add DEBUG_ALL flag
[qemu/qemu-JZ.git] / cpu-exec.c
blobf574877e6f7de3e078205339c595b1318c844d48
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #define CPU_NO_GLOBAL_REGS
22 #include "exec.h"
23 #include "disas.h"
24 #include "tcg.h"
25 #include "kvm.h"
27 #if !defined(CONFIG_SOFTMMU)
28 #undef EAX
29 #undef ECX
30 #undef EDX
31 #undef EBX
32 #undef ESP
33 #undef EBP
34 #undef ESI
35 #undef EDI
36 #undef EIP
37 #include <signal.h>
38 #ifdef __linux__
39 #include <sys/ucontext.h>
40 #endif
41 #endif
43 #if defined(__sparc__) && !defined(HOST_SOLARIS)
44 // Work around ugly bugs in glibc that mangle global register contents
45 #undef env
46 #define env cpu_single_env
47 #endif
49 int tb_invalidated_flag;
51 //#define DEBUG_EXEC
52 //#define DEBUG_SIGNAL
54 void cpu_loop_exit(void)
56 /* NOTE: the register at this point must be saved by hand because
57 longjmp restore them */
58 regs_to_env();
59 longjmp(env->jmp_env, 1);
62 /* exit the current TB from a signal handler. The host registers are
63 restored in a state compatible with the CPU emulator
65 void cpu_resume_from_signal(CPUState *env1, void *puc)
67 #if !defined(CONFIG_SOFTMMU)
68 #ifdef __linux__
69 struct ucontext *uc = puc;
70 #elif defined(__OpenBSD__)
71 struct sigcontext *uc = puc;
72 #endif
73 #endif
75 env = env1;
77 /* XXX: restore cpu registers saved in host registers */
79 #if !defined(CONFIG_SOFTMMU)
80 if (puc) {
81 /* XXX: use siglongjmp ? */
82 #ifdef __linux__
83 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
84 #elif defined(__OpenBSD__)
85 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
86 #endif
88 #endif
89 env->exception_index = -1;
90 longjmp(env->jmp_env, 1);
93 /* Execute the code without caching the generated code. An interpreter
94 could be used if available. */
95 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
97 unsigned long next_tb;
98 TranslationBlock *tb;
100 /* Should never happen.
101 We only end up here when an existing TB is too long. */
102 if (max_cycles > CF_COUNT_MASK)
103 max_cycles = CF_COUNT_MASK;
105 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
106 max_cycles);
107 env->current_tb = tb;
108 /* execute the generated code */
109 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
111 if ((next_tb & 3) == 2) {
112 /* Restore PC. This may happen if async event occurs before
113 the TB starts executing. */
114 cpu_pc_from_tb(env, tb);
116 tb_phys_invalidate(tb, -1);
117 tb_free(tb);
120 static TranslationBlock *tb_find_slow(target_ulong pc,
121 target_ulong cs_base,
122 uint64_t flags)
124 TranslationBlock *tb, **ptb1;
125 unsigned int h;
126 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
128 tb_invalidated_flag = 0;
130 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
132 /* find translated block using physical mappings */
133 phys_pc = get_phys_addr_code(env, pc);
134 phys_page1 = phys_pc & TARGET_PAGE_MASK;
135 phys_page2 = -1;
136 h = tb_phys_hash_func(phys_pc);
137 ptb1 = &tb_phys_hash[h];
138 for(;;) {
139 tb = *ptb1;
140 if (!tb)
141 goto not_found;
142 if (tb->pc == pc &&
143 tb->page_addr[0] == phys_page1 &&
144 tb->cs_base == cs_base &&
145 tb->flags == flags) {
146 /* check next page if needed */
147 if (tb->page_addr[1] != -1) {
148 virt_page2 = (pc & TARGET_PAGE_MASK) +
149 TARGET_PAGE_SIZE;
150 phys_page2 = get_phys_addr_code(env, virt_page2);
151 if (tb->page_addr[1] == phys_page2)
152 goto found;
153 } else {
154 goto found;
157 ptb1 = &tb->phys_hash_next;
159 not_found:
160 /* if no translated code available, then translate it now */
161 tb = tb_gen_code(env, pc, cs_base, flags, 0);
163 found:
164 /* we add the TB in the virtual pc hash table */
165 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
166 return tb;
169 static inline TranslationBlock *tb_find_fast(void)
171 TranslationBlock *tb;
172 target_ulong cs_base, pc;
173 int flags;
175 /* we record a subset of the CPU state. It will
176 always be the same before a given translated block
177 is executed. */
178 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
179 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
180 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
181 tb->flags != flags)) {
182 tb = tb_find_slow(pc, cs_base, flags);
184 return tb;
187 static CPUDebugExcpHandler *debug_excp_handler;
189 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
191 CPUDebugExcpHandler *old_handler = debug_excp_handler;
193 debug_excp_handler = handler;
194 return old_handler;
197 static void cpu_handle_debug_exception(CPUState *env)
199 CPUWatchpoint *wp;
201 if (!env->watchpoint_hit)
202 TAILQ_FOREACH(wp, &env->watchpoints, entry)
203 wp->flags &= ~BP_WATCHPOINT_HIT;
205 if (debug_excp_handler)
206 debug_excp_handler(env);
209 /* main execution loop */
211 int cpu_exec(CPUState *env1)
213 #define DECLARE_HOST_REGS 1
214 #include "hostregs_helper.h"
215 int ret, interrupt_request;
216 TranslationBlock *tb;
217 uint8_t *tc_ptr;
218 unsigned long next_tb;
220 if (cpu_halted(env1) == EXCP_HALTED)
221 return EXCP_HALTED;
223 cpu_single_env = env1;
225 /* first we save global registers */
226 #define SAVE_HOST_REGS 1
227 #include "hostregs_helper.h"
228 env = env1;
230 env_to_regs();
231 #if defined(TARGET_I386)
232 /* put eflags in CPU temporary format */
233 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
234 DF = 1 - (2 * ((env->eflags >> 10) & 1));
235 CC_OP = CC_OP_EFLAGS;
236 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
237 #elif defined(TARGET_SPARC)
238 #elif defined(TARGET_M68K)
239 env->cc_op = CC_OP_FLAGS;
240 env->cc_dest = env->sr & 0xf;
241 env->cc_x = (env->sr >> 4) & 1;
242 #elif defined(TARGET_ALPHA)
243 #elif defined(TARGET_ARM)
244 #elif defined(TARGET_PPC)
245 #elif defined(TARGET_MIPS)
246 #elif defined(TARGET_SH4)
247 #elif defined(TARGET_CRIS)
248 /* XXXXX */
249 #else
250 #error unsupported target CPU
251 #endif
252 env->exception_index = -1;
254 /* prepare setjmp context for exception handling */
255 for(;;) {
256 if (setjmp(env->jmp_env) == 0) {
257 env->current_tb = NULL;
258 /* if an exception is pending, we execute it here */
259 if (env->exception_index >= 0) {
260 if (env->exception_index >= EXCP_INTERRUPT) {
261 /* exit request from the cpu execution loop */
262 ret = env->exception_index;
263 if (ret == EXCP_DEBUG)
264 cpu_handle_debug_exception(env);
265 break;
266 } else if (env->user_mode_only) {
267 /* if user mode only, we simulate a fake exception
268 which will be handled outside the cpu execution
269 loop */
270 #if defined(TARGET_I386)
271 do_interrupt_user(env->exception_index,
272 env->exception_is_int,
273 env->error_code,
274 env->exception_next_eip);
275 /* successfully delivered */
276 env->old_exception = -1;
277 #endif
278 ret = env->exception_index;
279 break;
280 } else {
281 #if defined(TARGET_I386)
282 /* simulate a real cpu exception. On i386, it can
283 trigger new exceptions, but we do not handle
284 double or triple faults yet. */
285 do_interrupt(env->exception_index,
286 env->exception_is_int,
287 env->error_code,
288 env->exception_next_eip, 0);
289 /* successfully delivered */
290 env->old_exception = -1;
291 #elif defined(TARGET_PPC)
292 do_interrupt(env);
293 #elif defined(TARGET_MIPS)
294 do_interrupt(env);
295 #elif defined(TARGET_SPARC)
296 do_interrupt(env);
297 #elif defined(TARGET_ARM)
298 do_interrupt(env);
299 #elif defined(TARGET_SH4)
300 do_interrupt(env);
301 #elif defined(TARGET_ALPHA)
302 do_interrupt(env);
303 #elif defined(TARGET_CRIS)
304 do_interrupt(env);
305 #elif defined(TARGET_M68K)
306 do_interrupt(0);
307 #endif
309 env->exception_index = -1;
311 #ifdef USE_KQEMU
312 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
313 int ret;
314 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
315 ret = kqemu_cpu_exec(env);
316 /* put eflags in CPU temporary format */
317 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
318 DF = 1 - (2 * ((env->eflags >> 10) & 1));
319 CC_OP = CC_OP_EFLAGS;
320 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
321 if (ret == 1) {
322 /* exception */
323 longjmp(env->jmp_env, 1);
324 } else if (ret == 2) {
325 /* softmmu execution needed */
326 } else {
327 if (env->interrupt_request != 0) {
328 /* hardware interrupt will be executed just after */
329 } else {
330 /* otherwise, we restart */
331 longjmp(env->jmp_env, 1);
335 #endif
337 if (kvm_enabled()) {
338 kvm_cpu_exec(env);
339 longjmp(env->jmp_env, 1);
342 next_tb = 0; /* force lookup of first TB */
343 for(;;) {
344 interrupt_request = env->interrupt_request;
345 if (unlikely(interrupt_request)) {
346 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
347 /* Mask out external interrupts for this step. */
348 interrupt_request &= ~(CPU_INTERRUPT_HARD |
349 CPU_INTERRUPT_FIQ |
350 CPU_INTERRUPT_SMI |
351 CPU_INTERRUPT_NMI);
353 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
354 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
355 env->exception_index = EXCP_DEBUG;
356 cpu_loop_exit();
358 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
359 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
360 if (interrupt_request & CPU_INTERRUPT_HALT) {
361 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
362 env->halted = 1;
363 env->exception_index = EXCP_HLT;
364 cpu_loop_exit();
366 #endif
367 #if defined(TARGET_I386)
368 if (env->hflags2 & HF2_GIF_MASK) {
369 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
370 !(env->hflags & HF_SMM_MASK)) {
371 svm_check_intercept(SVM_EXIT_SMI);
372 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
373 do_smm_enter();
374 next_tb = 0;
375 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
376 !(env->hflags2 & HF2_NMI_MASK)) {
377 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
378 env->hflags2 |= HF2_NMI_MASK;
379 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
380 next_tb = 0;
381 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
382 (((env->hflags2 & HF2_VINTR_MASK) &&
383 (env->hflags2 & HF2_HIF_MASK)) ||
384 (!(env->hflags2 & HF2_VINTR_MASK) &&
385 (env->eflags & IF_MASK &&
386 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
387 int intno;
388 svm_check_intercept(SVM_EXIT_INTR);
389 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
390 intno = cpu_get_pic_interrupt(env);
391 if (loglevel & CPU_LOG_TB_IN_ASM) {
392 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
394 do_interrupt(intno, 0, 0, 0, 1);
395 /* ensure that no TB jump will be modified as
396 the program flow was changed */
397 next_tb = 0;
398 #if !defined(CONFIG_USER_ONLY)
399 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
400 (env->eflags & IF_MASK) &&
401 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
402 int intno;
403 /* FIXME: this should respect TPR */
404 svm_check_intercept(SVM_EXIT_VINTR);
405 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
406 if (loglevel & CPU_LOG_TB_IN_ASM)
407 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
408 do_interrupt(intno, 0, 0, 0, 1);
409 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
410 next_tb = 0;
411 #endif
414 #elif defined(TARGET_PPC)
415 #if 0
416 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
417 cpu_ppc_reset(env);
419 #endif
420 if (interrupt_request & CPU_INTERRUPT_HARD) {
421 ppc_hw_interrupt(env);
422 if (env->pending_interrupts == 0)
423 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
424 next_tb = 0;
426 #elif defined(TARGET_MIPS)
427 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
428 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
429 (env->CP0_Status & (1 << CP0St_IE)) &&
430 !(env->CP0_Status & (1 << CP0St_EXL)) &&
431 !(env->CP0_Status & (1 << CP0St_ERL)) &&
432 !(env->hflags & MIPS_HFLAG_DM)) {
433 /* Raise it */
434 env->exception_index = EXCP_EXT_INTERRUPT;
435 env->error_code = 0;
436 do_interrupt(env);
437 next_tb = 0;
439 #elif defined(TARGET_SPARC)
440 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
441 (env->psret != 0)) {
442 int pil = env->interrupt_index & 15;
443 int type = env->interrupt_index & 0xf0;
445 if (((type == TT_EXTINT) &&
446 (pil == 15 || pil > env->psrpil)) ||
447 type != TT_EXTINT) {
448 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
449 env->exception_index = env->interrupt_index;
450 do_interrupt(env);
451 env->interrupt_index = 0;
452 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
453 cpu_check_irqs(env);
454 #endif
455 next_tb = 0;
457 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
458 //do_interrupt(0, 0, 0, 0, 0);
459 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
461 #elif defined(TARGET_ARM)
462 if (interrupt_request & CPU_INTERRUPT_FIQ
463 && !(env->uncached_cpsr & CPSR_F)) {
464 env->exception_index = EXCP_FIQ;
465 do_interrupt(env);
466 next_tb = 0;
468 /* ARMv7-M interrupt return works by loading a magic value
469 into the PC. On real hardware the load causes the
470 return to occur. The qemu implementation performs the
471 jump normally, then does the exception return when the
472 CPU tries to execute code at the magic address.
473 This will cause the magic PC value to be pushed to
474 the stack if an interrupt occured at the wrong time.
475 We avoid this by disabling interrupts when
476 pc contains a magic address. */
477 if (interrupt_request & CPU_INTERRUPT_HARD
478 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
479 || !(env->uncached_cpsr & CPSR_I))) {
480 env->exception_index = EXCP_IRQ;
481 do_interrupt(env);
482 next_tb = 0;
484 #elif defined(TARGET_SH4)
485 if (interrupt_request & CPU_INTERRUPT_HARD) {
486 do_interrupt(env);
487 next_tb = 0;
489 #elif defined(TARGET_ALPHA)
490 if (interrupt_request & CPU_INTERRUPT_HARD) {
491 do_interrupt(env);
492 next_tb = 0;
494 #elif defined(TARGET_CRIS)
495 if (interrupt_request & CPU_INTERRUPT_HARD
496 && (env->pregs[PR_CCS] & I_FLAG)) {
497 env->exception_index = EXCP_IRQ;
498 do_interrupt(env);
499 next_tb = 0;
501 if (interrupt_request & CPU_INTERRUPT_NMI
502 && (env->pregs[PR_CCS] & M_FLAG)) {
503 env->exception_index = EXCP_NMI;
504 do_interrupt(env);
505 next_tb = 0;
507 #elif defined(TARGET_M68K)
508 if (interrupt_request & CPU_INTERRUPT_HARD
509 && ((env->sr & SR_I) >> SR_I_SHIFT)
510 < env->pending_level) {
511 /* Real hardware gets the interrupt vector via an
512 IACK cycle at this point. Current emulated
513 hardware doesn't rely on this, so we
514 provide/save the vector when the interrupt is
515 first signalled. */
516 env->exception_index = env->pending_vector;
517 do_interrupt(1);
518 next_tb = 0;
520 #endif
521 /* Don't use the cached interupt_request value,
522 do_interrupt may have updated the EXITTB flag. */
523 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
524 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
525 /* ensure that no TB jump will be modified as
526 the program flow was changed */
527 next_tb = 0;
529 if (interrupt_request & CPU_INTERRUPT_EXIT) {
530 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
531 env->exception_index = EXCP_INTERRUPT;
532 cpu_loop_exit();
535 #ifdef DEBUG_EXEC
536 if ((loglevel & CPU_LOG_TB_CPU)) {
537 /* restore flags in standard format */
538 regs_to_env();
539 #if defined(TARGET_I386)
540 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
541 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
542 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
543 #elif defined(TARGET_ARM)
544 cpu_dump_state(env, logfile, fprintf, 0);
545 #elif defined(TARGET_SPARC)
546 cpu_dump_state(env, logfile, fprintf, 0);
547 #elif defined(TARGET_PPC)
548 cpu_dump_state(env, logfile, fprintf, 0);
549 #elif defined(TARGET_M68K)
550 cpu_m68k_flush_flags(env, env->cc_op);
551 env->cc_op = CC_OP_FLAGS;
552 env->sr = (env->sr & 0xffe0)
553 | env->cc_dest | (env->cc_x << 4);
554 cpu_dump_state(env, logfile, fprintf, 0);
555 #elif defined(TARGET_MIPS)
556 cpu_dump_state(env, logfile, fprintf, 0);
557 #elif defined(TARGET_SH4)
558 cpu_dump_state(env, logfile, fprintf, 0);
559 #elif defined(TARGET_ALPHA)
560 cpu_dump_state(env, logfile, fprintf, 0);
561 #elif defined(TARGET_CRIS)
562 cpu_dump_state(env, logfile, fprintf, 0);
563 #else
564 #error unsupported target CPU
565 #endif
567 #endif
568 spin_lock(&tb_lock);
569 tb = tb_find_fast();
570 /* Note: we do it here to avoid a gcc bug on Mac OS X when
571 doing it in tb_find_slow */
572 if (tb_invalidated_flag) {
573 /* as some TB could have been invalidated because
574 of memory exceptions while generating the code, we
575 must recompute the hash index here */
576 next_tb = 0;
577 tb_invalidated_flag = 0;
579 #ifdef DEBUG_EXEC
580 if ((loglevel & CPU_LOG_EXEC)) {
581 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
582 (long)tb->tc_ptr, tb->pc,
583 lookup_symbol(tb->pc));
585 #endif
586 /* see if we can patch the calling TB. When the TB
587 spans two pages, we cannot safely do a direct
588 jump. */
590 if (next_tb != 0 &&
591 #ifdef USE_KQEMU
592 (env->kqemu_enabled != 2) &&
593 #endif
594 tb->page_addr[1] == -1) {
595 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
598 spin_unlock(&tb_lock);
599 env->current_tb = tb;
601 /* cpu_interrupt might be called while translating the
602 TB, but before it is linked into a potentially
603 infinite loop and becomes env->current_tb. Avoid
604 starting execution if there is a pending interrupt. */
605 if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT))
606 env->current_tb = NULL;
608 while (env->current_tb) {
609 tc_ptr = tb->tc_ptr;
610 /* execute the generated code */
611 #if defined(__sparc__) && !defined(HOST_SOLARIS)
612 #undef env
613 env = cpu_single_env;
614 #define env cpu_single_env
615 #endif
616 next_tb = tcg_qemu_tb_exec(tc_ptr);
617 env->current_tb = NULL;
618 if ((next_tb & 3) == 2) {
619 /* Instruction counter expired. */
620 int insns_left;
621 tb = (TranslationBlock *)(long)(next_tb & ~3);
622 /* Restore PC. */
623 cpu_pc_from_tb(env, tb);
624 insns_left = env->icount_decr.u32;
625 if (env->icount_extra && insns_left >= 0) {
626 /* Refill decrementer and continue execution. */
627 env->icount_extra += insns_left;
628 if (env->icount_extra > 0xffff) {
629 insns_left = 0xffff;
630 } else {
631 insns_left = env->icount_extra;
633 env->icount_extra -= insns_left;
634 env->icount_decr.u16.low = insns_left;
635 } else {
636 if (insns_left > 0) {
637 /* Execute remaining instructions. */
638 cpu_exec_nocache(insns_left, tb);
640 env->exception_index = EXCP_INTERRUPT;
641 next_tb = 0;
642 cpu_loop_exit();
646 /* reset soft MMU for next block (it can currently
647 only be set by a memory fault) */
648 #if defined(USE_KQEMU)
649 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
650 if (kqemu_is_ok(env) &&
651 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
652 cpu_loop_exit();
654 #endif
655 } /* for(;;) */
656 } else {
657 env_to_regs();
659 } /* for(;;) */
662 #if defined(TARGET_I386)
663 /* restore flags in standard format */
664 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
665 #elif defined(TARGET_ARM)
666 /* XXX: Save/restore host fpu exception state?. */
667 #elif defined(TARGET_SPARC)
668 #elif defined(TARGET_PPC)
669 #elif defined(TARGET_M68K)
670 cpu_m68k_flush_flags(env, env->cc_op);
671 env->cc_op = CC_OP_FLAGS;
672 env->sr = (env->sr & 0xffe0)
673 | env->cc_dest | (env->cc_x << 4);
674 #elif defined(TARGET_MIPS)
675 #elif defined(TARGET_SH4)
676 #elif defined(TARGET_ALPHA)
677 #elif defined(TARGET_CRIS)
678 /* XXXXX */
679 #else
680 #error unsupported target CPU
681 #endif
683 /* restore global registers */
684 #include "hostregs_helper.h"
686 /* fail safe : never use cpu_single_env outside cpu_exec() */
687 cpu_single_env = NULL;
688 return ret;
691 /* must only be called from the generated code as an exception can be
692 generated */
693 void tb_invalidate_page_range(target_ulong start, target_ulong end)
695 /* XXX: cannot enable it yet because it yields to MMU exception
696 where NIP != read address on PowerPC */
697 #if 0
698 target_ulong phys_addr;
699 phys_addr = get_phys_addr_code(env, start);
700 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
701 #endif
704 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
706 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
708 CPUX86State *saved_env;
710 saved_env = env;
711 env = s;
712 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
713 selector &= 0xffff;
714 cpu_x86_load_seg_cache(env, seg_reg, selector,
715 (selector << 4), 0xffff, 0);
716 } else {
717 helper_load_seg(seg_reg, selector);
719 env = saved_env;
722 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
724 CPUX86State *saved_env;
726 saved_env = env;
727 env = s;
729 helper_fsave(ptr, data32);
731 env = saved_env;
734 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
736 CPUX86State *saved_env;
738 saved_env = env;
739 env = s;
741 helper_frstor(ptr, data32);
743 env = saved_env;
746 #endif /* TARGET_I386 */
748 #if !defined(CONFIG_SOFTMMU)
750 #if defined(TARGET_I386)
752 /* 'pc' is the host PC at which the exception was raised. 'address' is
753 the effective address of the memory exception. 'is_write' is 1 if a
754 write caused the exception and otherwise 0'. 'old_set' is the
755 signal set which should be restored */
756 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
757 int is_write, sigset_t *old_set,
758 void *puc)
760 TranslationBlock *tb;
761 int ret;
763 if (cpu_single_env)
764 env = cpu_single_env; /* XXX: find a correct solution for multithread */
765 #if defined(DEBUG_SIGNAL)
766 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
767 pc, address, is_write, *(unsigned long *)old_set);
768 #endif
769 /* XXX: locking issue */
770 if (is_write && page_unprotect(h2g(address), pc, puc)) {
771 return 1;
774 /* see if it is an MMU fault */
775 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
776 if (ret < 0)
777 return 0; /* not an MMU fault */
778 if (ret == 0)
779 return 1; /* the MMU fault was handled without causing real CPU fault */
780 /* now we have a real cpu fault */
781 tb = tb_find_pc(pc);
782 if (tb) {
783 /* the PC is inside the translated code. It means that we have
784 a virtual CPU fault */
785 cpu_restore_state(tb, env, pc, puc);
787 if (ret == 1) {
788 #if 0
789 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
790 env->eip, env->cr[2], env->error_code);
791 #endif
792 /* we restore the process signal mask as the sigreturn should
793 do it (XXX: use sigsetjmp) */
794 sigprocmask(SIG_SETMASK, old_set, NULL);
795 raise_exception_err(env->exception_index, env->error_code);
796 } else {
797 /* activate soft MMU for this block */
798 env->hflags |= HF_SOFTMMU_MASK;
799 cpu_resume_from_signal(env, puc);
801 /* never comes here */
802 return 1;
805 #elif defined(TARGET_ARM)
806 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
807 int is_write, sigset_t *old_set,
808 void *puc)
810 TranslationBlock *tb;
811 int ret;
813 if (cpu_single_env)
814 env = cpu_single_env; /* XXX: find a correct solution for multithread */
815 #if defined(DEBUG_SIGNAL)
816 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
817 pc, address, is_write, *(unsigned long *)old_set);
818 #endif
819 /* XXX: locking issue */
820 if (is_write && page_unprotect(h2g(address), pc, puc)) {
821 return 1;
823 /* see if it is an MMU fault */
824 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
825 if (ret < 0)
826 return 0; /* not an MMU fault */
827 if (ret == 0)
828 return 1; /* the MMU fault was handled without causing real CPU fault */
829 /* now we have a real cpu fault */
830 tb = tb_find_pc(pc);
831 if (tb) {
832 /* the PC is inside the translated code. It means that we have
833 a virtual CPU fault */
834 cpu_restore_state(tb, env, pc, puc);
836 /* we restore the process signal mask as the sigreturn should
837 do it (XXX: use sigsetjmp) */
838 sigprocmask(SIG_SETMASK, old_set, NULL);
839 cpu_loop_exit();
840 /* never comes here */
841 return 1;
843 #elif defined(TARGET_SPARC)
844 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
845 int is_write, sigset_t *old_set,
846 void *puc)
848 TranslationBlock *tb;
849 int ret;
851 if (cpu_single_env)
852 env = cpu_single_env; /* XXX: find a correct solution for multithread */
853 #if defined(DEBUG_SIGNAL)
854 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
855 pc, address, is_write, *(unsigned long *)old_set);
856 #endif
857 /* XXX: locking issue */
858 if (is_write && page_unprotect(h2g(address), pc, puc)) {
859 return 1;
861 /* see if it is an MMU fault */
862 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
863 if (ret < 0)
864 return 0; /* not an MMU fault */
865 if (ret == 0)
866 return 1; /* the MMU fault was handled without causing real CPU fault */
867 /* now we have a real cpu fault */
868 tb = tb_find_pc(pc);
869 if (tb) {
870 /* the PC is inside the translated code. It means that we have
871 a virtual CPU fault */
872 cpu_restore_state(tb, env, pc, puc);
874 /* we restore the process signal mask as the sigreturn should
875 do it (XXX: use sigsetjmp) */
876 sigprocmask(SIG_SETMASK, old_set, NULL);
877 cpu_loop_exit();
878 /* never comes here */
879 return 1;
881 #elif defined (TARGET_PPC)
882 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
883 int is_write, sigset_t *old_set,
884 void *puc)
886 TranslationBlock *tb;
887 int ret;
889 if (cpu_single_env)
890 env = cpu_single_env; /* XXX: find a correct solution for multithread */
891 #if defined(DEBUG_SIGNAL)
892 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
893 pc, address, is_write, *(unsigned long *)old_set);
894 #endif
895 /* XXX: locking issue */
896 if (is_write && page_unprotect(h2g(address), pc, puc)) {
897 return 1;
900 /* see if it is an MMU fault */
901 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
902 if (ret < 0)
903 return 0; /* not an MMU fault */
904 if (ret == 0)
905 return 1; /* the MMU fault was handled without causing real CPU fault */
907 /* now we have a real cpu fault */
908 tb = tb_find_pc(pc);
909 if (tb) {
910 /* the PC is inside the translated code. It means that we have
911 a virtual CPU fault */
912 cpu_restore_state(tb, env, pc, puc);
914 if (ret == 1) {
915 #if 0
916 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
917 env->nip, env->error_code, tb);
918 #endif
919 /* we restore the process signal mask as the sigreturn should
920 do it (XXX: use sigsetjmp) */
921 sigprocmask(SIG_SETMASK, old_set, NULL);
922 cpu_loop_exit();
923 } else {
924 /* activate soft MMU for this block */
925 cpu_resume_from_signal(env, puc);
927 /* never comes here */
928 return 1;
931 #elif defined(TARGET_M68K)
932 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
933 int is_write, sigset_t *old_set,
934 void *puc)
936 TranslationBlock *tb;
937 int ret;
939 if (cpu_single_env)
940 env = cpu_single_env; /* XXX: find a correct solution for multithread */
941 #if defined(DEBUG_SIGNAL)
942 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
943 pc, address, is_write, *(unsigned long *)old_set);
944 #endif
945 /* XXX: locking issue */
946 if (is_write && page_unprotect(address, pc, puc)) {
947 return 1;
949 /* see if it is an MMU fault */
950 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
951 if (ret < 0)
952 return 0; /* not an MMU fault */
953 if (ret == 0)
954 return 1; /* the MMU fault was handled without causing real CPU fault */
955 /* now we have a real cpu fault */
956 tb = tb_find_pc(pc);
957 if (tb) {
958 /* the PC is inside the translated code. It means that we have
959 a virtual CPU fault */
960 cpu_restore_state(tb, env, pc, puc);
962 /* we restore the process signal mask as the sigreturn should
963 do it (XXX: use sigsetjmp) */
964 sigprocmask(SIG_SETMASK, old_set, NULL);
965 cpu_loop_exit();
966 /* never comes here */
967 return 1;
970 #elif defined (TARGET_MIPS)
971 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
972 int is_write, sigset_t *old_set,
973 void *puc)
975 TranslationBlock *tb;
976 int ret;
978 if (cpu_single_env)
979 env = cpu_single_env; /* XXX: find a correct solution for multithread */
980 #if defined(DEBUG_SIGNAL)
981 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
982 pc, address, is_write, *(unsigned long *)old_set);
983 #endif
984 /* XXX: locking issue */
985 if (is_write && page_unprotect(h2g(address), pc, puc)) {
986 return 1;
989 /* see if it is an MMU fault */
990 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
991 if (ret < 0)
992 return 0; /* not an MMU fault */
993 if (ret == 0)
994 return 1; /* the MMU fault was handled without causing real CPU fault */
996 /* now we have a real cpu fault */
997 tb = tb_find_pc(pc);
998 if (tb) {
999 /* the PC is inside the translated code. It means that we have
1000 a virtual CPU fault */
1001 cpu_restore_state(tb, env, pc, puc);
1003 if (ret == 1) {
1004 #if 0
1005 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1006 env->PC, env->error_code, tb);
1007 #endif
1008 /* we restore the process signal mask as the sigreturn should
1009 do it (XXX: use sigsetjmp) */
1010 sigprocmask(SIG_SETMASK, old_set, NULL);
1011 cpu_loop_exit();
1012 } else {
1013 /* activate soft MMU for this block */
1014 cpu_resume_from_signal(env, puc);
1016 /* never comes here */
1017 return 1;
1020 #elif defined (TARGET_SH4)
1021 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1022 int is_write, sigset_t *old_set,
1023 void *puc)
1025 TranslationBlock *tb;
1026 int ret;
1028 if (cpu_single_env)
1029 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1030 #if defined(DEBUG_SIGNAL)
1031 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1032 pc, address, is_write, *(unsigned long *)old_set);
1033 #endif
1034 /* XXX: locking issue */
1035 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1036 return 1;
1039 /* see if it is an MMU fault */
1040 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1041 if (ret < 0)
1042 return 0; /* not an MMU fault */
1043 if (ret == 0)
1044 return 1; /* the MMU fault was handled without causing real CPU fault */
1046 /* now we have a real cpu fault */
1047 tb = tb_find_pc(pc);
1048 if (tb) {
1049 /* the PC is inside the translated code. It means that we have
1050 a virtual CPU fault */
1051 cpu_restore_state(tb, env, pc, puc);
1053 #if 0
1054 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1055 env->nip, env->error_code, tb);
1056 #endif
1057 /* we restore the process signal mask as the sigreturn should
1058 do it (XXX: use sigsetjmp) */
1059 sigprocmask(SIG_SETMASK, old_set, NULL);
1060 cpu_loop_exit();
1061 /* never comes here */
1062 return 1;
1065 #elif defined (TARGET_ALPHA)
1066 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1067 int is_write, sigset_t *old_set,
1068 void *puc)
1070 TranslationBlock *tb;
1071 int ret;
1073 if (cpu_single_env)
1074 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1075 #if defined(DEBUG_SIGNAL)
1076 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1077 pc, address, is_write, *(unsigned long *)old_set);
1078 #endif
1079 /* XXX: locking issue */
1080 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1081 return 1;
1084 /* see if it is an MMU fault */
1085 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1086 if (ret < 0)
1087 return 0; /* not an MMU fault */
1088 if (ret == 0)
1089 return 1; /* the MMU fault was handled without causing real CPU fault */
1091 /* now we have a real cpu fault */
1092 tb = tb_find_pc(pc);
1093 if (tb) {
1094 /* the PC is inside the translated code. It means that we have
1095 a virtual CPU fault */
1096 cpu_restore_state(tb, env, pc, puc);
1098 #if 0
1099 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1100 env->nip, env->error_code, tb);
1101 #endif
1102 /* we restore the process signal mask as the sigreturn should
1103 do it (XXX: use sigsetjmp) */
1104 sigprocmask(SIG_SETMASK, old_set, NULL);
1105 cpu_loop_exit();
1106 /* never comes here */
1107 return 1;
1109 #elif defined (TARGET_CRIS)
1110 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1111 int is_write, sigset_t *old_set,
1112 void *puc)
1114 TranslationBlock *tb;
1115 int ret;
1117 if (cpu_single_env)
1118 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1119 #if defined(DEBUG_SIGNAL)
1120 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1121 pc, address, is_write, *(unsigned long *)old_set);
1122 #endif
1123 /* XXX: locking issue */
1124 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1125 return 1;
1128 /* see if it is an MMU fault */
1129 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1130 if (ret < 0)
1131 return 0; /* not an MMU fault */
1132 if (ret == 0)
1133 return 1; /* the MMU fault was handled without causing real CPU fault */
1135 /* now we have a real cpu fault */
1136 tb = tb_find_pc(pc);
1137 if (tb) {
1138 /* the PC is inside the translated code. It means that we have
1139 a virtual CPU fault */
1140 cpu_restore_state(tb, env, pc, puc);
1142 /* we restore the process signal mask as the sigreturn should
1143 do it (XXX: use sigsetjmp) */
1144 sigprocmask(SIG_SETMASK, old_set, NULL);
1145 cpu_loop_exit();
1146 /* never comes here */
1147 return 1;
1150 #else
1151 #error unsupported target CPU
1152 #endif
1154 #if defined(__i386__)
1156 #if defined(__APPLE__)
1157 # include <sys/ucontext.h>
1159 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1160 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1161 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1162 #else
1163 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1164 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1165 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1166 #endif
1168 int cpu_signal_handler(int host_signum, void *pinfo,
1169 void *puc)
1171 siginfo_t *info = pinfo;
1172 struct ucontext *uc = puc;
1173 unsigned long pc;
1174 int trapno;
1176 #ifndef REG_EIP
1177 /* for glibc 2.1 */
1178 #define REG_EIP EIP
1179 #define REG_ERR ERR
1180 #define REG_TRAPNO TRAPNO
1181 #endif
1182 pc = EIP_sig(uc);
1183 trapno = TRAP_sig(uc);
1184 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1185 trapno == 0xe ?
1186 (ERROR_sig(uc) >> 1) & 1 : 0,
1187 &uc->uc_sigmask, puc);
1190 #elif defined(__x86_64__)
1192 #ifdef __NetBSD__
1193 #define REG_ERR _REG_ERR
1194 #define REG_TRAPNO _REG_TRAPNO
1196 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
1197 #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
1198 #else
1199 #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
1200 #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
1201 #endif
1203 int cpu_signal_handler(int host_signum, void *pinfo,
1204 void *puc)
1206 siginfo_t *info = pinfo;
1207 unsigned long pc;
1208 #ifdef __NetBSD__
1209 ucontext_t *uc = puc;
1210 #else
1211 struct ucontext *uc = puc;
1212 #endif
1214 pc = QEMU_UC_MACHINE_PC(uc);
1215 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1216 QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ?
1217 (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0,
1218 &uc->uc_sigmask, puc);
1221 #elif defined(__powerpc__)
1223 /***********************************************************************
1224 * signal context platform-specific definitions
1225 * From Wine
1227 #ifdef linux
1228 /* All Registers access - only for local access */
1229 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1230 /* Gpr Registers access */
1231 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1232 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1233 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1234 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1235 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1236 # define LR_sig(context) REG_sig(link, context) /* Link register */
1237 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1238 /* Float Registers access */
1239 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1240 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1241 /* Exception Registers access */
1242 # define DAR_sig(context) REG_sig(dar, context)
1243 # define DSISR_sig(context) REG_sig(dsisr, context)
1244 # define TRAP_sig(context) REG_sig(trap, context)
1245 #endif /* linux */
1247 #ifdef __APPLE__
1248 # include <sys/ucontext.h>
1249 typedef struct ucontext SIGCONTEXT;
1250 /* All Registers access - only for local access */
1251 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1252 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1253 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1254 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1255 /* Gpr Registers access */
1256 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1257 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1258 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1259 # define CTR_sig(context) REG_sig(ctr, context)
1260 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1261 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1262 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1263 /* Float Registers access */
1264 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1265 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1266 /* Exception Registers access */
1267 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1268 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1269 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1270 #endif /* __APPLE__ */
1272 int cpu_signal_handler(int host_signum, void *pinfo,
1273 void *puc)
1275 siginfo_t *info = pinfo;
1276 struct ucontext *uc = puc;
1277 unsigned long pc;
1278 int is_write;
1280 pc = IAR_sig(uc);
1281 is_write = 0;
1282 #if 0
1283 /* ppc 4xx case */
1284 if (DSISR_sig(uc) & 0x00800000)
1285 is_write = 1;
1286 #else
1287 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1288 is_write = 1;
1289 #endif
1290 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1291 is_write, &uc->uc_sigmask, puc);
1294 #elif defined(__alpha__)
1296 int cpu_signal_handler(int host_signum, void *pinfo,
1297 void *puc)
1299 siginfo_t *info = pinfo;
1300 struct ucontext *uc = puc;
1301 uint32_t *pc = uc->uc_mcontext.sc_pc;
1302 uint32_t insn = *pc;
1303 int is_write = 0;
1305 /* XXX: need kernel patch to get write flag faster */
1306 switch (insn >> 26) {
1307 case 0x0d: // stw
1308 case 0x0e: // stb
1309 case 0x0f: // stq_u
1310 case 0x24: // stf
1311 case 0x25: // stg
1312 case 0x26: // sts
1313 case 0x27: // stt
1314 case 0x2c: // stl
1315 case 0x2d: // stq
1316 case 0x2e: // stl_c
1317 case 0x2f: // stq_c
1318 is_write = 1;
1321 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1322 is_write, &uc->uc_sigmask, puc);
1324 #elif defined(__sparc__)
1326 int cpu_signal_handler(int host_signum, void *pinfo,
1327 void *puc)
1329 siginfo_t *info = pinfo;
1330 int is_write;
1331 uint32_t insn;
1332 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1333 uint32_t *regs = (uint32_t *)(info + 1);
1334 void *sigmask = (regs + 20);
1335 /* XXX: is there a standard glibc define ? */
1336 unsigned long pc = regs[1];
1337 #else
1338 #ifdef __linux__
1339 struct sigcontext *sc = puc;
1340 unsigned long pc = sc->sigc_regs.tpc;
1341 void *sigmask = (void *)sc->sigc_mask;
1342 #elif defined(__OpenBSD__)
1343 struct sigcontext *uc = puc;
1344 unsigned long pc = uc->sc_pc;
1345 void *sigmask = (void *)(long)uc->sc_mask;
1346 #endif
1347 #endif
1349 /* XXX: need kernel patch to get write flag faster */
1350 is_write = 0;
1351 insn = *(uint32_t *)pc;
1352 if ((insn >> 30) == 3) {
1353 switch((insn >> 19) & 0x3f) {
1354 case 0x05: // stb
1355 case 0x06: // sth
1356 case 0x04: // st
1357 case 0x07: // std
1358 case 0x24: // stf
1359 case 0x27: // stdf
1360 case 0x25: // stfsr
1361 is_write = 1;
1362 break;
1365 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1366 is_write, sigmask, NULL);
1369 #elif defined(__arm__)
1371 int cpu_signal_handler(int host_signum, void *pinfo,
1372 void *puc)
1374 siginfo_t *info = pinfo;
1375 struct ucontext *uc = puc;
1376 unsigned long pc;
1377 int is_write;
1379 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1380 pc = uc->uc_mcontext.gregs[R15];
1381 #else
1382 pc = uc->uc_mcontext.arm_pc;
1383 #endif
1384 /* XXX: compute is_write */
1385 is_write = 0;
1386 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1387 is_write,
1388 &uc->uc_sigmask, puc);
1391 #elif defined(__mc68000)
1393 int cpu_signal_handler(int host_signum, void *pinfo,
1394 void *puc)
1396 siginfo_t *info = pinfo;
1397 struct ucontext *uc = puc;
1398 unsigned long pc;
1399 int is_write;
1401 pc = uc->uc_mcontext.gregs[16];
1402 /* XXX: compute is_write */
1403 is_write = 0;
1404 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1405 is_write,
1406 &uc->uc_sigmask, puc);
1409 #elif defined(__ia64)
1411 #ifndef __ISR_VALID
1412 /* This ought to be in <bits/siginfo.h>... */
1413 # define __ISR_VALID 1
1414 #endif
1416 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1418 siginfo_t *info = pinfo;
1419 struct ucontext *uc = puc;
1420 unsigned long ip;
1421 int is_write = 0;
1423 ip = uc->uc_mcontext.sc_ip;
1424 switch (host_signum) {
1425 case SIGILL:
1426 case SIGFPE:
1427 case SIGSEGV:
1428 case SIGBUS:
1429 case SIGTRAP:
1430 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1431 /* ISR.W (write-access) is bit 33: */
1432 is_write = (info->si_isr >> 33) & 1;
1433 break;
1435 default:
1436 break;
1438 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1439 is_write,
1440 &uc->uc_sigmask, puc);
1443 #elif defined(__s390__)
1445 int cpu_signal_handler(int host_signum, void *pinfo,
1446 void *puc)
1448 siginfo_t *info = pinfo;
1449 struct ucontext *uc = puc;
1450 unsigned long pc;
1451 int is_write;
1453 pc = uc->uc_mcontext.psw.addr;
1454 /* XXX: compute is_write */
1455 is_write = 0;
1456 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1457 is_write, &uc->uc_sigmask, puc);
1460 #elif defined(__mips__)
1462 int cpu_signal_handler(int host_signum, void *pinfo,
1463 void *puc)
1465 siginfo_t *info = pinfo;
1466 struct ucontext *uc = puc;
1467 greg_t pc = uc->uc_mcontext.pc;
1468 int is_write;
1470 /* XXX: compute is_write */
1471 is_write = 0;
1472 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1473 is_write, &uc->uc_sigmask, puc);
1476 #elif defined(__hppa__)
1478 int cpu_signal_handler(int host_signum, void *pinfo,
1479 void *puc)
1481 struct siginfo *info = pinfo;
1482 struct ucontext *uc = puc;
1483 unsigned long pc;
1484 int is_write;
1486 pc = uc->uc_mcontext.sc_iaoq[0];
1487 /* FIXME: compute is_write */
1488 is_write = 0;
1489 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1490 is_write,
1491 &uc->uc_sigmask, puc);
1494 #else
1496 #error host CPU specific signal handler needed
1498 #endif
1500 #endif /* !defined(CONFIG_SOFTMMU) */