the knowledge layer should be inferred using the backward reasoning 
method, you should use the Goal keyword. The syntax for defining goals of the inference of a knowledge 
layer is:

Goal <fact>

For example:

Goal the final conlusion

will result in a backward reasoning (depth first) to prove the fact the final conclusion. All data inferred by 
previous layers and all rules and relation in those previous layers (when active of course) and the current one 
will be used to do so if necessary. When, for example, the following is found in the knowledge base

Goal the final conclusion

If some fact from a previous layer
Then the final conclusion

and the fact some fact from a previous layer is not known, then the inference engine will use rules and 
relations from previous layers to prove that fact and thus prove the goal of the current inference: the fact the  
final conclusion.

4 Macro's and include files
To make live easier when editing your knowledge base, two C-like things are offered. At every point in the 
knowledge base you can use two C-like things: the Define and the Include keyword. The macro definition 
works as follows:



Define <macroname>
... #<i> ...
... ... #<j>

in which <i> and <j> are integers (greater that 0) or the character '@', refering to the i

th

 and j

th

 argument or 
all arguments of the macro respectivily. In case of a macro definition all lines until the first blank line will be 
regarded as part of the macro. The syntax of using the macro somewhere in your knowledge base is:

<macroname> [<arg1> : ... : <argN>]

All the (optional) arguments of the macro are seperated by a colon (:). It is possible to use previously defined 
macro's in macro definitions. An example of the use of macro's is:

Define my_rules
If #1
Then #2 : 0.7
Rem faking an empty line
If #1
And #2
Then #1 and #2 : 0.4

...

my_rule a fact : another fact

which will result in two rules, namely:

If a fact
Then another fact : 0.7

If a fact
And another fact
Then a fact and another fact : 0.4

Using the Rem keyword an empty line can be introduced in the definition of a macro. Use of the '@' 
character is done like:

Define myAnd
PAnd #@

Define myThen
ZThen #@

myAnd a condition
myThen an action : 0.8

In this example norm types are defined for myAnd and myThen. Note that the names of macro's become in 
fact new keywords and therefor are not case-sensitive!

It is also possible to use include files like in C. The inclusion of other files is done according to the syntax:

Include <filename>

For example:

Include always.kbi



will include the file always.kbi. The function of this keyword is exactly like the '#include' preprocessor 
statement in the C programming language: the knowledge base is compiled just as if the file to be included is 
entirely included at the place where the Include keyword is found.

5 Building an application

This chapter will go through the steps necessary to build an application with RICE. This in combination with 
the examples provided with your copy of RICE should be sufficient. In order to build your own application 
using the RICE software, you should have all the necessary object modules and the include file RICE.H. 
Normally the object modules will be placed in a library. When building your application you should include 
the file RICE.H in the application files which call the RICE interface functions. It is also possible to include 
the header file RICEEASY.H instead of RICE.H. This will redefine all functions without the rice_ and 
RICE_ prefix.

5.1 Linking C(++) code to facts

To provide an open system and making a fast inference possible an easy linking of facts on the abstract level 
resided in the knowledge base and plain C- or C++ code resided in the application source code is provided. 
This linking is done by means of so-called RICE_Linker functions. An example of such a RICE_Linker 
function is:

RICE_Linker(myLinker)
{

RICE_Link("is this true?", RICE_grade = 0.6);
RICE_Link("show truth value", printf("grade: %f\n", RICE_grade));

}

Such a function is linked to an expert system by the rice_UseLinker function and will be explained in the 
section about user supplied code. Linking fact sunny country with C code can be done by:

RICE_Link("sunny country",
float sunshine_fac = 3.0*sun_shine;
RICE_grade = sunny_cntry(sunshine_fac);

);

or for example by:

RICE_Link("sunny country",
if(sun_shine >= rain_fall)

RICE_grade = 1.0;
else

RICE_grade = (sun_shine/rain_fall);
);

Connecting the action fact make signal big with a real action performed by C-code, can be achieved by:

 RICE_Link("make signal big", make_big(sig, RICE_grade));

or by:



RICE_Link("make signal big", 
{

int i; 
for(i = 0; i < RICE_grade*10; i++) sig += SIG_STEP;

});

One thing you should known is that most C preprocessors get troubled when you use comma's not 
surrounded by extra parenthesis within the C-code part of the RICE_Link macro. For example

 RICE_Link("linking this fact can cause a preprocessor error",
{

int i, j;   /* probably results in error... */
for(i = 0; i < 3; i++)

for(j = 0; j < 6; j++)
some_function(i, j);

});

will get the C preprocessor to produce an error. A way to avoid this is by using the following trick:

RICE_Link("linking this fact will not cause a preprocessor error", 
{

int i; int j;   /* use this trick... */
for(i = 0; i < 3; i++)

for(j = 0; j < 6; j++)
some_function(i, j);

});

There is no problem calling functions from within the C-code part of the RICE_Link macro, because the 
have surrounding parenthesis. Within every RICE_Link part of a RICE_Linker function the following 
variables are present:

int rice_id : expert system identifier
int rice_argc : number of arguments
char *rice_argv[] : argument list
float *rice_grade : grade of truth at current moment

The argument passing is compatible with the argument passing of the command-line arguments to the main-
function in C(++). Those variables all have macro equivalents. At the moment they do not differ, except for 
the variable *rice_grade which has a non-pointer macro equivalent RICE_grade. However, it is suggested 
to use the macro equivalents. The following constants are defined:

RICE_TRUE : 1.0
RICE_FALSE : 0.0
RICE_UNKNOWN : -1.0

These constants are defined in the file RICE.H so theoretically their use is not restricted to the 
RICE_Linker functions, but in practise there is not much need for them outside these functions.

5.2 Interfacing functions

A number of functions are provided for interfacing your application with the RICE software. The functions 
and their working will be discussed now one by one. First the expert system (ES) functions will de 
described:

Function: int rice_CheckES(id);
Arguments: Expert system identifier id.



Return value: On success 0, otherwise -1.
Explanation: This function checks whether expert system id exists or not.

Function: int rice_CopyES(int id1, int id2);
Arguments: Expert system identifiers id1 and id2.
Return value: On success 0 or expert system identifier, otherwise -1.
Explanation: This function copies expert system id1 to id2. In case id1 equals 0 the function will 

return the identifier of a new expert system.

Function: int rice_CreateES(void);
Arguments: None.
Return value: On success an expert system identifier (>0), otherwise -1.
Explanation: This function creates a new expert system.

Function: int rice_DeleteES(int id);
Arguments: Expert system identifier id.
Return value: On success 0, otherwise -1.
Explanation: This function deletes a previously created (by means of rice_CreateES) expert 

system id.

Function: int rice_MoveES(int id1, int id2);
Arguments: Expert system identifiers id1 and id2.
Return value: On success 0 or expert system identifier (>0), otherwise -1.
Explanation: This function moves expert system id1 to id2. In case id1 equals 0 the function will 

return the identifier of a new expert system.

To manipulate the knowledge within an expert system kernel, created and manipulated with the previously 
described functions, one can use the knowledge base (KB) functions:

Function: int rice_ClearKB(id);
Arguments: Expert system identifier id.
Return value: On success 0, otherwise -1.
Explanation: This function clears the knowledge base of expert system id. The truth values of all 

active facts are set to RICE_UNKNOWN.

Function: int rice_CompileKB(int id, char *fnm);
Arguments: Expert system identifier id and name fnm of ascii knowledge base file.
Return value: On success 0, otherwise -1.
Explanation: This function compiles the ascii knowledge base in the file fnm into the knowledge 

base of expert system id. After this the knowledge base can be inferred.

Function: int rice_CopyKB(int id1, int id2);
Arguments: Expert system identifiers id1 and id2.
Return value: On success 0, otherwise -1.
Explanation: This function copies the knowledge base of expert system id2 to id1.

Function: int rice_DestroyKB(int id);
Arguments: Expert system identifier id.
Return value: On success 0, otherwise -1.
Explanation: This function destroys the knowledge base of expert system id completely. You 

normally do not use this function.

Function: int rice_InferKB(int id);
Arguments: Expert system identifier id.
Return value: On success 0, otherwise -1.
Explanation: This function starts the inference of the knowledge base of expert system id, 

previously compiled or loaded.



Function: int rice_LoadKB(int id, char *fnm);
Arguments: Expert system identifier id and name fnm of binary knowledge base file.
Return value: On success 0, otherwise -1.
Explanation: This function loads the binary knowledge base in the file fnm into the knowledge 

base of expert system id. The binary knowledge base should by saved before by the 
function rice_SaveKB.

Function: int rice_MoveKB(int id1, int id2);
Arguments: Expert system identifiers id1 and id2.
Return value: On success 0, otherwise -1.
Explanation: This function moves the knowledge base of expert system id2 to id1.

Function: int rice_RebuildKB(int id, char *fnm);
Arguments: Expert system identifier id and name fnm of ascii knowledge base file.
Return value: On success 0, otherwise -1.
Explanation: This function rebuilds the knowledge base of expert system id to an ascii file 

named fnm.

Function: int rice_SaveKB(int id, char *fnm);
Arguments: Expert system identifier id and name fnm of binary knowledge base file.
Return value: On success 0, otherwise -1
Explanation: This function saves the knowledge base of expert system id to a binary file named 

fnm. 

Function: int rice_SwapKB(int id, void (*fnc)(void));
Arguments: Expert system identifier id and function pointer fnc.
Return value: On success 0, otherwise -1
Explanation: This function swaps the knowledge base of expert system id temporarily from 

memory to execute function fnc.

These functions are the interfacing functions for run-time communication with the expert system kernels. 
The next section will describe the explanation utilities.

5.3 Explanation utilities

There are two function which can be used for explanation of the inferring of a knowledge base by RICE. 
These functions are:

Function: int rice_ExplainHow(int id, char *fct, int dpt);
Arguments: Expert system identifier id and desired depth value dpt.
Return value: On success 0, otherwise -1
Explanation: This function explains for dpt levels deep how the inference engine came to 

conclude fact fct, when inferring knowledge base of expert system id. A dpt value 
of -1 will result in unlimited depth.

Function: int rice_ExplainWhy(int id, char *fct, int dpt);
Arguments: Expert system identifier id and desired depth value dpt.
Return value: On success 0, otherwise -1
Explanation: This function explains for dpt levels deep why the inference engine came to infer 

fact fct, when inferring knowledge base of expert system id. A dpt value of -1 will 
result in unlimited depth.

These functions can also be used using the following macro:

RICE_Explain(id, <Function>, fct, dpt);



which replaces the function:

rice_Explain<Function>(id, fct, dpt);

The output of both these functions can be redirected using function rice_RedirectExplain, which will be 
explained also in this chapter. Default all explanation will be done using the standard output.

5.4 User supplied code

To make RICE use your own linked facts and self coded logical operators the so-called Use-functions are 
available: UseLinker, UseIntersection and UseUnion. The will be discussed hereafter one by one.

Function: int rice_UseLinker(int id, int cnt, RICE_LINKER lnk[]);
Arguments: Expert system identifier id, number of linker functions cnt and array with linker 

function pointers lnk.
Return value: On success 0, otherwise -1.
Explanation: With this function you can supply a number (cnt) of linker functions, by means of 

lnk, to expert system id.

Function: int rice_UseIntersection(int id, int cnt, RICE_NORM nrm[]);
Arguments: Expert system identifier id, number of intersection norms cnt and array with norm 

function pointers nrm.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to supply a number (cnt) of self-written intersection 

operators (lnk) to expert system id.

Function: int rice_UseUnion(int id, int cnt, RICE_NORM nrm[]);
Arguments: Expert system identifier id, number of union norms cnt and array with norm 

function pointers nrm.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to supply a number (cnt) of self-written union operators 

(lnk) to expert system id.

The Use-functions can be replaced by the following macro calls:

RICE_Use(id, Linker, cnt, lnk);
RICE_Use(id, Intersection, cnt, nrm);
RICE_Use(id, Union, cnt, nrm);

These macro's call the corresponding functions, so type checking is performed anyway. In the following 
example a user-written intersection and a linker function are provided to an expert system:

float my_and(float x, float y)
{

return x*y; /* is in fact probability intersection */
}
...
RICE_Linker(myLinker)
{

RICE_Link("is this true?", RICE_grade = 0.6);
RICE_Link("show truth value", printf("grade: %f\n", RICE_grade));

}
...
void aFunction(void)



{
RICE_LINKER linkerList[] = {myLinker};
RICE_NOrM andPtr = myAnd;
int anES;
...
anES = rice_CreateES();
rice_UseLinker(anES, 1, linkerList);
RICE_Use(anES, Intersection, 1, &andPtr);
...

}

As can be seen in the example the Use-function or macro's need a function pointer array. Two ways of doing 
this in case there is only one function pointer are shown.

5.5 Adjustment functions

It is possible to make some changes to the default behaviour of the RICE software so it will fit better into 
your application or will give better performance at run-time. To do so, several macro's and functions are 
available: Redirect-, Set-, Reset- and Switch-functions. First the Redirect-functions will be discussed. They 
provide a way to let RICE perform certain things using your functions and not its own. The redirection-
functions will be explained now one by one:

Function: int rice_RedirectAbort(int id, (void *fnc)(void));
Arguments: Expert system identifier id and function pointer fnc.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to supply your own abort function fnc for expert system 

id. The abort function is called in case of fatal errors.

Function: int rice_RedirectAsk(int id, (void *fnc)(int, int, char *[], float *));
Arguments: Expert system identifier id and function pointer fnc.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to supply your own ask function (Ask or Usr) for expert 

system id, where fnc is the function name. The function fnc receives four 
arguments: an expert system identifier, number of arguments, argument list and a 
grade.

Function: int rice_RedirectExplain(int id, (void *fnc)(int, char *));
Arguments: Expert system identifier id and function pointer fnc.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to redirect the explaining from the functions 

rice_ExplainHow and rice_ExplainWhy to function fnc for expert system id.  The 
function fnc receives two arguments: an expert system identifier and a string.

Function: int rice_RedirectInform(int id, (void *fnc)(int, char *[], float *));
Arguments: Expert system identifier id and function pointer fnc.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to supply your own inform function fnc (Inf or Usr) for 

expert system id. The function fnc receives four arguments: an expert system 
identifier, number of arguments, argument list and a grade.

Function: int rice_RedirectProtect(int id, (void *fnc)(int));
Arguments: Expert system identifier id and function pointer fnc.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to supply your own protect function fnc for expert 

system id. The protect function is used in case critical parts within the inference 
engine need to be protected from interrupting events.



Function: int rice_RedirectReport(int id, (void *fnc)(int, int, char *));
Arguments: Expert system identifier id and function pointer fnc.
Return value: On success 0, otherwise -1.
Explanation: This function can be used to supply your own report function fnc for expert system 

id. The report function is used in case of warnings (RICE_WARNING), errors 
(RICE_ERROR) or informational messages (RICE_MESSAGE) during 
operations by the interfacing functions. The function fnc receives three arguments: 
an expert system identifier, a message type and a message.

Each Redirect-function:

rice_Redirect<Function>(id, fnc);

can also be replaced by a corresponding macro:

RICE_Redirect(id, <Function>, fnc);

The following example shows redirection of the Ask-function in some application:

void myAsk(int id, int argc, char *argv[], float *grd)
{

printf("%s ? ", argv[0]);
scanf("%f", grd);

}
...
void aFfunction(void)
{

int myES;
...
myES = rice_CreateES();
...
rice_RedirectAsk(myES, myAsk);
/* is equal to: RICE_Redirect(myES, Ask, myAsk) */
...

}

The set-, reset- and switch-functions provide a way to set, reset and switch the run-time settings of the RICE 
software. The following settings and their default value are currently implemented:

Interactive: Ask from and inform to user (On)
Recursive: Allow recursively firing of rules and relations (Off)
Repetitive: Run code each time indicated by Run-key (On)
Selective: Select crucial conditions to increase speed (Off)

The syntax of the macro's is like:

RICE_<Command><Flag>(id);

or like:

RICE_<Command>(id, <flag>);

The set-, reset- and switch-macro's all use the functions:

rice_Set<Flag>(int id, int act);



where the appropriate flag of expert system id will be set if act is greater than zero, reset if act equals zero 
and switched if act is less than zero. For example, setting the Selective-flag for expert system id on can be 
done in the following three ways:

RICE_SetSelective(id);
RICE_Set(id, Selective);
rice_SetSelective(id, 1);

Whatever seems more convenient to use can be used.

5.6 The C++ wrapping class RICE

For easy use of the RICE toolbox in C++ applications a C++ wrapping class RICE is provided. The 
definition of this wrapping class can be found in the header file RICE.HPP. This header file is automaticaly 
included in the header file RICE.H when a C++ compiler is used. The class RICE has the following member 
functions (the working of these member functions can be found in the previous sections). The following 
constructors are provided:

RICE::RICE();
RICE::RICE(RICE& id);

A destructor is provided but is normally not used directly in the application code. Overloaded operators for 
the RICE class are:

RICE& RICE::operator =(RICE& id);
RICE& RICE::operator =(char *fnm);
RICE& RICE::operator +=(char *fnm);

These functions copy an expert system, compile an ascii knowledge base file and append an ascii knowledge 
base file, respectively. The redirection member functions are:

int RICE::RedirectAsk(void (*fnc)(int, int, char *[], float *));
int RICE::RedirectInform(void (*fnc)(int, int, char *[], float *));
int RICE::RedirectReport(void (*fnc)(int, int, char *));
int RICE::RedirectExplain(void (*fnc)(int, char *));
int RICE::RedirectProtect(void (*fnc)(int));
int RICE::RedirectAbort(void (*fnc)(void))

The explanation member functions are:

int RICE::ExplainHow(char *fct, int dpt)
int RICE::ExplainWhy(char *fct, int dpt)

The set, reset and switch member functions of the RICE class are:

int RICE::SetAdaptive(int act = 1);
int RICE::SetInteractive(int act = 1);
int RICE::SetRecursive(int act = 1);
int RICE::SetRepetitive(int act = 1);
int RICE::SetSelective(int act = 1);

int RICE::ResetAdaptive();
int RICE::ResetInteractive();
int RICE::ResetRecursive();
int RICE::ResetRepetitive();
int RICE::ResetSelective();



int RICE::SwitchAdaptive();
int RICE::SwitchInteractive();
int RICE::SwitchRecursive();
int RICE::SwitchRepetitive();
int RICE::SwitchSelective();

The set member functions provide the rice_Set<Flag> function as well as the RICE_Set macro 
compatibility using a default value. The use member functions are:

int RICE::UseLinker(int num, RICE_LINKER *lnk);
int RICE::UseIntersection(int num, RICE_NORM *nrm);
int RICE::UseUnion(int num, RICE_NORM *nrm);

The knowledge base manipulating member functions are:

int RICE::AppendKB(char *fnm);
int RICE::ClearKB();
int RICE::CompileKB(char *fnm);
int RICE::DestroyKB();
int RICE::InferKB();
int RICE::LoadKB(char *fnm);
int RICE::RebuildKB(char *fnm);
int RICE::SaveKB(char *fnm);
int RICE::SwapKB(void (*fnc)());
int RICE::CopyKB(RICE& id);
int RICE::MoveKB(RICE& id);

The functions manipulation the basic expert system functions (creating, deleting, ...) are hidden by the class 
definition. All expert system adjustment functions, functions for user supplied code, explanation functions 
and knowledge base manipulating functions are transformed into member functions.

5.7 Tools and utilities 

When building fuzzy expert systems you normally need some additional software for manipulation of fuzzy 
sets, defuzzification, etc. In the directory RICE\TOOLS a source file (FUZZY.C) and header file 
(FUZZY.H), as well as a small documentation file (FUZZY.DOC), can be found for dealing with fuzzy sets 
in your application.

Several utility programs are provided along with the RICE software. These utilities include a RICE 
knowledge base command-line compiler (RICECC) and a RICE knowledge base preprocessor (RICEPP). 
These utilities can be found in the directory RICE\BIN. Starting a utility without arguments will result in 
some information on how to use the program.

5.8 Examples

When receiving a copy of the RICE software a number of examples are included. They try to explain some 
of the things possible when using RICE. If you as a user of RICE has build an understandable and compact 
example, and which you think has some educational value to others, do not hesitate to contact the author. 
The more examples the more future users can profit of experience of users of the RICE software.

By now there are two examples provided in the RICE\EXAMPLES directory: a simple application named 
SIMPLE (a C++ version SIMPLEPP, an upgrade version SIMPLE3X and a version using the easy macro's, 
named SIMPLEEC, are also supplied) for performing the interfacing functions and a game example GAME, 



which lets you play tic-tac-toe against an expert system or let two expert systems play against each other. 
Along with the examples small documentation files (*.DOC) with information on how to build the examples 
and makefiles are provided.

6 Copyright, warranty and updates
This document and the current version of RICE are copyrighted by the author under the condition of the 
GNU General Public License. The RICE toolbox is free software; you can redistribute it and/or modify it 
under the terms of the GNU General Public License as published by the Free Software Foundation; either 
version 2 of the License, or (at your option) any later version. This toolbox is distributed in the hope that it 
will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 
License for more details. You should have received a copy of the GNU General Public License (the file 
COPYING) along with this document; if not, write to the:

Free Software Foundation, Inc.
675 Mass Ave, Cambridge
MA 02139, U.S.A.

For updates you should send a request for the latest version of the RICE software to the author. The address 
for correspondence is:

René Jager

Delft University of Technology
Department of Electrical Engineering
Control Laboratory
Room 12.06

Mekelweg 4
P.O. Box 5031
2600 GA  Delft
The Netherlands

Phone: (015) 78 51 14
Telex: 38151 butud nl
Fax: +31-15 65 67 38
E-mail: R.Jager@ET.TUDelft.NL

In case you discover bugs or have suggestions or remarks, please report those to the author.
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Appendix A: Syntax
<layer>

[Layer [<symbolic> [: <status = On>]]]
...
<data>
...
<goal>
...
<init>
...
<rule>
...
<relation>
...

<data>
Data <symbolic>

<goal>
Goal <symbolic>

<init>
Init[<options>] <symbolic> [: <grade = 1.0>]

<rule>
[Rule [<symbolic> [: <status = On>]]]
<condition>
...
<condition>
<action>
...
<action>

<relation>
[Relation <symbolic> [: <status = On>]]]
<dimension>
...
<dimension>

<condition>
[Condition [<symbolic> [: <status = On>]]]
<type>(If | And | Or)[If][Not][<options>] <symbolic> [: <cut = 0.0>]

<action>
[Action [<symbolic> [: <status = On>]]]
<type>(Then | Else)[Not][<options>] [: <grade = 1.0> [: <cut = 0.5>]]

<dimension>
[Dimension [<symbolic> [: <status = On>]]]
<type><type>Dim[Not][<options] <symbolic> [: <grade = 1.0> [: <cut = 0.0>]]

<symbolic>
character string

<status>



On, Off

<grade>
float in range [0, 1]

<cut>
float in range [0, 1]

<type>
L, P, Z, U[<index>]

<index>
integer (default 1)

<options>
Run, Usr, Lay<mode>, InvLay, (Con | Act | Dim)Cut, (Act | Dim)Grd,
(Lay | Rul | Rel | Con | Act | Dim)<status>

<mode>
Bkw, Frw



Appendix B: Keywords
Act Referencing a action.

Action Defining a new action with possible symbolic for reference and possible initial status.

And Logical intersection operator.

Bkw Backward (depth-first) reasoning mode of layer.

Con Referencing a condition.

Condition Defining a new condition with possible symbolic for reference and possible initial status.

Cut Refers to the level-cut of a condition, an action or a dimension and acts more-or-less as a 
logic threshold.

Data Defining a fact to be the starting data for forward reasoning in the current layer.

Define Defining a macro like in C.

Dim Logical relation (mixed intersection and implication) operator, or referencing a 
dimension.

Dimension Defining a new dimension with possible symbolic for reference and possible initial status.

Else Implication, performed when degree of antecedent of rule is equal or less than the cut 
value.

Frw Forward (breadth-first) reasoning mode of layer.

Goal Defining a fact to be the goal of backward reasoning in the current layer.

Grd Refers to grade of an action or a dimension.

How Starting explaination utility from within an action.

If Preceeding the first condition within the antecedent of a rule or preventing the inference 
engine to be selective (when this mode is on) in trying to prove conditions above and 
beneath the condition in question.

Include Includes a file like in C.

Init An initial action for the current layer with a possible.

Inv Invokes a layer (should be followed by Lay keyword).

L Lukasiewicz type of fuzzy logic: max(p + q - 1, 0) for intersection and min(p + q, 0) for 
union.

Lay Referencing a layer.

Layer Defining a new layer with possible symbolic for reference and possible initial status.

Not Negation of (fuzzy) logic: (1 - p).



Off Inactive status of object.

On Active status of object.

Or Logical union operator.

P Probabilistic type of fuzzy logic: (pq) for intersection and (p + q - pq) for union.

Rel Referencing a relation.

Relation Defining a new relation with possible symbolic for reference and possible initial status.

Rul Referencing a rule.

Rule Defining a new rule with possible symbolic for reference and possible initial status.

Run The symbolic in the condition, action or dimension is related to C-code, which has to be 
executed.

Shw Starting explaination utility from condition, action or dimension.

Then Implication, performed when degree of antecedent of rule is equal or more than the cut 
value.

U User type of fuzzy logic, a user supplied function for intersection or union is used (see 
rice_UseIntersection and rice_UseUnion).

Usr The symbolic is going to be asked when used in condition, informed when used in an 
action and asked or informed when used in a dimension, depending on the direction the 
relation is inferred.

Why Starting explaination utility from condition.

Z Zadeh type of fuzzy logic: min(p, q) for intersection and max(p, q) for union.


