Fix 32-bit overflow in parallels image support
[qemu-kvm/fedora.git] / qemu-options.hx
blob3038acddf1aa0190b9991f954c88fe7f70a36d07
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct
5 HXCOMM option structures, enums and help message.
6 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
8 DEFHEADING(Standard options:)
9 STEXI
10 @table @option
11 ETEXI
13 DEF("help", 0, QEMU_OPTION_h,
14 "-h or -help display this help and exit\n")
15 STEXI
16 @item -h
17 Display help and exit
18 ETEXI
20 DEF("version", 0, QEMU_OPTION_version,
21 "-version display version information and exit\n")
22 STEXI
23 @item -version
24 Display version information and exit
25 ETEXI
27 DEF("M", HAS_ARG, QEMU_OPTION_M,
28 "-M machine select emulated machine (-M ? for list)\n")
29 STEXI
30 @item -M @var{machine}
31 Select the emulated @var{machine} (@code{-M ?} for list)
32 ETEXI
34 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
35 "-cpu cpu select CPU (-cpu ? for list)\n")
36 STEXI
37 @item -cpu @var{model}
38 Select CPU model (-cpu ? for list and additional feature selection)
39 ETEXI
41 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
42 "-smp n set the number of CPUs to 'n' [default=1]\n")
43 STEXI
44 @item -smp @var{n}
45 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
46 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
47 to 4.
48 ETEXI
50 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
51 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n")
52 STEXI
53 @item -numa @var{opts}
54 Simulate a multi node NUMA system. If mem and cpus are omitted, resources
55 are split equally.
56 ETEXI
58 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
59 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n")
60 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "")
61 STEXI
62 @item -fda @var{file}
63 @item -fdb @var{file}
64 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
65 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
66 ETEXI
68 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
69 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n")
70 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "")
71 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
72 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n")
73 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "")
74 STEXI
75 @item -hda @var{file}
76 @item -hdb @var{file}
77 @item -hdc @var{file}
78 @item -hdd @var{file}
79 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
80 ETEXI
82 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
83 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n")
84 STEXI
85 @item -cdrom @var{file}
86 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
87 @option{-cdrom} at the same time). You can use the host CD-ROM by
88 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
89 ETEXI
91 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
92 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
93 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
94 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
95 " [,addr=A]\n"
96 " [,boot=on|off]\n"
97 " use 'file' as a drive image\n")
98 STEXI
99 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
101 Define a new drive. Valid options are:
103 @table @code
104 @item file=@var{file}
105 This option defines which disk image (@pxref{disk_images}) to use with
106 this drive. If the filename contains comma, you must double it
107 (for instance, "file=my,,file" to use file "my,file").
108 @item if=@var{interface}
109 This option defines on which type on interface the drive is connected.
110 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
111 @item bus=@var{bus},unit=@var{unit}
112 These options define where is connected the drive by defining the bus number and
113 the unit id.
114 @item index=@var{index}
115 This option defines where is connected the drive by using an index in the list
116 of available connectors of a given interface type.
117 @item media=@var{media}
118 This option defines the type of the media: disk or cdrom.
119 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
120 These options have the same definition as they have in @option{-hdachs}.
121 @item snapshot=@var{snapshot}
122 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
123 @item cache=@var{cache}
124 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
125 @item format=@var{format}
126 Specify which disk @var{format} will be used rather than detecting
127 the format. Can be used to specifiy format=raw to avoid interpreting
128 an untrusted format header.
129 @item serial=@var{serial}
130 This option specifies the serial number to assign to the device.
131 @item addr=@var{addr}
132 Specify the controller's PCI address (if=virtio only).
133 @end table
135 By default, writethrough caching is used for all block device. This means that
136 the host page cache will be used to read and write data but write notification
137 will be sent to the guest only when the data has been reported as written by
138 the storage subsystem.
140 Writeback caching will report data writes as completed as soon as the data is
141 present in the host page cache. This is safe as long as you trust your host.
142 If your host crashes or loses power, then the guest may experience data
143 corruption. When using the @option{-snapshot} option, writeback caching is
144 used by default.
146 The host page cache can be avoided entirely with @option{cache=none}. This will
147 attempt to do disk IO directly to the guests memory. QEMU may still perform
148 an internal copy of the data.
150 Some block drivers perform badly with @option{cache=writethrough}, most notably,
151 qcow2. If performance is more important than correctness,
152 @option{cache=writeback} should be used with qcow2.
154 Instead of @option{-cdrom} you can use:
155 @example
156 qemu -drive file=file,index=2,media=cdrom
157 @end example
159 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
160 use:
161 @example
162 qemu -drive file=file,index=0,media=disk
163 qemu -drive file=file,index=1,media=disk
164 qemu -drive file=file,index=2,media=disk
165 qemu -drive file=file,index=3,media=disk
166 @end example
168 You can connect a CDROM to the slave of ide0:
169 @example
170 qemu -drive file=file,if=ide,index=1,media=cdrom
171 @end example
173 If you don't specify the "file=" argument, you define an empty drive:
174 @example
175 qemu -drive if=ide,index=1,media=cdrom
176 @end example
178 You can connect a SCSI disk with unit ID 6 on the bus #0:
179 @example
180 qemu -drive file=file,if=scsi,bus=0,unit=6
181 @end example
183 Instead of @option{-fda}, @option{-fdb}, you can use:
184 @example
185 qemu -drive file=file,index=0,if=floppy
186 qemu -drive file=file,index=1,if=floppy
187 @end example
189 By default, @var{interface} is "ide" and @var{index} is automatically
190 incremented:
191 @example
192 qemu -drive file=a -drive file=b"
193 @end example
194 is interpreted like:
195 @example
196 qemu -hda a -hdb b
197 @end example
198 ETEXI
200 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
201 "-mtdblock file use 'file' as on-board Flash memory image\n")
202 STEXI
204 @item -mtdblock file
205 Use 'file' as on-board Flash memory image.
206 ETEXI
208 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
209 "-sd file use 'file' as SecureDigital card image\n")
210 STEXI
211 @item -sd file
212 Use 'file' as SecureDigital card image.
213 ETEXI
215 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
216 "-pflash file use 'file' as a parallel flash image\n")
217 STEXI
218 @item -pflash file
219 Use 'file' as a parallel flash image.
220 ETEXI
222 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
223 "-boot [order=drives][,once=drives][,menu=on|off]\n"
224 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n")
225 STEXI
226 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off]
228 Specify boot order @var{drives} as a string of drive letters. Valid
229 drive letters depend on the target achitecture. The x86 PC uses: a, b
230 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
231 from network adapter 1-4), hard disk boot is the default. To apply a
232 particular boot order only on the first startup, specify it via
233 @option{once}.
235 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
236 as firmware/BIOS supports them. The default is non-interactive boot.
238 @example
239 # try to boot from network first, then from hard disk
240 qemu -boot order=nc
241 # boot from CD-ROM first, switch back to default order after reboot
242 qemu -boot once=d
243 @end example
245 Note: The legacy format '-boot @var{drives}' is still supported but its
246 use is discouraged as it may be removed from future versions.
247 ETEXI
249 DEF("snapshot", 0, QEMU_OPTION_snapshot,
250 "-snapshot write to temporary files instead of disk image files\n")
251 STEXI
252 @item -snapshot
253 Write to temporary files instead of disk image files. In this case,
254 the raw disk image you use is not written back. You can however force
255 the write back by pressing @key{C-a s} (@pxref{disk_images}).
256 ETEXI
258 DEF("m", HAS_ARG, QEMU_OPTION_m,
259 "-m megs set virtual RAM size to megs MB [default=%d]\n")
260 STEXI
261 @item -m @var{megs}
262 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
263 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
264 gigabytes respectively.
265 ETEXI
267 DEF("k", HAS_ARG, QEMU_OPTION_k,
268 "-k language use keyboard layout (for example 'fr' for French)\n")
269 STEXI
270 @item -k @var{language}
272 Use keyboard layout @var{language} (for example @code{fr} for
273 French). This option is only needed where it is not easy to get raw PC
274 keycodes (e.g. on Macs, with some X11 servers or with a VNC
275 display). You don't normally need to use it on PC/Linux or PC/Windows
276 hosts.
278 The available layouts are:
279 @example
280 ar de-ch es fo fr-ca hu ja mk no pt-br sv
281 da en-gb et fr fr-ch is lt nl pl ru th
282 de en-us fi fr-be hr it lv nl-be pt sl tr
283 @end example
285 The default is @code{en-us}.
286 ETEXI
289 #ifdef HAS_AUDIO
290 DEF("audio-help", 0, QEMU_OPTION_audio_help,
291 "-audio-help print list of audio drivers and their options\n")
292 #endif
293 STEXI
294 @item -audio-help
296 Will show the audio subsystem help: list of drivers, tunable
297 parameters.
298 ETEXI
300 #ifdef HAS_AUDIO
301 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
302 "-soundhw c1,... enable audio support\n"
303 " and only specified sound cards (comma separated list)\n"
304 " use -soundhw ? to get the list of supported cards\n"
305 " use -soundhw all to enable all of them\n")
306 #endif
307 STEXI
308 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
310 Enable audio and selected sound hardware. Use ? to print all
311 available sound hardware.
313 @example
314 qemu -soundhw sb16,adlib disk.img
315 qemu -soundhw es1370 disk.img
316 qemu -soundhw ac97 disk.img
317 qemu -soundhw all disk.img
318 qemu -soundhw ?
319 @end example
321 Note that Linux's i810_audio OSS kernel (for AC97) module might
322 require manually specifying clocking.
324 @example
325 modprobe i810_audio clocking=48000
326 @end example
327 ETEXI
329 STEXI
330 @end table
331 ETEXI
333 DEF("usb", 0, QEMU_OPTION_usb,
334 "-usb enable the USB driver (will be the default soon)\n")
335 STEXI
336 USB options:
337 @table @option
339 @item -usb
340 Enable the USB driver (will be the default soon)
341 ETEXI
343 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
344 "-usbdevice name add the host or guest USB device 'name'\n")
345 STEXI
347 @item -usbdevice @var{devname}
348 Add the USB device @var{devname}. @xref{usb_devices}.
350 @table @code
352 @item mouse
353 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
355 @item tablet
356 Pointer device that uses absolute coordinates (like a touchscreen). This
357 means qemu is able to report the mouse position without having to grab the
358 mouse. Also overrides the PS/2 mouse emulation when activated.
360 @item disk:[format=@var{format}]:file
361 Mass storage device based on file. The optional @var{format} argument
362 will be used rather than detecting the format. Can be used to specifiy
363 format=raw to avoid interpreting an untrusted format header.
365 @item host:bus.addr
366 Pass through the host device identified by bus.addr (Linux only).
368 @item host:vendor_id:product_id
369 Pass through the host device identified by vendor_id:product_id (Linux only).
371 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
372 Serial converter to host character device @var{dev}, see @code{-serial} for the
373 available devices.
375 @item braille
376 Braille device. This will use BrlAPI to display the braille output on a real
377 or fake device.
379 @item net:options
380 Network adapter that supports CDC ethernet and RNDIS protocols.
382 @end table
383 ETEXI
385 DEF("name", HAS_ARG, QEMU_OPTION_name,
386 "-name string1[,process=string2] set the name of the guest\n"
387 " string1 sets the window title and string2 the process name (on Linux)\n")
388 STEXI
389 @item -name @var{name}
390 Sets the @var{name} of the guest.
391 This name will be displayed in the SDL window caption.
392 The @var{name} will also be used for the VNC server.
393 Also optionally set the top visible process name in Linux.
394 ETEXI
396 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
397 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
398 " specify machine UUID\n")
399 STEXI
400 @item -uuid @var{uuid}
401 Set system UUID.
402 ETEXI
404 STEXI
405 @end table
406 ETEXI
408 DEFHEADING()
410 DEFHEADING(Display options:)
412 STEXI
413 @table @option
414 ETEXI
416 DEF("nographic", 0, QEMU_OPTION_nographic,
417 "-nographic disable graphical output and redirect serial I/Os to console\n")
418 STEXI
419 @item -nographic
421 Normally, QEMU uses SDL to display the VGA output. With this option,
422 you can totally disable graphical output so that QEMU is a simple
423 command line application. The emulated serial port is redirected on
424 the console. Therefore, you can still use QEMU to debug a Linux kernel
425 with a serial console.
426 ETEXI
428 #ifdef CONFIG_CURSES
429 DEF("curses", 0, QEMU_OPTION_curses,
430 "-curses use a curses/ncurses interface instead of SDL\n")
431 #endif
432 STEXI
433 @item -curses
435 Normally, QEMU uses SDL to display the VGA output. With this option,
436 QEMU can display the VGA output when in text mode using a
437 curses/ncurses interface. Nothing is displayed in graphical mode.
438 ETEXI
440 #ifdef CONFIG_SDL
441 DEF("no-frame", 0, QEMU_OPTION_no_frame,
442 "-no-frame open SDL window without a frame and window decorations\n")
443 #endif
444 STEXI
445 @item -no-frame
447 Do not use decorations for SDL windows and start them using the whole
448 available screen space. This makes the using QEMU in a dedicated desktop
449 workspace more convenient.
450 ETEXI
452 #ifdef CONFIG_SDL
453 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
454 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n")
455 #endif
456 STEXI
457 @item -alt-grab
459 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
460 ETEXI
462 #ifdef CONFIG_SDL
463 DEF("no-quit", 0, QEMU_OPTION_no_quit,
464 "-no-quit disable SDL window close capability\n")
465 #endif
466 STEXI
467 @item -no-quit
469 Disable SDL window close capability.
470 ETEXI
472 #ifdef CONFIG_SDL
473 DEF("sdl", 0, QEMU_OPTION_sdl,
474 "-sdl enable SDL\n")
475 #endif
476 STEXI
477 @item -sdl
479 Enable SDL.
480 ETEXI
482 DEF("portrait", 0, QEMU_OPTION_portrait,
483 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n")
484 STEXI
485 @item -portrait
487 Rotate graphical output 90 deg left (only PXA LCD).
488 ETEXI
490 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
491 "-vga [std|cirrus|vmware|xenfb|none]\n"
492 " select video card type\n")
493 STEXI
494 @item -vga @var{type}
495 Select type of VGA card to emulate. Valid values for @var{type} are
496 @table @code
497 @item cirrus
498 Cirrus Logic GD5446 Video card. All Windows versions starting from
499 Windows 95 should recognize and use this graphic card. For optimal
500 performances, use 16 bit color depth in the guest and the host OS.
501 (This one is the default)
502 @item std
503 Standard VGA card with Bochs VBE extensions. If your guest OS
504 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
505 to use high resolution modes (>= 1280x1024x16) then you should use
506 this option.
507 @item vmware
508 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
509 recent XFree86/XOrg server or Windows guest with a driver for this
510 card.
511 @item none
512 Disable VGA card.
513 @end table
514 ETEXI
516 DEF("full-screen", 0, QEMU_OPTION_full_screen,
517 "-full-screen start in full screen\n")
518 STEXI
519 @item -full-screen
520 Start in full screen.
521 ETEXI
523 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
524 DEF("g", 1, QEMU_OPTION_g ,
525 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n")
526 #endif
527 STEXI
528 ETEXI
530 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
531 "-vnc display start a VNC server on display\n")
532 STEXI
533 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
535 Normally, QEMU uses SDL to display the VGA output. With this option,
536 you can have QEMU listen on VNC display @var{display} and redirect the VGA
537 display over the VNC session. It is very useful to enable the usb
538 tablet device when using this option (option @option{-usbdevice
539 tablet}). When using the VNC display, you must use the @option{-k}
540 parameter to set the keyboard layout if you are not using en-us. Valid
541 syntax for the @var{display} is
543 @table @code
545 @item @var{host}:@var{d}
547 TCP connections will only be allowed from @var{host} on display @var{d}.
548 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
549 be omitted in which case the server will accept connections from any host.
551 @item @code{unix}:@var{path}
553 Connections will be allowed over UNIX domain sockets where @var{path} is the
554 location of a unix socket to listen for connections on.
556 @item none
558 VNC is initialized but not started. The monitor @code{change} command
559 can be used to later start the VNC server.
561 @end table
563 Following the @var{display} value there may be one or more @var{option} flags
564 separated by commas. Valid options are
566 @table @code
568 @item reverse
570 Connect to a listening VNC client via a ``reverse'' connection. The
571 client is specified by the @var{display}. For reverse network
572 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
573 is a TCP port number, not a display number.
575 @item password
577 Require that password based authentication is used for client connections.
578 The password must be set separately using the @code{change} command in the
579 @ref{pcsys_monitor}
581 @item tls
583 Require that client use TLS when communicating with the VNC server. This
584 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
585 attack. It is recommended that this option be combined with either the
586 @var{x509} or @var{x509verify} options.
588 @item x509=@var{/path/to/certificate/dir}
590 Valid if @option{tls} is specified. Require that x509 credentials are used
591 for negotiating the TLS session. The server will send its x509 certificate
592 to the client. It is recommended that a password be set on the VNC server
593 to provide authentication of the client when this is used. The path following
594 this option specifies where the x509 certificates are to be loaded from.
595 See the @ref{vnc_security} section for details on generating certificates.
597 @item x509verify=@var{/path/to/certificate/dir}
599 Valid if @option{tls} is specified. Require that x509 credentials are used
600 for negotiating the TLS session. The server will send its x509 certificate
601 to the client, and request that the client send its own x509 certificate.
602 The server will validate the client's certificate against the CA certificate,
603 and reject clients when validation fails. If the certificate authority is
604 trusted, this is a sufficient authentication mechanism. You may still wish
605 to set a password on the VNC server as a second authentication layer. The
606 path following this option specifies where the x509 certificates are to
607 be loaded from. See the @ref{vnc_security} section for details on generating
608 certificates.
610 @item sasl
612 Require that the client use SASL to authenticate with the VNC server.
613 The exact choice of authentication method used is controlled from the
614 system / user's SASL configuration file for the 'qemu' service. This
615 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
616 unprivileged user, an environment variable SASL_CONF_PATH can be used
617 to make it search alternate locations for the service config.
618 While some SASL auth methods can also provide data encryption (eg GSSAPI),
619 it is recommended that SASL always be combined with the 'tls' and
620 'x509' settings to enable use of SSL and server certificates. This
621 ensures a data encryption preventing compromise of authentication
622 credentials. See the @ref{vnc_security} section for details on using
623 SASL authentication.
625 @item acl
627 Turn on access control lists for checking of the x509 client certificate
628 and SASL party. For x509 certs, the ACL check is made against the
629 certificate's distinguished name. This is something that looks like
630 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
631 made against the username, which depending on the SASL plugin, may
632 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
633 When the @option{acl} flag is set, the initial access list will be
634 empty, with a @code{deny} policy. Thus no one will be allowed to
635 use the VNC server until the ACLs have been loaded. This can be
636 achieved using the @code{acl} monitor command.
638 @end table
639 ETEXI
641 STEXI
642 @end table
643 ETEXI
645 DEFHEADING()
647 #ifdef TARGET_I386
648 DEFHEADING(i386 target only:)
649 #endif
650 STEXI
651 @table @option
652 ETEXI
654 #ifdef TARGET_I386
655 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
656 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n")
657 #endif
658 STEXI
659 @item -win2k-hack
660 Use it when installing Windows 2000 to avoid a disk full bug. After
661 Windows 2000 is installed, you no longer need this option (this option
662 slows down the IDE transfers).
663 ETEXI
665 #ifdef TARGET_I386
666 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack,
667 "-rtc-td-hack use it to fix time drift in Windows ACPI HAL\n")
668 #endif
669 STEXI
670 @item -rtc-td-hack
671 Use it if you experience time drift problem in Windows with ACPI HAL.
672 This option will try to figure out how many timer interrupts were not
673 processed by the Windows guest and will re-inject them.
674 ETEXI
676 #ifdef TARGET_I386
677 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
678 "-no-fd-bootchk disable boot signature checking for floppy disks\n")
679 #endif
680 STEXI
681 @item -no-fd-bootchk
682 Disable boot signature checking for floppy disks in Bochs BIOS. It may
683 be needed to boot from old floppy disks.
684 ETEXI
686 #ifdef TARGET_I386
687 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
688 "-no-acpi disable ACPI\n")
689 #endif
690 STEXI
691 @item -no-acpi
692 Disable ACPI (Advanced Configuration and Power Interface) support. Use
693 it if your guest OS complains about ACPI problems (PC target machine
694 only).
695 ETEXI
697 #ifdef TARGET_I386
698 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
699 "-no-hpet disable HPET\n")
700 #endif
701 STEXI
702 @item -no-hpet
703 Disable HPET support.
704 ETEXI
706 #ifdef TARGET_I386
707 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
708 "-balloon none disable balloon device\n"
709 "-balloon virtio[,addr=str]\n"
710 " enable virtio balloon device (default)\n")
711 #endif
712 STEXI
713 @item -balloon none
714 Disable balloon device.
715 @item -balloon virtio[,addr=@var{addr}]
716 Enable virtio balloon device (default), optionally with PCI address
717 @var{addr}.
718 ETEXI
720 #ifdef TARGET_I386
721 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
722 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
723 " ACPI table description\n")
724 #endif
725 STEXI
726 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
727 Add ACPI table with specified header fields and context from specified files.
728 ETEXI
730 #ifdef TARGET_I386
731 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
732 "-smbios file=binary\n"
733 " Load SMBIOS entry from binary file\n"
734 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n"
735 " Specify SMBIOS type 0 fields\n"
736 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
737 " [,uuid=uuid][,sku=str][,family=str]\n"
738 " Specify SMBIOS type 1 fields\n")
739 #endif
740 STEXI
741 @item -smbios file=@var{binary}
742 Load SMBIOS entry from binary file.
744 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}]
745 Specify SMBIOS type 0 fields
747 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
748 Specify SMBIOS type 1 fields
749 ETEXI
751 #ifdef TARGET_I386
752 DEFHEADING()
753 #endif
754 STEXI
755 @end table
756 ETEXI
758 DEFHEADING(Network options:)
759 STEXI
760 @table @option
761 ETEXI
763 HXCOMM Legacy slirp options (now moved to -net user):
764 #ifdef CONFIG_SLIRP
765 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "")
766 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "")
767 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "")
768 #ifndef _WIN32
769 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "")
770 #endif
771 #endif
773 DEF("net", HAS_ARG, QEMU_OPTION_net,
774 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
775 " create a new Network Interface Card and connect it to VLAN 'n'\n"
776 #ifdef CONFIG_SLIRP
777 "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n"
778 " [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n"
779 " [,hostfwd=rule][,guestfwd=rule]"
780 #ifndef _WIN32
781 "[,smb=dir[,smbserver=addr]]\n"
782 #endif
783 " connect the user mode network stack to VLAN 'n', configure its\n"
784 " DHCP server and enabled optional services\n"
785 #endif
786 #ifdef _WIN32
787 "-net tap[,vlan=n][,name=str],ifname=name\n"
788 " connect the host TAP network interface to VLAN 'n'\n"
789 #else
790 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]"
791 #ifdef TUNSETSNDBUF
792 "[,sndbuf=nbytes]"
793 #endif
794 "\n"
795 " connect the host TAP network interface to VLAN 'n' and use the\n"
796 " network scripts 'file' (default=%s)\n"
797 " and 'dfile' (default=%s);\n"
798 " use '[down]script=no' to disable script execution;\n"
799 " use 'fd=h' to connect to an already opened TAP interface\n"
800 #ifdef TUNSETSNDBUF
801 " use 'sndbuf=nbytes' to limit the size of the send buffer; the\n"
802 " default of 'sndbuf=1048576' can be disabled using 'sndbuf=0'\n"
803 #endif
804 #endif
805 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
806 " connect the vlan 'n' to another VLAN using a socket connection\n"
807 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
808 " connect the vlan 'n' to multicast maddr and port\n"
809 #ifdef CONFIG_VDE
810 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
811 " connect the vlan 'n' to port 'n' of a vde switch running\n"
812 " on host and listening for incoming connections on 'socketpath'.\n"
813 " Use group 'groupname' and mode 'octalmode' to change default\n"
814 " ownership and permissions for communication port.\n"
815 #endif
816 "-net dump[,vlan=n][,file=f][,len=n]\n"
817 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
818 "-net none use it alone to have zero network devices; if no -net option\n"
819 " is provided, the default is '-net nic -net user'\n")
820 STEXI
821 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
822 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
823 = 0 is the default). The NIC is an ne2k_pci by default on the PC
824 target. Optionally, the MAC address can be changed to @var{mac}, the
825 device address set to @var{addr} (PCI cards only),
826 and a @var{name} can be assigned for use in monitor commands.
827 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
828 that the card should have; this option currently only affects virtio cards; set
829 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
830 NIC is created. Qemu can emulate several different models of network card.
831 Valid values for @var{type} are
832 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
833 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
834 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
835 Not all devices are supported on all targets. Use -net nic,model=?
836 for a list of available devices for your target.
838 @item -net user[,@var{option}][,@var{option}][,...]
839 Use the user mode network stack which requires no administrator
840 privilege to run. Valid options are:
842 @table @code
843 @item vlan=@var{n}
844 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
846 @item name=@var{name}
847 Assign symbolic name for use in monitor commands.
849 @item net=@var{addr}[/@var{mask}]
850 Set IP network address the guest will see. Optionally specify the netmask,
851 either in the form a.b.c.d or as number of valid top-most bits. Default is
852 10.0.2.0/8.
854 @item host=@var{addr}
855 Specify the guest-visible address of the host. Default is the 2nd IP in the
856 guest network, i.e. x.x.x.2.
858 @item restrict=y|yes|n|no
859 If this options is enabled, the guest will be isolated, i.e. it will not be
860 able to contact the host and no guest IP packets will be routed over the host
861 to the outside. This option does not affect explicitly set forwarding rule.
863 @item hostname=@var{name}
864 Specifies the client hostname reported by the builtin DHCP server.
866 @item dhcpstart=@var{addr}
867 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
868 is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31.
870 @item dns=@var{addr}
871 Specify the guest-visible address of the virtual nameserver. The address must
872 be different from the host address. Default is the 3rd IP in the guest network,
873 i.e. x.x.x.3.
875 @item tftp=@var{dir}
876 When using the user mode network stack, activate a built-in TFTP
877 server. The files in @var{dir} will be exposed as the root of a TFTP server.
878 The TFTP client on the guest must be configured in binary mode (use the command
879 @code{bin} of the Unix TFTP client).
881 @item bootfile=@var{file}
882 When using the user mode network stack, broadcast @var{file} as the BOOTP
883 filename. In conjunction with @option{tftp}, this can be used to network boot
884 a guest from a local directory.
886 Example (using pxelinux):
887 @example
888 qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
889 @end example
891 @item smb=@var{dir}[,smbserver=@var{addr}]
892 When using the user mode network stack, activate a built-in SMB
893 server so that Windows OSes can access to the host files in @file{@var{dir}}
894 transparently. The IP address of the SMB server can be set to @var{addr}. By
895 default the 4th IP in the guest network is used, i.e. x.x.x.4.
897 In the guest Windows OS, the line:
898 @example
899 10.0.2.4 smbserver
900 @end example
901 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
902 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
904 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
906 Note that a SAMBA server must be installed on the host OS in
907 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
908 Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
910 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
911 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
912 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
913 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
914 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
915 be bound to a specific host interface. If no connection type is set, TCP is
916 used. This option can be given multiple times.
918 For example, to redirect host X11 connection from screen 1 to guest
919 screen 0, use the following:
921 @example
922 # on the host
923 qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
924 # this host xterm should open in the guest X11 server
925 xterm -display :1
926 @end example
928 To redirect telnet connections from host port 5555 to telnet port on
929 the guest, use the following:
931 @example
932 # on the host
933 qemu -net user,hostfwd=tcp:5555::23 [...]
934 telnet localhost 5555
935 @end example
937 Then when you use on the host @code{telnet localhost 5555}, you
938 connect to the guest telnet server.
940 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
941 Forward guest TCP connections to the IP address @var{server} on port @var{port}
942 to the character device @var{dev}. This option can be given multiple times.
944 @end table
946 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
947 processed and applied to -net user. Mixing them with the new configuration
948 syntax gives undefined results. Their use for new applications is discouraged
949 as they will be removed from future versions.
951 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
952 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
953 the network script @var{file} to configure it and the network script
954 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
955 automatically provides one. @option{fd}=@var{h} can be used to specify
956 the handle of an already opened host TAP interface. The default network
957 configure script is @file{/etc/qemu-ifup} and the default network
958 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
959 or @option{downscript=no} to disable script execution. Example:
961 @example
962 qemu linux.img -net nic -net tap
963 @end example
965 More complicated example (two NICs, each one connected to a TAP device)
966 @example
967 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
968 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
969 @end example
971 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
973 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
974 machine using a TCP socket connection. If @option{listen} is
975 specified, QEMU waits for incoming connections on @var{port}
976 (@var{host} is optional). @option{connect} is used to connect to
977 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
978 specifies an already opened TCP socket.
980 Example:
981 @example
982 # launch a first QEMU instance
983 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
984 -net socket,listen=:1234
985 # connect the VLAN 0 of this instance to the VLAN 0
986 # of the first instance
987 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
988 -net socket,connect=127.0.0.1:1234
989 @end example
991 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
993 Create a VLAN @var{n} shared with another QEMU virtual
994 machines using a UDP multicast socket, effectively making a bus for
995 every QEMU with same multicast address @var{maddr} and @var{port}.
996 NOTES:
997 @enumerate
998 @item
999 Several QEMU can be running on different hosts and share same bus (assuming
1000 correct multicast setup for these hosts).
1001 @item
1002 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1003 @url{http://user-mode-linux.sf.net}.
1004 @item
1005 Use @option{fd=h} to specify an already opened UDP multicast socket.
1006 @end enumerate
1008 Example:
1009 @example
1010 # launch one QEMU instance
1011 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1012 -net socket,mcast=230.0.0.1:1234
1013 # launch another QEMU instance on same "bus"
1014 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1015 -net socket,mcast=230.0.0.1:1234
1016 # launch yet another QEMU instance on same "bus"
1017 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
1018 -net socket,mcast=230.0.0.1:1234
1019 @end example
1021 Example (User Mode Linux compat.):
1022 @example
1023 # launch QEMU instance (note mcast address selected
1024 # is UML's default)
1025 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1026 -net socket,mcast=239.192.168.1:1102
1027 # launch UML
1028 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1029 @end example
1031 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
1032 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
1033 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
1034 and MODE @var{octalmode} to change default ownership and permissions for
1035 communication port. This option is available only if QEMU has been compiled
1036 with vde support enabled.
1038 Example:
1039 @example
1040 # launch vde switch
1041 vde_switch -F -sock /tmp/myswitch
1042 # launch QEMU instance
1043 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
1044 @end example
1046 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
1047 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
1048 At most @var{len} bytes (64k by default) per packet are stored. The file format is
1049 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
1051 @item -net none
1052 Indicate that no network devices should be configured. It is used to
1053 override the default configuration (@option{-net nic -net user}) which
1054 is activated if no @option{-net} options are provided.
1056 @end table
1057 ETEXI
1059 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
1060 "\n" \
1061 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
1062 "-bt hci,host[:id]\n" \
1063 " use host's HCI with the given name\n" \
1064 "-bt hci[,vlan=n]\n" \
1065 " emulate a standard HCI in virtual scatternet 'n'\n" \
1066 "-bt vhci[,vlan=n]\n" \
1067 " add host computer to virtual scatternet 'n' using VHCI\n" \
1068 "-bt device:dev[,vlan=n]\n" \
1069 " emulate a bluetooth device 'dev' in scatternet 'n'\n")
1070 STEXI
1071 Bluetooth(R) options:
1072 @table @option
1074 @item -bt hci[...]
1075 Defines the function of the corresponding Bluetooth HCI. -bt options
1076 are matched with the HCIs present in the chosen machine type. For
1077 example when emulating a machine with only one HCI built into it, only
1078 the first @code{-bt hci[...]} option is valid and defines the HCI's
1079 logic. The Transport Layer is decided by the machine type. Currently
1080 the machines @code{n800} and @code{n810} have one HCI and all other
1081 machines have none.
1083 @anchor{bt-hcis}
1084 The following three types are recognized:
1086 @table @code
1087 @item -bt hci,null
1088 (default) The corresponding Bluetooth HCI assumes no internal logic
1089 and will not respond to any HCI commands or emit events.
1091 @item -bt hci,host[:@var{id}]
1092 (@code{bluez} only) The corresponding HCI passes commands / events
1093 to / from the physical HCI identified by the name @var{id} (default:
1094 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
1095 capable systems like Linux.
1097 @item -bt hci[,vlan=@var{n}]
1098 Add a virtual, standard HCI that will participate in the Bluetooth
1099 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
1100 VLANs, devices inside a bluetooth network @var{n} can only communicate
1101 with other devices in the same network (scatternet).
1102 @end table
1104 @item -bt vhci[,vlan=@var{n}]
1105 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
1106 to the host bluetooth stack instead of to the emulated target. This
1107 allows the host and target machines to participate in a common scatternet
1108 and communicate. Requires the Linux @code{vhci} driver installed. Can
1109 be used as following:
1111 @example
1112 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
1113 @end example
1115 @item -bt device:@var{dev}[,vlan=@var{n}]
1116 Emulate a bluetooth device @var{dev} and place it in network @var{n}
1117 (default @code{0}). QEMU can only emulate one type of bluetooth devices
1118 currently:
1120 @table @code
1121 @item keyboard
1122 Virtual wireless keyboard implementing the HIDP bluetooth profile.
1123 @end table
1124 @end table
1125 ETEXI
1127 DEFHEADING()
1129 DEFHEADING(Linux/Multiboot boot specific:)
1130 STEXI
1132 When using these options, you can use a given Linux or Multiboot
1133 kernel without installing it in the disk image. It can be useful
1134 for easier testing of various kernels.
1136 @table @option
1137 ETEXI
1139 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
1140 "-kernel bzImage use 'bzImage' as kernel image\n")
1141 STEXI
1142 @item -kernel @var{bzImage}
1143 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
1144 or in multiboot format.
1145 ETEXI
1147 DEF("append", HAS_ARG, QEMU_OPTION_append, \
1148 "-append cmdline use 'cmdline' as kernel command line\n")
1149 STEXI
1150 @item -append @var{cmdline}
1151 Use @var{cmdline} as kernel command line
1152 ETEXI
1154 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
1155 "-initrd file use 'file' as initial ram disk\n")
1156 STEXI
1157 @item -initrd @var{file}
1158 Use @var{file} as initial ram disk.
1160 @item -initrd "@var{file1} arg=foo,@var{file2}"
1162 This syntax is only available with multiboot.
1164 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
1165 first module.
1166 ETEXI
1168 STEXI
1169 @end table
1170 ETEXI
1172 DEFHEADING()
1174 DEFHEADING(Debug/Expert options:)
1176 STEXI
1177 @table @option
1178 ETEXI
1180 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
1181 "-serial dev redirect the serial port to char device 'dev'\n")
1182 STEXI
1183 @item -serial @var{dev}
1184 Redirect the virtual serial port to host character device
1185 @var{dev}. The default device is @code{vc} in graphical mode and
1186 @code{stdio} in non graphical mode.
1188 This option can be used several times to simulate up to 4 serial
1189 ports.
1191 Use @code{-serial none} to disable all serial ports.
1193 Available character devices are:
1194 @table @code
1195 @item vc[:WxH]
1196 Virtual console. Optionally, a width and height can be given in pixel with
1197 @example
1198 vc:800x600
1199 @end example
1200 It is also possible to specify width or height in characters:
1201 @example
1202 vc:80Cx24C
1203 @end example
1204 @item pty
1205 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
1206 @item none
1207 No device is allocated.
1208 @item null
1209 void device
1210 @item /dev/XXX
1211 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
1212 parameters are set according to the emulated ones.
1213 @item /dev/parport@var{N}
1214 [Linux only, parallel port only] Use host parallel port
1215 @var{N}. Currently SPP and EPP parallel port features can be used.
1216 @item file:@var{filename}
1217 Write output to @var{filename}. No character can be read.
1218 @item stdio
1219 [Unix only] standard input/output
1220 @item pipe:@var{filename}
1221 name pipe @var{filename}
1222 @item COM@var{n}
1223 [Windows only] Use host serial port @var{n}
1224 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
1225 This implements UDP Net Console.
1226 When @var{remote_host} or @var{src_ip} are not specified
1227 they default to @code{0.0.0.0}.
1228 When not using a specified @var{src_port} a random port is automatically chosen.
1229 @item msmouse
1230 Three button serial mouse. Configure the guest to use Microsoft protocol.
1232 If you just want a simple readonly console you can use @code{netcat} or
1233 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1234 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1235 will appear in the netconsole session.
1237 If you plan to send characters back via netconsole or you want to stop
1238 and start qemu a lot of times, you should have qemu use the same
1239 source port each time by using something like @code{-serial
1240 udp::4555@@:4556} to qemu. Another approach is to use a patched
1241 version of netcat which can listen to a TCP port and send and receive
1242 characters via udp. If you have a patched version of netcat which
1243 activates telnet remote echo and single char transfer, then you can
1244 use the following options to step up a netcat redirector to allow
1245 telnet on port 5555 to access the qemu port.
1246 @table @code
1247 @item Qemu Options:
1248 -serial udp::4555@@:4556
1249 @item netcat options:
1250 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1251 @item telnet options:
1252 localhost 5555
1253 @end table
1255 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1256 The TCP Net Console has two modes of operation. It can send the serial
1257 I/O to a location or wait for a connection from a location. By default
1258 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
1259 the @var{server} option QEMU will wait for a client socket application
1260 to connect to the port before continuing, unless the @code{nowait}
1261 option was specified. The @code{nodelay} option disables the Nagle buffering
1262 algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
1263 one TCP connection at a time is accepted. You can use @code{telnet} to
1264 connect to the corresponding character device.
1265 @table @code
1266 @item Example to send tcp console to 192.168.0.2 port 4444
1267 -serial tcp:192.168.0.2:4444
1268 @item Example to listen and wait on port 4444 for connection
1269 -serial tcp::4444,server
1270 @item Example to not wait and listen on ip 192.168.0.100 port 4444
1271 -serial tcp:192.168.0.100:4444,server,nowait
1272 @end table
1274 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1275 The telnet protocol is used instead of raw tcp sockets. The options
1276 work the same as if you had specified @code{-serial tcp}. The
1277 difference is that the port acts like a telnet server or client using
1278 telnet option negotiation. This will also allow you to send the
1279 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1280 sequence. Typically in unix telnet you do it with Control-] and then
1281 type "send break" followed by pressing the enter key.
1283 @item unix:@var{path}[,server][,nowait]
1284 A unix domain socket is used instead of a tcp socket. The option works the
1285 same as if you had specified @code{-serial tcp} except the unix domain socket
1286 @var{path} is used for connections.
1288 @item mon:@var{dev_string}
1289 This is a special option to allow the monitor to be multiplexed onto
1290 another serial port. The monitor is accessed with key sequence of
1291 @key{Control-a} and then pressing @key{c}. See monitor access
1292 @ref{pcsys_keys} in the -nographic section for more keys.
1293 @var{dev_string} should be any one of the serial devices specified
1294 above. An example to multiplex the monitor onto a telnet server
1295 listening on port 4444 would be:
1296 @table @code
1297 @item -serial mon:telnet::4444,server,nowait
1298 @end table
1300 @item braille
1301 Braille device. This will use BrlAPI to display the braille output on a real
1302 or fake device.
1304 @end table
1305 ETEXI
1307 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
1308 "-parallel dev redirect the parallel port to char device 'dev'\n")
1309 STEXI
1310 @item -parallel @var{dev}
1311 Redirect the virtual parallel port to host device @var{dev} (same
1312 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1313 be used to use hardware devices connected on the corresponding host
1314 parallel port.
1316 This option can be used several times to simulate up to 3 parallel
1317 ports.
1319 Use @code{-parallel none} to disable all parallel ports.
1320 ETEXI
1322 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
1323 "-monitor dev redirect the monitor to char device 'dev'\n")
1324 STEXI
1325 @item -monitor @var{dev}
1326 Redirect the monitor to host device @var{dev} (same devices as the
1327 serial port).
1328 The default device is @code{vc} in graphical mode and @code{stdio} in
1329 non graphical mode.
1330 ETEXI
1332 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
1333 "-pidfile file write PID to 'file'\n")
1334 STEXI
1335 @item -pidfile @var{file}
1336 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1337 from a script.
1338 ETEXI
1340 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
1341 "-singlestep always run in singlestep mode\n")
1342 STEXI
1343 @item -singlestep
1344 Run the emulation in single step mode.
1345 ETEXI
1347 DEF("S", 0, QEMU_OPTION_S, \
1348 "-S freeze CPU at startup (use 'c' to start execution)\n")
1349 STEXI
1350 @item -S
1351 Do not start CPU at startup (you must type 'c' in the monitor).
1352 ETEXI
1354 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
1355 "-gdb dev wait for gdb connection on 'dev'\n")
1356 STEXI
1357 @item -gdb @var{dev}
1358 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
1359 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
1360 stdio are reasonable use case. The latter is allowing to start qemu from
1361 within gdb and establish the connection via a pipe:
1362 @example
1363 (gdb) target remote | exec qemu -gdb stdio ...
1364 @end example
1365 ETEXI
1367 DEF("s", 0, QEMU_OPTION_s, \
1368 "-s shorthand for -gdb tcp::%s\n")
1369 STEXI
1370 @item -s
1371 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
1372 (@pxref{gdb_usage}).
1373 ETEXI
1375 DEF("d", HAS_ARG, QEMU_OPTION_d, \
1376 "-d item1,... output log to %s (use -d ? for a list of log items)\n")
1377 STEXI
1378 @item -d
1379 Output log in /tmp/qemu.log
1380 ETEXI
1382 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1383 "-hdachs c,h,s[,t]\n" \
1384 " force hard disk 0 physical geometry and the optional BIOS\n" \
1385 " translation (t=none or lba) (usually qemu can guess them)\n")
1386 STEXI
1387 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1388 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1389 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1390 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1391 all those parameters. This option is useful for old MS-DOS disk
1392 images.
1393 ETEXI
1395 DEF("L", HAS_ARG, QEMU_OPTION_L, \
1396 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n")
1397 STEXI
1398 @item -L @var{path}
1399 Set the directory for the BIOS, VGA BIOS and keymaps.
1400 ETEXI
1402 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
1403 "-bios file set the filename for the BIOS\n")
1404 STEXI
1405 @item -bios @var{file}
1406 Set the filename for the BIOS.
1407 ETEXI
1409 #ifdef CONFIG_KQEMU
1410 DEF("kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu, \
1411 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n")
1412 #endif
1413 STEXI
1414 @item -kernel-kqemu
1415 Enable KQEMU full virtualization (default is user mode only).
1416 ETEXI
1418 #ifdef CONFIG_KQEMU
1419 DEF("enable-kqemu", 0, QEMU_OPTION_enable_kqemu, \
1420 "-enable-kqemu enable KQEMU kernel module usage\n")
1421 #endif
1422 STEXI
1423 @item -enable-kqemu
1424 Enable KQEMU kernel module usage. KQEMU options are only available if
1425 KQEMU support is enabled when compiling.
1426 ETEXI
1428 #ifdef CONFIG_KVM
1429 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
1430 "-enable-kvm enable KVM full virtualization support\n")
1431 #endif
1432 STEXI
1433 @item -enable-kvm
1434 Enable KVM full virtualization support. This option is only available
1435 if KVM support is enabled when compiling.
1436 ETEXI
1438 #ifdef CONFIG_XEN
1439 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
1440 "-xen-domid id specify xen guest domain id\n")
1441 DEF("xen-create", 0, QEMU_OPTION_xen_create,
1442 "-xen-create create domain using xen hypercalls, bypassing xend\n"
1443 " warning: should not be used when xend is in use\n")
1444 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
1445 "-xen-attach attach to existing xen domain\n"
1446 " xend will use this when starting qemu\n")
1447 #endif
1449 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
1450 "-no-reboot exit instead of rebooting\n")
1451 STEXI
1452 @item -no-reboot
1453 Exit instead of rebooting.
1454 ETEXI
1456 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
1457 "-no-shutdown stop before shutdown\n")
1458 STEXI
1459 @item -no-shutdown
1460 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1461 This allows for instance switching to monitor to commit changes to the
1462 disk image.
1463 ETEXI
1465 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
1466 "-loadvm [tag|id]\n" \
1467 " start right away with a saved state (loadvm in monitor)\n")
1468 STEXI
1469 @item -loadvm @var{file}
1470 Start right away with a saved state (@code{loadvm} in monitor)
1471 ETEXI
1473 #ifndef _WIN32
1474 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
1475 "-daemonize daemonize QEMU after initializing\n")
1476 #endif
1477 STEXI
1478 @item -daemonize
1479 Daemonize the QEMU process after initialization. QEMU will not detach from
1480 standard IO until it is ready to receive connections on any of its devices.
1481 This option is a useful way for external programs to launch QEMU without having
1482 to cope with initialization race conditions.
1483 ETEXI
1485 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
1486 "-option-rom rom load a file, rom, into the option ROM space\n")
1487 STEXI
1488 @item -option-rom @var{file}
1489 Load the contents of @var{file} as an option ROM.
1490 This option is useful to load things like EtherBoot.
1491 ETEXI
1493 DEF("clock", HAS_ARG, QEMU_OPTION_clock, \
1494 "-clock force the use of the given methods for timer alarm.\n" \
1495 " To see what timers are available use -clock ?\n")
1496 STEXI
1497 @item -clock @var{method}
1498 Force the use of the given methods for timer alarm. To see what timers
1499 are available use -clock ?.
1500 ETEXI
1502 DEF("localtime", 0, QEMU_OPTION_localtime, \
1503 "-localtime set the real time clock to local time [default=utc]\n")
1504 STEXI
1505 @item -localtime
1506 Set the real time clock to local time (the default is to UTC
1507 time). This option is needed to have correct date in MS-DOS or
1508 Windows.
1509 ETEXI
1511 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, \
1512 "-startdate select initial date of the clock\n")
1513 STEXI
1515 @item -startdate @var{date}
1516 Set the initial date of the real time clock. Valid formats for
1517 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1518 @code{2006-06-17}. The default value is @code{now}.
1519 ETEXI
1521 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
1522 "-icount [N|auto]\n" \
1523 " enable virtual instruction counter with 2^N clock ticks per\n" \
1524 " instruction\n")
1525 STEXI
1526 @item -icount [N|auto]
1527 Enable virtual instruction counter. The virtual cpu will execute one
1528 instruction every 2^N ns of virtual time. If @code{auto} is specified
1529 then the virtual cpu speed will be automatically adjusted to keep virtual
1530 time within a few seconds of real time.
1532 Note that while this option can give deterministic behavior, it does not
1533 provide cycle accurate emulation. Modern CPUs contain superscalar out of
1534 order cores with complex cache hierarchies. The number of instructions
1535 executed often has little or no correlation with actual performance.
1536 ETEXI
1538 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
1539 "-watchdog i6300esb|ib700\n" \
1540 " enable virtual hardware watchdog [default=none]\n")
1541 STEXI
1542 @item -watchdog @var{model}
1543 Create a virtual hardware watchdog device. Once enabled (by a guest
1544 action), the watchdog must be periodically polled by an agent inside
1545 the guest or else the guest will be restarted.
1547 The @var{model} is the model of hardware watchdog to emulate. Choices
1548 for model are: @code{ib700} (iBASE 700) which is a very simple ISA
1549 watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O
1550 controller hub) which is a much more featureful PCI-based dual-timer
1551 watchdog. Choose a model for which your guest has drivers.
1553 Use @code{-watchdog ?} to list available hardware models. Only one
1554 watchdog can be enabled for a guest.
1555 ETEXI
1557 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
1558 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
1559 " action when watchdog fires [default=reset]\n")
1560 STEXI
1561 @item -watchdog-action @var{action}
1563 The @var{action} controls what QEMU will do when the watchdog timer
1564 expires.
1565 The default is
1566 @code{reset} (forcefully reset the guest).
1567 Other possible actions are:
1568 @code{shutdown} (attempt to gracefully shutdown the guest),
1569 @code{poweroff} (forcefully poweroff the guest),
1570 @code{pause} (pause the guest),
1571 @code{debug} (print a debug message and continue), or
1572 @code{none} (do nothing).
1574 Note that the @code{shutdown} action requires that the guest responds
1575 to ACPI signals, which it may not be able to do in the sort of
1576 situations where the watchdog would have expired, and thus
1577 @code{-watchdog-action shutdown} is not recommended for production use.
1579 Examples:
1581 @table @code
1582 @item -watchdog i6300esb -watchdog-action pause
1583 @item -watchdog ib700
1584 @end table
1585 ETEXI
1587 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
1588 "-echr chr set terminal escape character instead of ctrl-a\n")
1589 STEXI
1591 @item -echr numeric_ascii_value
1592 Change the escape character used for switching to the monitor when using
1593 monitor and serial sharing. The default is @code{0x01} when using the
1594 @code{-nographic} option. @code{0x01} is equal to pressing
1595 @code{Control-a}. You can select a different character from the ascii
1596 control keys where 1 through 26 map to Control-a through Control-z. For
1597 instance you could use the either of the following to change the escape
1598 character to Control-t.
1599 @table @code
1600 @item -echr 0x14
1601 @item -echr 20
1602 @end table
1603 ETEXI
1605 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
1606 "-virtioconsole c\n" \
1607 " set virtio console\n")
1608 STEXI
1609 @item -virtioconsole @var{c}
1610 Set virtio console.
1611 ETEXI
1613 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
1614 "-show-cursor show cursor\n")
1615 STEXI
1616 ETEXI
1618 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
1619 "-tb-size n set TB size\n")
1620 STEXI
1621 ETEXI
1623 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
1624 "-incoming p prepare for incoming migration, listen on port p\n")
1625 STEXI
1626 ETEXI
1628 #ifndef _WIN32
1629 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
1630 "-chroot dir Chroot to dir just before starting the VM.\n")
1631 #endif
1632 STEXI
1633 @item -chroot dir
1634 Immediately before starting guest execution, chroot to the specified
1635 directory. Especially useful in combination with -runas.
1636 ETEXI
1638 #ifndef _WIN32
1639 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
1640 "-runas user Change to user id user just before starting the VM.\n")
1641 #endif
1642 STEXI
1643 @item -runas user
1644 Immediately before starting guest execution, drop root privileges, switching
1645 to the specified user.
1646 ETEXI
1648 STEXI
1649 @end table
1650 ETEXI
1652 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
1653 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
1654 "-prom-env variable=value\n"
1655 " set OpenBIOS nvram variables\n")
1656 #endif
1657 #if defined(TARGET_ARM) || defined(TARGET_M68K)
1658 DEF("semihosting", 0, QEMU_OPTION_semihosting,
1659 "-semihosting semihosting mode\n")
1660 #endif
1661 #if defined(TARGET_ARM)
1662 DEF("old-param", 0, QEMU_OPTION_old_param,
1663 "-old-param old param mode\n")
1664 #endif
1666 DEF("no-kvm", 0, QEMU_OPTION_no_kvm,
1667 "-no-kvm disable KVM hardware virtualization\n")
1668 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip,
1669 "-no-kvm-irqchip disable KVM kernel mode PIC/IOAPIC/LAPIC\n")
1670 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit,
1671 "-no-kvm-pit disable KVM kernel mode PIT\n")
1672 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
1673 "-no-kvm-pit-reinjection disable KVM kernel mode PIT interrupt reinjection\n")
1674 #if defined(TARGET_I386) || defined(TARGET_X86_64) || defined(TARGET_IA64) || defined(__linux__)
1675 DEF("pcidevice", HAS_ARG, QEMU_OPTION_pcidevice,
1676 "-pcidevice host=bus:dev.func[,dma=none][,name=string]\n"
1677 " expose a PCI device to the guest OS.\n"
1678 " dma=none: don't perform any dma translations (default is to use an iommu)\n"
1679 " 'string' is used in log output.\n")
1680 #endif
1681 DEF("enable-nesting", 0, QEMU_OPTION_enable_nesting,
1682 "-enable-nesting enable support for running a VM inside the VM (AMD only)\n")
1683 DEF("nvram", HAS_ARG, QEMU_OPTION_nvram,
1684 "-nvram FILE provide ia64 nvram contents\n")
1685 DEF("tdf", 0, QEMU_OPTION_tdf,
1686 "-tdf enable guest time drift compensation\n")
1687 DEF("kvm-shadow-memory", HAS_ARG, QEMU_OPTION_kvm_shadow_memory,
1688 "-kvm-shadow-memory MEGABYTES\n"
1689 " allocate MEGABYTES for kvm mmu shadowing\n")
1690 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
1691 "-mem-path FILE provide backing storage for guest RAM\n")
1692 #ifdef MAP_POPULATE
1693 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
1694 "-mem-prealloc preallocate guest memory (use with -mempath)\n")
1695 #endif