print more understandable error message in case of unbounded arrays
[ppcg.git] / gpu.c
blob48b3ef29e6bffe6c6f251cf30c5e076e042182ad
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/band.h>
23 #include <isl/schedule.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "schedule.h"
30 #include "ppcg_options.h"
31 #include "print.h"
33 /* The fields stride, shift and shift_map only contain valid information
34 * if shift != NULL.
35 * If so, they express that current index is such that if you add shift,
36 * then the result is always a multiple of stride.
37 * shift_map contains the mapping
39 * i -> (i + shift)/stride
41 * Let D represent the initial shared_len dimensions of the computed schedule.
42 * The spaces of "lb" and "shift" are of the form
44 * D -> [b]
46 * "shift_map" is of the form
48 * [D -> i] -> [D -> (i + shift(D))/stride]
50 struct gpu_array_bound {
51 isl_val *size;
52 isl_aff *lb;
54 isl_val *stride;
55 isl_aff *shift;
56 isl_basic_map *shift_map;
59 /* A tile of an array.
61 * n is the dimension of the array.
62 * bound is an array of size "n" representing the lower bound
63 * and size for each index.
65 * tiling maps a tile in the global array to the corresponding
66 * shared/private memory tile and is of the form
68 * { [D[i] -> A[a]] -> T[(a + shift(i))/stride - lb(i)] }
70 * where D represents the initial shared_len dimensions
71 * of the computed schedule.
73 struct gpu_array_tile {
74 int n;
75 struct gpu_array_bound *bound;
76 isl_multi_aff *tiling;
79 struct gpu_array_info;
81 /* A group of array references in a kernel that should be handled together.
82 * If private_tile is not NULL, then it is mapped to registers.
83 * Otherwise, if shared_tile is not NULL, it is mapped to shared memory.
84 * Otherwise, it is accessed from global memory.
86 struct gpu_array_ref_group {
87 /* The references in this group access this array. */
88 struct gpu_array_info *array;
89 /* Position of this group in the list of reference groups of array. */
90 int nr;
92 /* The following fields are use during the construction of the groups.
93 * access is the combined access relation relative to the shared
94 * memory tiling. In particular, the domain of the map corresponds
95 * to the first shared_len dimensions of the computed schedule.
96 * write is set if any access in the group is a write.
97 * exact_write is set if all writes are definite writes.
99 isl_map *access;
100 int write;
101 int exact_write;
103 /* The shared memory tile, NULL if none. */
104 struct gpu_array_tile *shared_tile;
106 /* The private memory tile, NULL if none. */
107 struct gpu_array_tile *private_tile;
109 /* References in this group; point to elements of a linked list. */
110 int n_ref;
111 struct gpu_stmt_access **refs;
113 /* Last shared memory tile dimension that affects tile of this group. */
114 int last_shared;
117 struct gpu_gen {
118 isl_ctx *ctx;
119 struct ppcg_options *options;
121 /* Callback for printing of AST in appropriate format. */
122 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
123 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
124 struct gpu_types *types, void *user);
125 void *print_user;
127 struct gpu_prog *prog;
128 /* The generated AST. */
129 isl_ast_node *tree;
131 /* The sequence of types for which a definition has been printed. */
132 struct gpu_types types;
134 /* tile, grid and block sizes for each kernel */
135 isl_union_map *sizes;
137 /* Identifier of current kernel. */
138 int kernel_id;
139 /* Pointer to the current kernel. */
140 struct ppcg_kernel *kernel;
141 /* Does the computed schedule exhibit any parallelism? */
142 int any_parallelism;
144 /* First tile dimension. */
145 int tile_first;
146 /* Number of tile dimensions. */
147 int tile_len;
148 /* Number of initial parallel loops among tile dimensions. */
149 int n_parallel;
151 /* Number of dimensions determining shared memory. */
152 int shared_len;
154 /* Number of rows in the untiled schedule. */
155 int untiled_len;
156 /* Number of rows in the tiled schedule. */
157 int tiled_len;
158 /* Number of rows in schedule after tiling/wrapping over threads. */
159 int thread_tiled_len;
161 /* Global untiled schedule. */
162 isl_union_map *sched;
163 /* Local (per kernel launch) tiled schedule. */
164 isl_union_map *tiled_sched;
165 /* Local schedule per shared memory tile loop iteration. */
166 isl_union_map *local_sched;
168 /* Local tiled schedule projected onto the shared tile loops and
169 * the loops that will be wrapped over the threads,
170 * with all shared tile loops parametrized.
172 isl_union_map *shared_sched;
173 /* Projects out the loops that will be wrapped over the threads
174 * from shared_sched.
176 isl_union_map *shared_proj;
178 /* A map that takes the range of shared_sched as input,
179 * wraps the appropriate loops over the threads and then projects
180 * out these loops.
182 isl_map *privatization;
184 /* A map from the shared memory tile loops and the thread indices
185 * (as parameters) to the set of accessed memory elements that
186 * will be accessed through private copies.
188 isl_union_map *private_access;
190 /* The schedule for the current private/shared access
191 * (within print_private_access or print_shared_access).
193 isl_map *copy_sched;
194 /* The array reference group corresponding to copy_sched. */
195 struct gpu_array_ref_group *copy_group;
197 /* Is any array in the current kernel marked force_private? */
198 int any_force_private;
200 /* First loop to unroll (or -1 if none) in the current part of the
201 * schedule.
203 int first_unroll;
205 int n_grid;
206 int n_block;
207 /* Note: in the input file, the sizes of the grid and the blocks
208 * are specified in the order x, y, z, but internally, the sizes
209 * are stored in reverse order, so that the last element always
210 * refers to the x dimension.
212 int grid_dim[2];
213 int block_dim[3];
214 int *tile_size;
217 /* Print the name of the local copy of a given group of array references.
219 static __isl_give isl_printer *print_array_name(__isl_take isl_printer *p,
220 struct gpu_array_ref_group *group)
222 int global = 0;
224 if (group->private_tile)
225 p = isl_printer_print_str(p, "private_");
226 else if (group->shared_tile)
227 p = isl_printer_print_str(p, "shared_");
228 else
229 global = 1;
230 p = isl_printer_print_str(p, group->array->name);
231 if (!global && group->array->n_group > 1) {
232 p = isl_printer_print_str(p, "_");
233 p = isl_printer_print_int(p, group->nr);
236 return p;
239 /* Collect all references to the given array and store pointers to them
240 * in array->refs.
242 * If the array contains structures, then there is no need to collect
243 * the references since we will not be computing any reference groups.
245 static void collect_references(struct gpu_prog *prog,
246 struct gpu_array_info *array)
248 int i;
249 int n;
251 if (array->has_compound_element)
252 return;
254 n = 0;
255 for (i = 0; i < prog->n_stmts; ++i) {
256 struct gpu_stmt *stmt = &prog->stmts[i];
257 struct gpu_stmt_access *access;
259 for (access = stmt->accesses; access; access = access->next) {
260 const char *name;
261 name = isl_map_get_tuple_name(access->access,
262 isl_dim_out);
263 if (name && !strcmp(array->name, name))
264 n++;
268 array->n_ref = n;
269 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
270 assert(array->refs);
272 n = 0;
273 for (i = 0; i < prog->n_stmts; ++i) {
274 struct gpu_stmt *stmt = &prog->stmts[i];
275 struct gpu_stmt_access *access;
277 for (access = stmt->accesses; access; access = access->next) {
278 const char *name;
279 name = isl_map_get_tuple_name(access->access,
280 isl_dim_out);
281 if (!name || strcmp(array->name, name))
282 continue;
284 array->refs[n++] = access;
289 /* Create a gpu_array_tile for an array of dimension "n_index".
291 static struct gpu_array_tile *create_tile(isl_ctx *ctx, int n_index)
293 int i;
294 struct gpu_array_tile *tile;
296 tile = isl_calloc_type(ctx, struct gpu_array_tile);
297 assert(tile);
299 tile->n = n_index;
301 tile->bound = isl_alloc_array(ctx, struct gpu_array_bound, n_index);
302 assert(tile->bound);
304 for (i = 0; i < n_index; ++i) {
305 tile->bound[i].size = NULL;
306 tile->bound[i].lb = NULL;
307 tile->bound[i].stride = NULL;
308 tile->bound[i].shift = NULL;
309 tile->bound[i].shift_map = NULL;
312 return tile;
315 static void *free_tile(struct gpu_array_tile *tile)
317 int j;
319 if (!tile)
320 return NULL;
322 for (j = 0; j < tile->n; ++j) {
323 isl_val_free(tile->bound[j].size);
324 isl_val_free(tile->bound[j].stride);
325 isl_aff_free(tile->bound[j].lb);
326 isl_aff_free(tile->bound[j].shift);
327 isl_basic_map_free(tile->bound[j].shift_map);
329 free(tile->bound);
330 isl_multi_aff_free(tile->tiling);
331 free(tile);
333 return NULL;
336 static struct pet_array *find_array(struct ppcg_scop *scop,
337 __isl_keep isl_set *accessed)
339 int i;
340 isl_id *id;
342 id = isl_set_get_tuple_id(accessed);
344 for (i = 0; i < scop->n_array; ++i) {
345 isl_id *id_i;
347 id_i = isl_set_get_tuple_id(scop->arrays[i]->extent);
348 isl_id_free(id_i);
349 if (id == id_i)
350 break;
352 isl_id_free(id);
354 return i < scop->n_array ? scop->arrays[i] : NULL;
357 /* Compute and return the extent of "array", taking into account the set of
358 * accessed elements.
360 * In particular, the extent in the outer dimension is taken
361 * from "accessed", while then extent in the remaing dimensions
362 * are taken from array->extent.
364 * The extent in the outer dimension cannot be taken from array->extent
365 * because that may be unbounded. Furthermore, even if it is bounded,
366 * it may be larger than the piece of the array that is being accessed.
368 static __isl_give isl_set *compute_extent(struct pet_array *array,
369 __isl_keep isl_set *accessed)
371 int n_index;
372 isl_id *id;
373 isl_set *outer;
374 isl_set *extent;
376 extent = isl_set_copy(array->extent);
378 n_index = isl_set_dim(accessed, isl_dim_set);
379 if (n_index == 0)
380 return extent;
382 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
383 outer = isl_set_copy(accessed);
384 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
385 extent = isl_set_flat_product(outer, extent);
386 id = isl_set_get_tuple_id(accessed);
387 extent = isl_set_set_tuple_id(extent, id);
389 return extent;
392 /* Is the array "array" being extracted a read-only scalar?
394 * That is, is "array" a scalar that is never possibly written to.
395 * An array containing structures is never considered to be a scalar.
397 static int is_read_only_scalar(struct gpu_array_info *array,
398 struct gpu_prog *prog)
400 isl_set *space;
401 isl_union_map *write;
402 int empty;
404 if (array->has_compound_element)
405 return 0;
406 if (array->n_index != 0)
407 return 0;
409 write = isl_union_map_copy(prog->may_write);
410 space = isl_set_universe(isl_space_copy(array->space));
411 write = isl_union_map_intersect_range(write,
412 isl_union_set_from_set(space));
413 empty = isl_union_map_is_empty(write);
414 isl_union_map_free(write);
416 return empty;
419 /* Compute bounds on the host arrays based on the accessed elements
420 * and collect all references to the array.
422 * If the array is zero-dimensional and does not contain structures,
423 * i.e., if the array is a scalar, we check whether it is read-only.
425 static int extract_array_info(__isl_take isl_set *array, void *user)
427 int i;
428 struct gpu_prog *prog = (struct gpu_prog *)user;
429 const char *name;
430 int n_index;
431 isl_pw_aff **bounds;
432 struct pet_array *pa;
433 struct gpu_array_info *info;
434 isl_set *extent;
436 info = &prog->array[prog->n_array];
437 prog->n_array++;
439 n_index = isl_set_dim(array, isl_dim_set);
440 name = isl_set_get_tuple_name(array);
441 bounds = isl_alloc_array(isl_set_get_ctx(array),
442 isl_pw_aff *, n_index);
443 if (!bounds)
444 goto error;
446 info->space = isl_set_get_space(array);
447 info->name = strdup(name);
448 info->n_index = n_index;
449 info->bound = bounds;
450 info->linearize = prog->scop->options->linearize_device_arrays;
452 pa = find_array(prog->scop, array);
453 if (!pa)
454 isl_die(isl_set_get_ctx(array), isl_error_internal,
455 "unable to find array in scop", goto error);
457 info->type = strdup(pa->element_type);
458 info->size = pa->element_size;
459 info->local = pa->declared && !pa->exposed;
460 info->has_compound_element = pa->element_is_record;
461 info->read_only_scalar = is_read_only_scalar(info, prog);
463 extent = compute_extent(pa, array);
464 info->extent = extent;
465 for (i = 0; i < n_index; ++i) {
466 isl_set *dom;
467 isl_local_space *ls;
468 isl_aff *one;
469 isl_pw_aff *bound;
471 dom = isl_set_copy(extent);
472 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
473 n_index - (i + 1));
474 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
475 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
476 fprintf(stderr, "unable to determine extent of '%s' "
477 "in dimension %d\n", info->name, i);
478 dom = isl_set_free(dom);
480 bound = isl_set_dim_max(dom, 0);
481 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
482 ls = isl_local_space_from_space(isl_set_get_space(dom));
483 one = isl_aff_zero_on_domain(ls);
484 one = isl_aff_add_constant_si(one, 1);
485 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
486 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
488 bounds[i] = bound;
489 if (!isl_pw_aff_is_cst(bound))
490 info->linearize = 1;
493 collect_references(prog, info);
495 isl_set_free(array);
496 return 0;
497 error:
498 isl_set_free(array);
499 return -1;
502 /* Compute a mapping from all outer arrays (of structs) in scop
503 * to their innermost arrays.
505 * In particular, for each array of a primitive type, the result
506 * contains the identity mapping on that array.
507 * For each array involving member accesses, the result
508 * contains a mapping from the elements of the outer array of structs
509 * to all corresponding elements of the innermost nested arrays.
511 static __isl_give isl_union_map *compute_to_inner(struct ppcg_scop *scop)
513 int i;
514 isl_union_map *to_inner;
516 to_inner = isl_union_map_empty(isl_set_get_space(scop->context));
518 for (i = 0; i < scop->n_array; ++i) {
519 struct pet_array *array = scop->arrays[i];
520 isl_set *set;
521 isl_map *map;
523 if (array->element_is_record)
524 continue;
526 set = isl_set_copy(array->extent);
527 map = isl_set_identity(isl_set_copy(set));
529 while (set && isl_set_is_wrapping(set)) {
530 isl_id *id;
531 isl_map *wrapped;
533 id = isl_set_get_tuple_id(set);
534 wrapped = isl_set_unwrap(set);
535 wrapped = isl_map_domain_map(wrapped);
536 wrapped = isl_map_set_tuple_id(wrapped, isl_dim_in, id);
537 map = isl_map_apply_domain(map, wrapped);
538 set = isl_map_domain(isl_map_copy(map));
541 map = isl_map_gist_domain(map, set);
543 to_inner = isl_union_map_add_map(to_inner, map);
546 return to_inner;
549 /* For each array in "prog", store the (untagged) order dependences
550 * derived from the array in array->dep_order.
551 * In particular, consider all references that access the given array
552 * and take the order dependences that have one of these references
553 * as source. (Since an order dependence relates two references to
554 * the same array, the target of these order dependences will also
555 * be one of these references.)
556 * Additionally, store the union of these array->dep_order relations
557 * for all non-scalar arrays in prog->array_order.
559 void collect_order_dependences(struct gpu_prog *prog)
561 int i;
562 isl_space *space;
563 isl_union_map *accesses;
565 space = isl_union_map_get_space(prog->read);
566 prog->array_order = isl_union_map_empty(space);
568 accesses = isl_union_map_copy(prog->scop->tagged_reads);
569 accesses = isl_union_map_union(accesses,
570 isl_union_map_copy(prog->scop->tagged_may_writes));
571 accesses = isl_union_map_universe(accesses);
572 accesses = isl_union_map_apply_range(accesses,
573 isl_union_map_copy(prog->to_outer));
575 for (i = 0; i < prog->n_array; ++i) {
576 struct gpu_array_info *array = &prog->array[i];
577 isl_set *set;
578 isl_union_set *uset;
579 isl_union_map *order;
581 set = isl_set_universe(isl_space_copy(array->space));
582 uset = isl_union_set_from_set(set);
583 uset = isl_union_map_domain(
584 isl_union_map_intersect_range(isl_union_map_copy(accesses),
585 uset));
586 order = isl_union_map_copy(prog->scop->tagged_dep_order);
587 order = isl_union_map_intersect_domain(order, uset);
588 order = isl_union_map_zip(order);
589 order = isl_union_set_unwrap(isl_union_map_domain(order));
590 array->dep_order = order;
592 if (gpu_array_is_scalar(array))
593 continue;
595 prog->array_order = isl_union_map_union(prog->array_order,
596 isl_union_map_copy(array->dep_order));
599 isl_union_map_free(accesses);
602 /* Construct a gpu_array_info for each array possibly accessed by "prog" and
603 * collect them in prog->array.
605 * If there are any member accesses involved, then they are first mapped
606 * to the outer arrays of structs.
608 * If we are allowing live range reordering, then also set
609 * the dep_order field. Otherwise leave it NULL.
611 static int collect_array_info(struct gpu_prog *prog)
613 int r;
614 isl_union_set *arrays;
616 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
617 arrays = isl_union_set_union(arrays,
618 isl_union_map_range(isl_union_map_copy(prog->may_write)));
620 arrays = isl_union_set_apply(arrays,
621 isl_union_map_copy(prog->to_outer));
623 arrays = isl_union_set_coalesce(arrays);
625 prog->n_array = isl_union_set_n_set(arrays);
626 prog->array = isl_calloc_array(prog->ctx,
627 struct gpu_array_info, prog->n_array);
628 assert(prog->array);
629 prog->n_array = 0;
630 r = isl_union_set_foreach_set(arrays, &extract_array_info, prog);
631 isl_union_set_free(arrays);
633 if (prog->scop->options->live_range_reordering)
634 collect_order_dependences(prog);
636 return r;
639 static void free_array_info(struct gpu_prog *prog)
641 int i, j;
643 for (i = 0; i < prog->n_array; ++i) {
644 int n_index = prog->array[i].n_index;
645 free(prog->array[i].type);
646 free(prog->array[i].name);
647 for (j = 0; j < n_index; ++j)
648 isl_pw_aff_free(prog->array[i].bound[j]);
649 isl_space_free(prog->array[i].space);
650 isl_set_free(prog->array[i].extent);
651 free(prog->array[i].bound);
652 free(prog->array[i].refs);
653 isl_union_map_free(prog->array[i].dep_order);
655 free(prog->array);
658 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
659 * as an array or through a pointer reference, but as a single data element.
660 * At the moment, scalars are represented as zero-dimensional arrays.
661 * A zero-dimensional array containing structures is not considered
662 * to be a scalar.
664 int gpu_array_is_scalar(struct gpu_array_info *array)
666 return !array->has_compound_element && array->n_index == 0;
669 /* Is "array" a read-only scalar?
671 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
673 return array->read_only_scalar;
676 /* Internal data structure for extract_size_of_type.
677 * "type" specifies the name of the space that we want to extract.
678 * "res" is used to store the subset of that space.
680 struct ppcg_extract_size_data {
681 const char *type;
682 isl_set *res;
685 /* This function is called for each set in a union_set.
686 * If the name of the set matches data->type, we store the
687 * set in data->res.
689 static int extract_size_of_type(__isl_take isl_set *size, void *user)
691 struct ppcg_extract_size_data *data = user;
692 const char *name;
694 name = isl_set_get_tuple_name(size);
695 if (name && !strcmp(name, data->type)) {
696 data->res = size;
697 return -1;
700 isl_set_free(size);
701 return 0;
704 /* Given a union map { kernel[i] -> *[...] },
705 * return the range in the space called "type" for the kernel with
706 * sequence number "id".
708 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
709 const char *type, int id)
711 isl_space *space;
712 isl_set *dom;
713 isl_union_set *local_sizes;
714 struct ppcg_extract_size_data data = { type, NULL };
716 if (!sizes)
717 return NULL;
719 space = isl_union_map_get_space(sizes);
720 space = isl_space_set_from_params(space);
721 space = isl_space_add_dims(space, isl_dim_set, 1);
722 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
723 dom = isl_set_universe(space);
724 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
726 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
727 isl_union_map_copy(sizes));
728 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
729 isl_union_set_free(local_sizes);
730 return data.res;
733 /* Given a singleton set, extract the first (at most *len) elements
734 * of the single integer tuple into *sizes and update *len if needed.
736 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
738 int i;
739 int dim;
741 if (!set)
742 return;
744 dim = isl_set_dim(set, isl_dim_set);
745 if (dim < *len)
746 *len = dim;
748 for (i = 0; i < *len; ++i) {
749 isl_val *v;
751 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
752 assert(v);
754 sizes[i] = isl_val_get_num_si(v);
755 isl_val_free(v);
758 isl_set_free(set);
761 /* Extract user specified "tile" sizes from the "sizes" command line option,
762 * defaulting to option->tile_size in each dimension.
764 static void read_tile_sizes(struct gpu_gen *gen)
766 int n;
767 isl_set *size;
769 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
770 assert(gen->tile_size);
771 for (n = 0; n < gen->tile_len; ++n)
772 gen->tile_size[n] = gen->options->tile_size;
774 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
775 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
777 if (gen->n_parallel > gen->tile_len)
778 gen->n_parallel = gen->tile_len;
781 /* Extract user specified "block" sizes from the "sizes" command line option,
782 * after filling in some potentially useful defaults.
784 static void read_block_sizes(struct gpu_gen *gen)
786 int n;
787 isl_set *size;
789 n = gen->n_parallel;
790 gen->n_block = (n <= 3) ? n : 3;
791 switch (gen->n_block) {
792 case 1:
793 gen->block_dim[0] = 512;
794 break;
795 case 2:
796 gen->block_dim[0] = 32;
797 gen->block_dim[1] = 16;
798 break;
799 default:
800 gen->block_dim[0] = 32;
801 gen->block_dim[1] = 4;
802 gen->block_dim[2] = 4;
803 break;
806 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
807 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
810 /* Extract user specified "grid" sizes from the "sizes" command line option,
811 * after filling in some potentially useful defaults.
813 static void read_grid_sizes(struct gpu_gen *gen)
815 int n = gen->n_parallel;
816 isl_set *size;
818 gen->n_grid = (n <= 2) ? n : 2;
819 switch (gen->n_grid) {
820 case 1:
821 gen->grid_dim[0] = 32768;
822 break;
823 default:
824 gen->grid_dim[0] = 256;
825 gen->grid_dim[1] = 256;
826 break;
829 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
830 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
833 /* Extract user specified sizes from the "sizes" command line option
834 * after filling in some potentially useful defaults.
836 static void read_sizes(struct gpu_gen *gen)
838 read_tile_sizes(gen);
839 read_block_sizes(gen);
840 read_grid_sizes(gen);
843 static void *free_stmts(struct gpu_stmt *stmts, int n)
845 int i;
847 if (!stmts)
848 return NULL;
850 for (i = 0; i < n; ++i) {
851 struct gpu_stmt_access *access, *next;
853 for (access = stmts[i].accesses; access; access = next) {
854 next = access->next;
855 isl_id_free(access->ref_id);
856 isl_map_free(access->access);
857 isl_map_free(access->tagged_access);
858 free(access);
861 isl_id_free(stmts[i].id);
863 free(stmts);
865 return NULL;
868 /* Construct a map from a domain of dimensionality "len"
869 * to a domain of dimensionality "len" + "tile_len" that tiles
870 * the "tile_len" coordinates starting at "first".
871 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
872 * "dim" prescribes the parameters.
874 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
875 int first, int tile_len, int *tile_size)
877 int i;
878 isl_basic_map *bmap;
879 isl_constraint *c;
880 isl_local_space *ls;
882 dim = isl_space_add_dims(dim, isl_dim_in, len);
883 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
884 bmap = isl_basic_map_universe(isl_space_copy(dim));
885 ls = isl_local_space_from_space(dim);
887 for (i = 0; i < len - tile_len; ++i) {
888 int j = i < first ? i : i + tile_len;
889 int k = i < first ? i : i + 2 * tile_len;
891 c = isl_equality_alloc(isl_local_space_copy(ls));
892 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
893 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
894 bmap = isl_basic_map_add_constraint(bmap, c);
897 for (i = 0; i < tile_len; ++i) {
898 c = isl_equality_alloc(isl_local_space_copy(ls));
899 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
900 first + i, -1);
901 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
902 first + i, tile_size[i]);
903 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
904 first + i + tile_len, 1);
905 bmap = isl_basic_map_add_constraint(bmap, c);
907 c = isl_inequality_alloc(isl_local_space_copy(ls));
908 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
909 first + i + tile_len, 1);
910 bmap = isl_basic_map_add_constraint(bmap, c);
912 c = isl_inequality_alloc(isl_local_space_copy(ls));
913 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
914 first + i + tile_len, -1);
915 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
916 bmap = isl_basic_map_add_constraint(bmap, c);
919 isl_local_space_free(ls);
921 return isl_map_from_basic_map(bmap);
924 /* Construct a map from a domain of dimensionality "len"
925 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
926 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
927 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
928 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
929 * that are projected out at the end.
930 * "dim" prescribes the parameters.
932 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
933 int first, int wrap_len, int *wrap_size)
935 int i;
936 isl_basic_map *bmap;
937 isl_constraint *c;
938 isl_local_space *ls;
940 dim = isl_space_add_dims(dim, isl_dim_in, len);
941 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
942 bmap = isl_basic_map_universe(isl_space_copy(dim));
943 ls = isl_local_space_from_space(dim);
945 for (i = 0; i < len; ++i) {
946 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
948 c = isl_equality_alloc(isl_local_space_copy(ls));
949 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
950 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
951 bmap = isl_basic_map_add_constraint(bmap, c);
954 for (i = 0; i < wrap_len; ++i) {
955 c = isl_equality_alloc(isl_local_space_copy(ls));
956 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
957 first + i, -1);
958 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
959 first + wrap_len + i, 1);
960 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
961 first + 2 * wrap_len + i, wrap_size[i]);
962 bmap = isl_basic_map_add_constraint(bmap, c);
964 c = isl_inequality_alloc(isl_local_space_copy(ls));
965 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
966 first + wrap_len + i, 1);
967 bmap = isl_basic_map_add_constraint(bmap, c);
969 c = isl_inequality_alloc(isl_local_space_copy(ls));
970 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
971 first + wrap_len + i, -1);
972 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
973 bmap = isl_basic_map_add_constraint(bmap, c);
976 isl_local_space_free(ls);
978 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
979 first + 2 * wrap_len, wrap_len);
981 return isl_map_from_basic_map(bmap);
984 /* Add "n" parameters named prefix%d.
986 static __isl_give isl_set *add_params( __isl_take isl_set *set,
987 int n, const char *prefix)
989 int i;
990 unsigned nparam;
991 char name[20];
993 nparam = isl_set_dim(set, isl_dim_param);
994 set = isl_set_add_dims(set, isl_dim_param, n);
996 for (i = 0; i < n; ++i) {
997 snprintf(name, sizeof(name), "%s%d", prefix, i);
998 set = isl_set_set_dim_name(set, isl_dim_param,
999 nparam + i, name);
1002 return set;
1005 /* Equate the "n" dimensions of "set" starting at "first" to
1006 * freshly created parameters named prefix%d.
1008 static __isl_give isl_set *parametrize(__isl_take isl_set *set,
1009 int first, int n, const char *prefix)
1011 int i;
1012 unsigned nparam;
1014 nparam = isl_set_dim(set, isl_dim_param);
1016 set = add_params(set, n, prefix);
1018 for (i = 0; i < n; ++i)
1019 set = isl_set_equate(set, isl_dim_param, nparam + i,
1020 isl_dim_set, first + i);
1022 return set;
1025 /* Given a parameter space "space", create a set of dimension "len"
1026 * of which the "n" dimensions starting at "first" are equated to
1027 * freshly created parameters named prefix%d.
1029 static __isl_give isl_set *parametrization(__isl_take isl_space *space,
1030 int len, int first, int n, const char *prefix)
1032 isl_set *set;
1034 space = isl_space_set_from_params(space);
1035 space = isl_space_add_dims(space, isl_dim_set, len);
1036 set = isl_set_universe(space);
1038 return parametrize(set, first, n, prefix);
1041 /* Tile the B loops over the tile sizes and then tile/wrap
1042 * the T1 loops over the blocks.
1044 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
1045 __isl_take isl_union_map *sched)
1047 isl_space *dim;
1048 isl_map *tiling, *block_tiling;
1050 dim = isl_union_map_get_space(sched);
1051 tiling = tile(isl_space_copy(dim), gen->untiled_len,
1052 gen->tile_first, gen->tile_len, gen->tile_size);
1054 if (gen->options->wrap)
1055 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
1056 gen->tile_first, gen->n_grid, gen->grid_dim);
1057 else
1058 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
1059 gen->tile_first, gen->n_grid, gen->grid_dim);
1061 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
1063 tiling = isl_map_apply_range(tiling, block_tiling);
1065 sched = isl_union_map_apply_range(sched,
1066 isl_union_map_from_map(tiling));
1068 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1070 return sched;
1073 /* Equate the "T1P" iterators in the tiled schedule "sched"
1074 * to the block dimensions.
1076 static __isl_give isl_union_map *parametrize_tiled_schedule(
1077 struct gpu_gen *gen, __isl_take isl_union_map *sched)
1079 isl_space *dim;
1080 isl_set *par;
1082 dim = isl_union_map_get_space(sched);
1083 par = parametrization(dim, gen->tiled_len,
1084 gen->tile_first + gen->n_grid, gen->n_grid, "b");
1085 sched = isl_union_map_intersect_range(sched,
1086 isl_union_set_from_set(par));
1088 return sched;
1091 /* Tile/wrap the P1 loops over the threads.
1093 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
1094 __isl_take isl_union_map *sched)
1096 isl_space *dim;
1097 isl_map *tiling;
1098 isl_set *par;
1100 dim = isl_union_map_get_space(sched);
1102 if (gen->options->wrap)
1103 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
1104 gen->shared_len, gen->n_block, gen->block_dim);
1105 else
1106 tiling = tile(isl_space_copy(dim), gen->tiled_len,
1107 gen->shared_len, gen->n_block, gen->block_dim);
1108 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
1110 sched = isl_union_map_apply_range(sched,
1111 isl_union_map_from_map(tiling));
1113 par = parametrization(dim, gen->thread_tiled_len,
1114 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1115 gen->n_block, "t");
1116 sched = isl_union_map_intersect_range(sched,
1117 isl_union_set_from_set(par));
1119 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
1121 return sched;
1124 /* If the user asked for it, scale the shared memory tile loops
1125 * (T1T and T2) of "sched" by gen->tile_size[i].
1126 * If we are not performing "wrapping", then additionally scale the T1P
1127 * loops by gen->grid_dim[i].
1129 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
1130 __isl_take isl_union_map *sched)
1132 int i;
1133 isl_space *dim;
1134 isl_basic_map *scale;
1135 isl_constraint *c;
1136 isl_local_space *ls;
1138 if (!gen->options->scale_tile_loops)
1139 return sched;
1141 dim = isl_union_map_get_space(sched);
1142 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
1143 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
1144 scale = isl_basic_map_universe(isl_space_copy(dim));
1145 ls = isl_local_space_from_space(dim);
1147 for (i = 0; i < gen->tiled_len; ++i) {
1148 int f = 1;
1150 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
1151 f = gen->tile_size[i - gen->tile_first];
1152 if (!gen->options->wrap)
1153 f *= gen->grid_dim[i - gen->tile_first];
1154 } else if (i >= gen->tile_first + gen->n_grid &&
1155 i < gen->tile_first + gen->n_grid + gen->tile_len) {
1156 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
1159 c = isl_equality_alloc(isl_local_space_copy(ls));
1160 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1161 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1162 scale = isl_basic_map_add_constraint(scale, c);
1165 isl_local_space_free(ls);
1167 sched = isl_union_map_apply_range(sched,
1168 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1170 return sched;
1173 /* If we are not performing "wrapping" and if the user asked for it,
1174 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
1176 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
1177 __isl_take isl_union_map *sched)
1179 int i;
1180 isl_space *dim;
1181 isl_basic_map *scale;
1182 isl_constraint *c;
1183 isl_local_space *ls;
1185 if (gen->options->wrap)
1186 return sched;
1187 if (!gen->options->scale_tile_loops)
1188 return sched;
1190 dim = isl_union_map_get_space(sched);
1191 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
1192 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
1193 scale = isl_basic_map_universe(isl_space_copy(dim));
1194 ls = isl_local_space_from_space(dim);
1196 for (i = 0; i < gen->thread_tiled_len; ++i) {
1197 int f = 1;
1199 if (i >= gen->shared_len &&
1200 i < gen->shared_len + gen->n_block)
1201 f = gen->block_dim[i - gen->shared_len];
1203 c = isl_equality_alloc(isl_local_space_copy(ls));
1204 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1205 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1206 scale = isl_basic_map_add_constraint(scale, c);
1209 isl_local_space_free(ls);
1211 sched = isl_union_map_apply_range(sched,
1212 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1214 return sched;
1217 /* If we are not performing "wrapping" and if the user asked for it,
1218 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
1220 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
1221 __isl_take isl_union_map *sched, int len, int first, int n_tile)
1223 int i;
1224 isl_space *dim;
1225 isl_basic_map *scale;
1226 isl_constraint *c;
1227 isl_local_space *ls;
1229 if (gen->options->wrap)
1230 return sched;
1231 if (!gen->options->scale_tile_loops)
1232 return sched;
1234 dim = isl_union_map_get_space(sched);
1235 dim = isl_space_add_dims(dim, isl_dim_in, len);
1236 dim = isl_space_add_dims(dim, isl_dim_out, len);
1237 scale = isl_basic_map_universe(isl_space_copy(dim));
1238 ls = isl_local_space_from_space(dim);
1240 for (i = 0; i < len; ++i) {
1241 int f = 1;
1243 if (i >= first && i < first + n_tile)
1244 f = gen->kernel->block_dim[i - first];
1246 c = isl_equality_alloc(isl_local_space_copy(ls));
1247 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
1248 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
1249 scale = isl_basic_map_add_constraint(scale, c);
1252 isl_local_space_free(ls);
1254 sched = isl_union_map_apply_range(sched,
1255 isl_union_map_from_map(isl_map_from_basic_map(scale)));
1257 return sched;
1260 /* Add "len" parameters p[i] called prefix%d,
1261 * with bounds to 0 <= p[i] < size[i].
1263 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
1264 int len, int *size, const char *prefix)
1266 int i;
1267 unsigned nparam;
1268 isl_space *dim;
1269 isl_basic_set *bset;
1270 isl_constraint *c;
1271 isl_local_space *ls;
1272 char name[20];
1274 nparam = isl_set_dim(set, isl_dim_param);
1275 set = isl_set_add_dims(set, isl_dim_param, len);
1277 for (i = 0; i < len; ++i) {
1278 snprintf(name, sizeof(name), "%s%d", prefix, i);
1279 set = isl_set_set_dim_name(set, isl_dim_param,
1280 nparam + i, name);
1283 dim = isl_set_get_space(set);
1284 bset = isl_basic_set_universe(isl_space_copy(dim));
1285 ls = isl_local_space_from_space(dim);
1287 for (i = 0; i < len; ++i) {
1288 c = isl_inequality_alloc(isl_local_space_copy(ls));
1289 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1290 nparam + i, 1);
1291 bset = isl_basic_set_add_constraint(bset, c);
1293 c = isl_inequality_alloc(isl_local_space_copy(ls));
1294 c = isl_constraint_set_coefficient_si(c, isl_dim_param,
1295 nparam + i, -1);
1296 c = isl_constraint_set_constant_si(c, size[i] - 1);
1297 bset = isl_basic_set_add_constraint(bset, c);
1300 isl_local_space_free(ls);
1302 return isl_set_intersect(set, isl_set_from_basic_set(bset));
1305 /* Add "len" parameters p[i] called prefix%d,
1306 * with bounds to 0 <= p[i] < size[i].
1308 static __isl_give isl_set *add_bounded_parameters_dynamic(
1309 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1310 const char *prefix)
1312 int i, len;
1313 unsigned nparam;
1314 isl_space *space;
1315 isl_local_space *ls;
1316 char name[20];
1318 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1319 nparam = isl_set_dim(set, isl_dim_param);
1320 set = isl_set_add_dims(set, isl_dim_param, len);
1322 for (i = 0; i < len; ++i) {
1323 snprintf(name, sizeof(name), "%s%d", prefix, i);
1324 set = isl_set_set_dim_name(set, isl_dim_param,
1325 nparam + i, name);
1328 space = isl_space_params(isl_set_get_space(set));
1329 ls = isl_local_space_from_space(space);
1330 for (i = 0; i < len; ++i) {
1331 isl_pw_aff *param, *size_i, *zero;
1332 isl_set *bound;
1334 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1335 isl_dim_param, nparam + i);
1337 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1338 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1339 set = isl_set_intersect_params(set, bound);
1341 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1342 bound = isl_pw_aff_ge_set(param, zero);
1343 set = isl_set_intersect_params(set, bound);
1345 isl_local_space_free(ls);
1347 return set;
1350 /* Construct a map from an access to group->array to the corresponding
1351 * shared/private memory tile.
1352 * The map is of the form
1354 * { [D[i] -> A[a]] -> T[t] }
1356 * where D represents the initial shared_len dimensions
1357 * of the computed schedule.
1359 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1361 struct gpu_array_tile *tile;
1362 isl_multi_aff *tiling;
1364 tile = group->private_tile;
1365 if (!tile)
1366 tile = group->shared_tile;
1368 tiling = isl_multi_aff_copy(tile->tiling);
1370 return isl_map_from_multi_aff(tiling);
1373 /* Does "map" have an obviously fixed value at variable "pos" of "type"?
1375 static int map_plain_is_fixed(isl_map *map, enum isl_dim_type type,
1376 unsigned pos)
1378 isl_val *v;
1379 int fixed;
1381 v = isl_map_plain_get_val_if_fixed(map, type, pos);
1382 if (!v)
1383 return -1;
1384 fixed = isl_val_is_int(v);
1385 isl_val_free(v);
1387 return fixed;
1390 /* Given a schedule that iterates over all elements in a piece of an array,
1391 * perform tiling/wrapping over the threads.
1393 * In particular, we tile the final iterators so that the final thread
1394 * dimension runs over the final array dimension.
1395 * However, if those final iterators have only a single iteration,
1396 * we try to tile earlier iterators instead.
1398 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1399 __isl_take isl_map *sched)
1401 isl_space *dim;
1402 isl_union_map *usched;
1403 isl_map *tiling;
1404 isl_set *par;
1405 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1406 int n_tile;
1407 int first;
1409 n_tile = gen->kernel->n_block;
1410 if (n_tile > nvar) {
1411 int i;
1412 sched = isl_map_insert_dims(sched,
1413 isl_dim_out, 0, n_tile - nvar);
1414 for (i = 0; i < n_tile - nvar; ++i)
1415 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1416 nvar = n_tile;
1419 first = nvar - n_tile;
1421 for (; first > 0; first --)
1422 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1423 break;
1425 dim = isl_map_get_space(sched);
1426 dim = isl_space_params(dim);
1427 if (gen->options->wrap)
1428 tiling = wrap(isl_space_copy(dim), nvar, first,
1429 n_tile, gen->kernel->block_dim);
1430 else
1431 tiling = tile(isl_space_copy(dim), nvar, first,
1432 n_tile, gen->kernel->block_dim);
1433 sched = isl_map_apply_range(sched, tiling);
1435 par = parametrization(dim, nvar + n_tile, first + n_tile, n_tile, "t");
1436 sched = isl_map_intersect_range(sched, par);
1438 usched = isl_union_map_from_map(sched);
1439 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1440 first, n_tile);
1441 sched = isl_map_from_union_map(usched);
1443 return sched;
1446 /* Return the union of all read (read = 1) and/or write (write = 1)
1447 * access relations in the group.
1449 static __isl_give isl_union_map *group_access_relation(
1450 struct gpu_array_ref_group *group, int read, int write)
1452 int i;
1453 isl_union_map *access;
1455 access = isl_union_map_empty(isl_map_get_space(group->access));
1456 for (i = 0; i < group->n_ref; ++i) {
1457 isl_map *map_i;
1459 if (!((read && group->refs[i]->read) ||
1460 (write && group->refs[i]->write)))
1461 continue;
1462 map_i = isl_map_copy(group->refs[i]->access);
1463 access = isl_union_map_union(access,
1464 isl_union_map_from_map(map_i));
1467 return access;
1470 /* Return the union of all tagged access relations in the group.
1472 static __isl_give isl_union_map *group_tagged_access_relation(
1473 struct gpu_array_ref_group *group)
1475 int i;
1476 isl_union_map *access;
1478 access = isl_union_map_empty(isl_map_get_space(group->access));
1479 for (i = 0; i < group->n_ref; ++i) {
1480 isl_map *map_i;
1482 map_i = isl_map_copy(group->refs[i]->tagged_access);
1483 access = isl_union_map_union(access,
1484 isl_union_map_from_map(map_i));
1487 return access;
1490 /* Return the extent of "array", recomputed from the bounds.
1491 * The recomputed extent may be simpler than the original extent.
1493 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1495 int i;
1496 isl_id *id;
1497 isl_space *space;
1498 isl_local_space *ls;
1499 isl_set *extent;
1501 id = isl_set_get_tuple_id(array->extent);
1502 space = isl_set_get_space(array->extent);
1503 extent = isl_set_universe(isl_space_copy(space));
1504 ls = isl_local_space_from_space(space);
1505 for (i = 0; i < array->n_index; ++i) {
1506 isl_pw_aff *bound;
1507 isl_aff *aff;
1508 isl_pw_aff *index;
1509 isl_set *lt;
1511 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1513 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1514 isl_dim_set, i);
1515 index = isl_pw_aff_from_aff(aff);
1516 bound = isl_pw_aff_copy(array->bound[i]);
1517 bound = isl_pw_aff_from_range(bound);
1518 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1519 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1520 isl_id_copy(id));
1521 lt = isl_pw_aff_lt_set(index, bound);
1522 extent = isl_set_intersect(extent, lt);
1524 isl_local_space_free(ls);
1525 isl_id_free(id);
1527 return extent;
1530 /* Return a map from the first shared_len dimensions of the computed
1531 * schedule to the array tile in
1532 * global memory that corresponds to the shared memory copy.
1534 * In particular, return a map
1536 * { D[i] -> A[a] }
1538 * with constraints
1540 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1542 * and
1544 * 0 <= a <= array_size - 1 (2)
1546 * Note that if some stride has been detected (i.e., when
1547 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1548 * to the shifted and scaled down version.
1550 * Constraints (1) are obtained by mapping the size constraints on the
1551 * shared/private memory tile back to the access relation.
1552 * Constraints (2) are obtained from the (recomputed) extent.
1554 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1556 int i;
1557 int n_index = group->array->n_index;
1558 isl_map *tile;
1559 isl_space *space;
1560 isl_set *local;
1561 isl_set *extent;
1563 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1564 space = isl_space_range(space);
1565 local = isl_set_universe(space);
1566 for (i = 0; i < n_index; ++i) {
1567 isl_val *bound;
1569 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1570 bound = isl_val_copy(group->shared_tile->bound[i].size);
1571 bound = isl_val_sub_ui(bound, 1);
1572 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1574 local = isl_set_preimage_multi_aff(local,
1575 isl_multi_aff_copy(group->shared_tile->tiling));
1576 tile = isl_set_unwrap(local);
1577 extent = array_extent(group->array);
1578 tile = isl_map_intersect_range(tile, extent);
1580 return tile;
1583 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1584 * return the corresponding mapping from the AST schedule to
1585 * to the first shared_len dimensions of the schedule computed by PPCG.
1587 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1588 __isl_take isl_pw_multi_aff *iterator_map)
1590 isl_union_map *umap;
1591 isl_space *space;
1592 isl_map *map, *sched;;
1594 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1595 space = isl_space_from_domain(space);
1596 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1598 umap = isl_union_map_copy(gen->shared_sched);
1599 umap = isl_union_map_apply_range(umap,
1600 isl_union_map_copy(gen->shared_proj));
1601 map = isl_union_map_extract_map(umap, space);
1602 isl_union_map_free(umap);
1604 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1605 sched = isl_map_detect_equalities(sched);
1607 return isl_pw_multi_aff_from_map(sched);
1610 /* Set unroll[j] if the input dimension j is involved in
1611 * the index expression represented by ma.
1613 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1614 void *user)
1616 int i, j;
1617 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1618 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1619 int *unroll = user;
1621 for (i = 0; i < n_out; ++i) {
1622 isl_aff *aff;
1624 aff = isl_multi_aff_get_aff(ma, i);
1625 for (j = 0; j < n_in; ++j)
1626 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1627 unroll[j] = 1;
1628 isl_aff_free(aff);
1631 isl_set_free(set);
1632 isl_multi_aff_free(ma);
1633 return 0;
1636 /* Given an array pos mapping input dimensions to the corresponding
1637 * output dimension, construct the corresponding map.
1639 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1640 int *pos, int len)
1642 int i;
1643 isl_constraint *c;
1644 isl_basic_map *bmap;
1645 isl_local_space *ls;
1647 dim = isl_space_add_dims(dim, isl_dim_in, len);
1648 dim = isl_space_add_dims(dim, isl_dim_out, len);
1649 bmap = isl_basic_map_universe(isl_space_copy(dim));
1650 ls = isl_local_space_from_space(dim);
1652 for (i = 0; i < len; ++i) {
1653 c = isl_equality_alloc(isl_local_space_copy(ls));
1654 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1655 -1);
1656 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1658 bmap = isl_basic_map_add_constraint(bmap, c);
1660 isl_local_space_free(ls);
1662 return isl_map_from_basic_map(bmap);
1665 /* Remove the private tiles from all array reference groups,
1666 * except for the groups of arrays that are marked force_private.
1668 static void remove_private_tiles(struct gpu_gen *gen)
1670 int i, j;
1672 for (i = 0; i < gen->prog->n_array; ++i) {
1673 struct gpu_array_info *array = &gen->prog->array[i];
1675 if (array->force_private)
1676 continue;
1678 for (j = 0; j < array->n_group; ++j) {
1679 struct gpu_array_ref_group *group = array->groups[j];
1681 group->private_tile = free_tile(group->private_tile);
1686 /* Find all loops involved in any of the index expressions for any of
1687 * the private accesses, move them innermost and then mark them as
1688 * requiring unrolling by setting gen->first_unroll.
1689 * The loops involved should all be parallel because of the checks
1690 * we performed in check_private_group_access. Moving them innermost
1691 * is therefore a valid transformation.
1693 * If any of the arrays are marked force_private, however, then
1694 * those loops may not be parallel with respect to the marked arrays.
1695 * If any of the loops would have to be moved innermost for the
1696 * (non forced) private accesses and if there are any force_private
1697 * arrays, then we revert the decision to map the selected arrays
1698 * to private memory. An alternative solution would be to expand
1699 * the force_private arrays.
1701 * Loops up to gen->shared_len are generated before the mapping to
1702 * threads is applied. They should therefore be ignored.
1704 * We compute the hidden equalities of the schedule first
1705 * since we will need them in our calls to isl_pw_multi_aff_from_map
1706 * and because we want to make sure that the same equalities
1707 * are also available to the code generator.
1709 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1710 __isl_take isl_union_map *sched)
1712 int i, j;
1713 int unroll[gen->thread_tiled_len];
1714 int perm[gen->thread_tiled_len];
1715 isl_space *dim;
1716 isl_map *permute;
1717 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1719 gen->first_unroll = -1;
1721 sched = isl_union_map_detect_equalities(sched);
1722 for (i = 0; i < gen->thread_tiled_len; ++i)
1723 unroll[i] = 0;
1724 for (i = 0; i < gen->prog->n_array; ++i) {
1725 struct gpu_array_info *array = &gen->prog->array[i];
1727 for (j = 0; j < array->n_group; ++j) {
1728 isl_union_map *access;
1729 isl_map *acc;
1730 isl_pw_multi_aff *pma;
1732 if (!array->groups[j]->private_tile)
1733 continue;
1735 access = group_access_relation(array->groups[j], 1, 1);
1736 access = isl_union_map_apply_domain(access,
1737 isl_union_map_copy(sched));
1739 acc = isl_map_from_union_map(access);
1740 pma = isl_pw_multi_aff_from_map(acc);
1741 isl_pw_multi_aff_foreach_piece(pma,
1742 &check_unroll, unroll);
1744 isl_pw_multi_aff_free(pma);
1748 for (i = gen->shared_len; i < len; ++i)
1749 if (unroll[i])
1750 break;
1752 if (i >= len)
1753 return sched;
1755 for (i = len; i < gen->thread_tiled_len; ++i)
1756 if (unroll[i])
1757 return sched;
1759 if (gen->any_force_private) {
1760 remove_private_tiles(gen);
1761 return sched;
1764 j = 0;
1765 for (i = 0; i < gen->shared_len; ++i)
1766 perm[i] = j++;
1767 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1768 if (!unroll[i])
1769 perm[i] = j++;
1770 gen->first_unroll = j - gen->shared_len;
1771 for (i = gen->shared_len; i < len; ++i)
1772 if (unroll[i])
1773 perm[i] = j++;
1775 dim = isl_union_map_get_space(sched);
1776 permute = permutation(dim, perm, gen->thread_tiled_len);
1777 sched = isl_union_map_apply_range(sched,
1778 isl_union_map_from_map(permute));
1780 return sched;
1783 /* Given a constraint
1785 * a(p,i) + j = g f(e)
1787 * or -a(p,i) - j = g f(e) if sign < 0,
1788 * store a(p,i) in bound->shift and g (stride) in bound->stride.
1789 * a(p,i) is assumed to be an expression in only the parameters
1790 * and the input dimensions.
1792 static void extract_stride(__isl_keep isl_constraint *c,
1793 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
1795 int i;
1796 isl_val *v;
1797 isl_space *space;
1798 unsigned nparam;
1799 unsigned nvar;
1800 isl_aff *aff;
1802 isl_val_free(bound->stride);
1803 bound->stride = isl_val_copy(stride);
1805 space = isl_constraint_get_space(c);
1806 space = isl_space_domain(space);
1808 nparam = isl_space_dim(space, isl_dim_param);
1809 nvar = isl_space_dim(space, isl_dim_set);
1811 v = isl_constraint_get_constant_val(c);
1812 if (sign < 0)
1813 v = isl_val_neg(v);
1814 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1815 aff = isl_aff_set_constant_val(aff, v);
1817 for (i = 0; i < nparam; ++i) {
1818 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
1819 continue;
1820 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
1821 if (sign < 0)
1822 v = isl_val_neg(v);
1823 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
1826 for (i = 0; i < nvar; ++i) {
1827 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
1828 continue;
1829 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
1830 if (sign < 0)
1831 v = isl_val_neg(v);
1832 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
1835 bound->shift = aff;
1838 /* Given an equality constraint of a map with a single output dimension j,
1839 * check if the constraint is of the form
1841 * a(p,i) + j = g f(e)
1843 * with a(p,i) an expression in the parameters and input dimensions
1844 * and f(e) an expression in the existentially quantified variables.
1845 * If so, and if g is larger than any such g from a previously considered
1846 * constraint, then call extract_stride to record the stride information
1847 * in bound.
1849 static int check_stride_constraint(__isl_take isl_constraint *c, void *user)
1851 int i;
1852 isl_ctx *ctx;
1853 isl_val *v;
1854 unsigned n_div;
1855 struct gpu_array_bound *bound = user;
1857 ctx = isl_constraint_get_ctx(c);
1858 n_div = isl_constraint_dim(c, isl_dim_div);
1859 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
1861 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
1862 int s = isl_val_sgn(v);
1863 isl_val *stride = isl_val_zero(ctx);
1865 isl_val_free(v);
1866 for (i = 0; i < n_div; ++i) {
1867 v = isl_constraint_get_coefficient_val(c,
1868 isl_dim_div, i);
1869 stride = isl_val_gcd(stride, v);
1871 if (!isl_val_is_zero(stride) &&
1872 isl_val_gt(stride, bound->stride))
1873 extract_stride(c, bound, stride, s);
1875 isl_val_free(stride);
1876 } else
1877 isl_val_free(v);
1879 isl_constraint_free(c);
1880 return 0;
1883 /* Given contraints on an array index i, check if we can find
1884 * a shift a(p) and a stride g such that
1886 * a(p) + i = 0 mod g
1888 * If so, record the information in bound and apply the mapping
1889 * i -> (i + a(p))/g to the array index in bounds and return
1890 * the new constraints.
1891 * If not, simply return the original constraints.
1893 * If bounds is a subset of the space
1895 * D -> i
1897 * then the bound recorded in bound->shift is of the form
1899 * D -> s(D)
1901 * with s(D) equal to a(p) above.
1902 * The mapping recorded in bound->shift_map is of the form
1904 * [D -> i] -> [D -> (i + S(D))/g]
1906 * This mapping is computed as follows.
1907 * We first introduce "i" in the domain through precomposition
1908 * with [D -> i] -> D obtaining
1910 * [D -> i] -> s(D)
1912 * Adding [D -> i] -> i produces
1914 * [D -> i] -> i + s(D)
1916 * and the domain product with [D -> i] -> D yields
1918 * [D -> i] -> [D -> i + s(D)]
1920 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
1922 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
1923 __isl_take isl_basic_map *bounds)
1925 isl_space *space;
1926 isl_basic_map *hull;
1927 isl_basic_map *shift, *id, *bmap, *scale;
1928 isl_basic_set *bset;
1929 isl_aff *aff;
1931 bound->stride = NULL;
1933 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
1935 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
1937 isl_basic_map_free(hull);
1939 if (!bound->stride)
1940 return bounds;
1942 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
1943 space = isl_basic_map_get_space(bounds);
1944 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
1945 shift = isl_basic_map_apply_range(bmap, shift);
1946 space = isl_basic_map_get_space(bounds);
1947 id = isl_basic_map_range_map(isl_basic_map_universe(space));
1948 shift = isl_basic_map_sum(id, shift);
1949 space = isl_basic_map_get_space(bounds);
1950 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
1951 shift = isl_basic_map_range_product(id, shift);
1953 space = isl_space_domain(isl_basic_map_get_space(bounds));
1954 id = isl_basic_map_identity(isl_space_map_from_set(space));
1955 space = isl_space_range(isl_basic_map_get_space(bounds));
1956 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1957 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1958 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
1959 scale = isl_basic_map_from_aff(aff);
1960 scale = isl_basic_map_product(id, scale);
1962 bound->shift_map = isl_basic_map_apply_range(shift, scale);
1963 bmap = isl_basic_map_copy(bound->shift_map);
1964 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
1965 bounds = isl_basic_set_unwrap(bset);
1967 return bounds;
1970 /* Data used in compute_array_dim_size and compute_size_in_direction.
1972 * pos is the position of the variable representing the array index,
1973 * i.e., the variable for which want to compute the size. This variable
1974 * is also the last variable in the set.
1976 struct gpu_size_info {
1977 isl_basic_set *bset;
1978 struct gpu_array_bound *bound;
1979 int pos;
1982 /* Given a constraint from the basic set describing the bounds on
1983 * an array index, check if it is a lower bound, say m i >= b(x), and,
1984 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
1985 * upper bound. If so, and if this bound is smaller than any bound
1986 * derived from earlier constraints, set the size to this bound on
1987 * the expression and the lower bound to ceil(b(x)/m).
1989 static int compute_size_in_direction(__isl_take isl_constraint *c, void *user)
1991 struct gpu_size_info *size = user;
1992 unsigned nparam;
1993 unsigned n_div;
1994 isl_val *v;
1995 isl_aff *aff;
1996 isl_aff *lb;
1998 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
1999 n_div = isl_constraint_dim(c, isl_dim_div);
2001 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
2002 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
2003 isl_constraint_free(c);
2004 return 0;
2007 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
2008 aff = isl_aff_ceil(aff);
2010 lb = isl_aff_copy(aff);
2012 aff = isl_aff_neg(aff);
2013 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
2015 v = isl_basic_set_max_val(size->bset, aff);
2016 isl_aff_free(aff);
2018 if (isl_val_is_int(v)) {
2019 v = isl_val_add_ui(v, 1);
2020 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
2021 isl_val_free(size->bound->size);
2022 size->bound->size = isl_val_copy(v);
2023 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
2024 isl_aff_free(size->bound->lb);
2025 size->bound->lb = isl_aff_copy(lb);
2028 isl_val_free(v);
2029 isl_aff_free(lb);
2031 isl_constraint_free(c);
2033 return 0;
2036 /* Given a basic map "bounds" that maps parameters and input dimensions
2037 * to a single output dimension, look for an expression in the parameters
2038 * and input dimensions such that the range of the output dimension shifted
2039 * by this expression is a constant.
2041 * In particular, we currently only consider lower bounds on the output
2042 * dimension as candidate expressions.
2044 static int compute_array_dim_size(struct gpu_array_bound *bound,
2045 __isl_take isl_basic_map *bounds)
2047 struct gpu_size_info size;
2049 bounds = isl_basic_map_detect_equalities(bounds);
2050 bounds = check_stride(bound, bounds);
2052 bound->size = NULL;
2053 bound->lb = NULL;
2055 size.bound = bound;
2056 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
2057 size.bset = isl_basic_map_wrap(bounds);
2058 size.bset = isl_basic_set_flatten(size.bset);
2059 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
2060 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
2061 &size);
2062 isl_basic_set_free(size.bset);
2064 return bound->size ? 0 : -1;
2067 /* Check if we can find a memory tile for the given array
2068 * based on the given accesses, and if so, put the results in "tile".
2070 * We project the accesses on each index in turn and look for a parametric
2071 * offset such that the size is constant.
2073 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
2075 int i;
2077 for (i = 0; i < tile->n; ++i) {
2078 isl_map *access_i;
2079 isl_basic_map *hull;
2081 access_i = isl_map_copy(access);
2082 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
2083 access_i = isl_map_project_out(access_i, isl_dim_out,
2084 1, tile->n - (i + 1));
2085 access_i = isl_map_compute_divs(access_i);
2086 hull = isl_map_simple_hull(access_i);
2087 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
2088 return 0;
2091 return 1;
2094 /* Construct a map with input the shared tile loops and the loops that
2095 * will be wrapped around the threads that relates these later loops
2096 * to the thread indices and then projects them out.
2098 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
2100 isl_map *priv;
2101 isl_map *tiling;
2102 isl_map *proj;
2103 isl_set *par;
2104 isl_space *dim;
2106 dim = isl_union_map_get_space(gen->shared_sched);
2108 if (gen->options->wrap)
2109 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
2110 gen->shared_len, gen->n_block, gen->block_dim);
2111 else
2112 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
2113 gen->shared_len, gen->n_block, gen->block_dim);
2115 priv = tiling;
2117 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
2118 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
2119 gen->n_block, "t");
2121 priv = isl_map_align_params(priv, isl_set_get_space(par));
2122 priv = isl_map_intersect_range(priv, par);
2124 dim = isl_map_get_space(priv);
2125 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
2126 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
2127 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
2128 gen->shared_len);
2130 priv = isl_map_apply_range(priv, proj);
2132 return priv;
2135 /* Construct a map from domain_dim to domain_dim that increments
2136 * the dimension at position "pos" and leaves all other dimensions
2137 * constant.
2139 static __isl_give isl_map *next(__isl_take isl_space *domain_dim, int pos)
2141 int i;
2142 int len = isl_space_dim(domain_dim, isl_dim_set);
2143 isl_space *dim;
2144 isl_basic_map *next;
2145 isl_local_space *ls;
2147 dim = isl_space_map_from_set(domain_dim);
2148 next = isl_basic_map_universe(isl_space_copy(dim));
2149 ls = isl_local_space_from_space(dim);
2151 for (i = 0; i < len; ++i) {
2152 isl_constraint *c;
2154 c = isl_equality_alloc(isl_local_space_copy(ls));
2155 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, 1);
2156 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
2157 if (i == pos)
2158 c = isl_constraint_set_constant_si(c, 1);
2159 next = isl_basic_map_add_constraint(next, c);
2162 isl_local_space_free(ls);
2164 return isl_map_from_basic_map(next);
2167 /* Check if the given access is coalesced.
2168 * That is, check whether incrementing the dimension that will get
2169 * wrapped over the last thread index results in incrementing
2170 * the last array index.
2172 * This function is only called for access relations without reuse.
2174 static int access_is_coalesced(struct gpu_gen *gen,
2175 __isl_keep isl_union_map *access)
2177 isl_space *dim;
2178 isl_map *access_map;
2179 isl_map *next_thread_x;
2180 isl_map *next_element;
2181 isl_map *map;
2182 int coalesced;
2184 access = isl_union_map_copy(access);
2185 access = isl_union_map_apply_domain(access,
2186 isl_union_map_copy(gen->tiled_sched));
2187 access_map = isl_map_from_union_map(access);
2189 dim = isl_map_get_space(access_map);
2190 dim = isl_space_domain(dim);
2191 next_thread_x = next(dim, gen->shared_len + gen->n_block - 1);
2193 dim = isl_map_get_space(access_map);
2194 dim = isl_space_range(dim);
2195 next_element = next(dim, isl_space_dim(dim, isl_dim_set) - 1);
2197 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
2198 map = isl_map_apply_range(map, access_map);
2200 coalesced = isl_map_is_subset(map, next_element);
2202 isl_map_free(next_element);
2203 isl_map_free(map);
2205 return coalesced;
2208 /* Given an access relation in terms of the first gen->shared_len + gen->n_block
2209 * dimensions of the computed schedule, check if it is bijective for
2210 * fixed values of the first gen->shared_len dimensions.
2211 * We perform this check by equating these dimensions to parameters.
2213 static int access_is_bijective(struct gpu_gen *gen, __isl_keep isl_map *access)
2215 int res;
2216 isl_set *par;
2217 isl_space *space;
2219 access = isl_map_copy(access);
2220 space = isl_space_params(isl_map_get_space(access));
2221 par = parametrization(space, gen->shared_len + gen->n_block,
2222 0, gen->shared_len, "s");
2223 access = isl_map_intersect_domain(access, par);
2224 res = isl_map_is_bijective(access);
2225 isl_map_free(access);
2227 return res;
2230 /* Look for the last shared tile loop that affects the offset of "tile"
2231 * and return the result.
2232 * If there is no such loop, then return the index of the loop
2233 * before the first shared tile loop, in particular gen->tile_first - 1.
2235 static int compute_tile_last_shared(struct gpu_gen *gen,
2236 struct gpu_array_tile *tile)
2238 int i, j;
2240 for (j = gen->shared_len - 1; j >= gen->tile_first; --j) {
2241 for (i = 0; i < tile->n; ++i) {
2242 isl_aff *lb;
2243 isl_aff *shift;
2245 lb = tile->bound[i].lb;
2246 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
2247 break;
2249 shift = tile->bound[i].shift;
2250 if (!shift)
2251 continue;
2252 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
2253 break;
2255 if (i < tile->n)
2256 break;
2259 return j;
2262 /* Look for the last shared tile loop that affects the offset of the
2263 * shared or private tile and store the result in group->last_shared.
2264 * If there is no such loop, then group->last_shared is set to a value
2265 * before the first shared tile loop, in particular gen->tile_first - 1.
2266 * If there is no tile defined on the array reference group,
2267 * then set group->last_shared to gen->shared_len - 1.
2269 static void set_last_shared(struct gpu_gen *gen,
2270 struct gpu_array_ref_group *group)
2272 struct gpu_array_tile *tile;
2274 group->last_shared = gen->shared_len - 1;
2276 tile = group->private_tile;
2277 if (!tile)
2278 tile = group->shared_tile;
2279 if (!tile)
2280 return;
2282 group->last_shared = compute_tile_last_shared(gen, tile);
2285 /* Compute a privatized copy of all access relations from reference groups that
2286 * are mapped to private memory and store the result in gen->privatization.
2288 * Read-only scalars and arrays containing structures are not mapped
2289 * to private memory.
2291 static void compute_private_access(struct gpu_gen *gen)
2293 int i, j;
2294 isl_union_map *private;
2296 if (!gen->options->use_private_memory)
2297 return;
2299 private = isl_union_map_empty(isl_union_map_get_space(gen->shared_sched));
2301 for (i = 0; i < gen->prog->n_array; ++i) {
2302 struct gpu_array_info *array = &gen->prog->array[i];
2304 if (gpu_array_is_read_only_scalar(array))
2305 continue;
2306 if (array->has_compound_element)
2307 continue;
2309 for (j = 0; j < array->n_group; ++j) {
2310 if (!array->groups[j]->private_tile)
2311 continue;
2313 private = isl_union_map_union(private,
2314 group_access_relation(array->groups[j], 1, 1));
2318 if (isl_union_map_is_empty(private))
2319 isl_union_map_free(private);
2320 else {
2321 isl_union_map *priv;
2323 private = isl_union_map_apply_domain(private,
2324 isl_union_map_copy(gen->shared_sched));
2325 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2326 private = isl_union_map_apply_domain(private, priv);
2327 gen->private_access = private;
2331 /* Compute the size of the tile specified by "tile"
2332 * in number of elements and return the result.
2334 static __isl_give isl_val *tile_size(isl_ctx *ctx, struct gpu_array_tile *tile)
2336 int i;
2337 isl_val *size;
2339 size = isl_val_one(ctx);
2341 for (i = 0; i < tile->n; ++i)
2342 size = isl_val_mul(size, isl_val_copy(tile->bound[i].size));
2344 return size;
2347 /* If max_shared_memory is not set to infinity (-1), then make
2348 * sure that the total amount of shared memory required by the
2349 * array reference groups mapped to shared memory is no larger
2350 * than this maximum.
2352 * We apply a greedy approach and discard (keep in global memory)
2353 * those groups that would result in a total memory size that
2354 * is larger than the maximum.
2356 * This function should be called after any function that may
2357 * affect the decision on whether to place a reference group
2358 * in private, shared or global memory.
2360 static void check_shared_memory_bound(struct gpu_gen *gen)
2362 int i, j;
2363 isl_val *left, *size;
2365 if (gen->options->max_shared_memory < 0)
2366 return;
2368 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
2370 for (i = 0; i < gen->prog->n_array; ++i) {
2371 struct gpu_array_info *array = &gen->prog->array[i];
2373 for (j = 0; j < array->n_group; ++j) {
2374 struct gpu_array_ref_group *group;
2376 group = array->groups[j];
2377 if (group->private_tile)
2378 continue;
2379 if (!group->shared_tile)
2380 continue;
2382 size = tile_size(gen->ctx, group->shared_tile);
2383 size = isl_val_mul_ui(size, array->size);
2385 if (isl_val_le(size, left)) {
2386 left = isl_val_sub(left, size);
2387 continue;
2389 isl_val_free(size);
2391 group->shared_tile = free_tile(group->shared_tile);
2395 isl_val_free(left);
2398 /* Given a description of an array tile "tile" and the "space"
2400 * { D -> A }
2402 * where D represents the first shared_len schedule dimensions
2403 * and A represents the array, construct an isl_multi_aff
2405 * { [D[i] -> A[a]] -> A'[a'] }
2407 * with A' a scaled down copy of A according to the shifts and strides
2408 * in "tile". In particular,
2410 * a' = (a + shift(i))/stride
2412 * "insert_array" represents
2414 * { [D -> A] -> D }
2416 * and is used to insert A into the domain of functions that only
2417 * reference D.
2419 static __isl_give isl_multi_aff *strided_tile(
2420 struct gpu_array_tile *tile, __isl_keep isl_space *space,
2421 __isl_keep isl_multi_aff *insert_array)
2423 int i;
2424 isl_ctx *ctx;
2425 isl_multi_aff *shift;
2426 isl_multi_val *stride;
2427 isl_space *space2;
2428 isl_local_space *ls;
2429 isl_multi_aff *tiling;
2431 ctx = isl_space_get_ctx(space);
2432 space2 = isl_space_domain(isl_space_copy(space));
2433 ls = isl_local_space_from_space(space2);
2434 space2 = isl_space_range(isl_space_copy(space));
2435 stride = isl_multi_val_zero(space2);
2436 shift = isl_multi_aff_zero(isl_space_copy(space));
2438 for (i = 0; i < tile->n; ++i) {
2439 struct gpu_array_bound *bound = &tile->bound[i];
2440 isl_val *stride_i;
2441 isl_aff *shift_i;
2443 if (tile->bound[i].shift) {
2444 stride_i = isl_val_copy(bound->stride);
2445 shift_i = isl_aff_copy(bound->shift);
2446 } else {
2447 stride_i = isl_val_one(ctx);
2448 shift_i = isl_aff_zero_on_domain(
2449 isl_local_space_copy(ls));
2452 stride = isl_multi_val_set_val(stride, i, stride_i);
2453 shift = isl_multi_aff_set_aff(shift, i, shift_i);
2455 isl_local_space_free(ls);
2457 shift = isl_multi_aff_pullback_multi_aff(shift,
2458 isl_multi_aff_copy(insert_array));
2460 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2461 tiling = isl_multi_aff_add(tiling, shift);
2462 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
2464 return tiling;
2467 /* Compute a tiling for the array reference group "group".
2469 * The tiling is of the form
2471 * { [D[i] -> A[a]] -> T[t] }
2473 * where D represents the first shared_len schedule dimensions,
2474 * A represents the global array and T represents the shared or
2475 * private memory tile. The name of T is the name of the local
2476 * array.
2478 * If there is any stride in the accesses, then the mapping is
2480 * t = (a + shift(i))/stride - lb(i)
2482 * otherwise, it is simply
2484 * t = a - lb(i)
2486 static void compute_group_tiling(struct gpu_array_ref_group *group)
2488 int i;
2489 struct gpu_array_tile *tile;
2490 struct gpu_array_info *array = group->array;
2491 isl_space *space;
2492 isl_multi_aff *tiling, *lb, *insert_array;
2493 isl_printer *p;
2494 char *local_name;
2496 tile = group->private_tile;
2497 if (!tile)
2498 tile = group->shared_tile;
2499 if (!tile)
2500 return;
2502 space = isl_map_get_space(group->access);
2503 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
2505 for (i = 0; i < tile->n; ++i)
2506 if (tile->bound[i].shift)
2507 break;
2509 if (i < tile->n)
2510 tiling = strided_tile(tile, space, insert_array);
2511 else
2512 tiling = isl_multi_aff_range_map(isl_space_copy(space));
2514 lb = isl_multi_aff_zero(space);
2515 for (i = 0; i < tile->n; ++i) {
2516 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
2517 lb = isl_multi_aff_set_aff(lb, i, lb_i);
2519 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
2521 tiling = isl_multi_aff_sub(tiling, lb);
2523 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
2524 p = print_array_name(p, group);
2525 local_name = isl_printer_get_str(p);
2526 isl_printer_free(p);
2527 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
2528 free(local_name);
2530 tile->tiling = tiling;
2533 /* Compute a tiling for all the array reference groups.
2535 static void compute_group_tilings(struct gpu_gen *gen)
2537 int i, j;
2539 for (i = 0; i < gen->prog->n_array; ++i) {
2540 struct gpu_array_info *array = &gen->prog->array[i];
2542 for (j = 0; j < array->n_group; ++j)
2543 compute_group_tiling(array->groups[j]);
2547 /* Fill up the groups array with singleton groups, i.e., one group
2548 * per reference, initializing the array, access, write, n_ref and refs fields.
2549 * In particular the access field is initialized to the scheduled
2550 * access relation of the array reference.
2552 * Return the number of elements initialized, i.e., the number of
2553 * active references in the current kernel.
2555 static int populate_array_references(struct gpu_array_info *array,
2556 __isl_keep isl_union_map *sched, struct gpu_array_ref_group **groups)
2558 int i;
2559 int n;
2560 isl_ctx *ctx = isl_union_map_get_ctx(sched);
2562 n = 0;
2563 for (i = 0; i < array->n_ref; ++i) {
2564 isl_union_map *umap;
2565 isl_map *map;
2566 struct gpu_array_ref_group *group;
2567 struct gpu_stmt_access *access = array->refs[i];
2569 map = isl_map_copy(access->access);
2570 umap = isl_union_map_from_map(map);
2571 umap = isl_union_map_apply_domain(umap,
2572 isl_union_map_copy(sched));
2574 if (isl_union_map_is_empty(umap)) {
2575 isl_union_map_free(umap);
2576 continue;
2579 map = isl_map_from_union_map(umap);
2580 map = isl_map_detect_equalities(map);
2582 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2583 assert(group);
2584 group->array = array;
2585 group->access = map;
2586 group->write = access->write;
2587 group->exact_write = access->exact_write;
2588 group->refs = &array->refs[i];
2589 group->n_ref = 1;
2591 groups[n++] = group;
2594 return n;
2597 /* If group->n_ref == 1, then group->refs was set by
2598 * populate_array_references to point directly into
2599 * group->array->refs and should not be freed.
2600 * If group->n_ref > 1, then group->refs was set by join_groups
2601 * to point to a newly allocated array.
2603 static void free_array_ref_group(struct gpu_array_ref_group *group)
2605 if (!group)
2606 return;
2607 free_tile(group->shared_tile);
2608 free_tile(group->private_tile);
2609 isl_map_free(group->access);
2610 if (group->n_ref > 1)
2611 free(group->refs);
2612 free(group);
2615 /* Given a map where the input dimensions represent the tile loops,
2616 * eliminate the innermost of those that have a fixed value
2617 * until we reach one that does not (obviously) have a fixed value.
2619 static __isl_give isl_map *eliminate_fixed_inner_loops(
2620 __isl_take isl_map *access)
2622 int i, n;
2624 n = isl_map_dim(access, isl_dim_in);
2626 for (i = n - 1; i >= 0; --i) {
2627 if (!map_plain_is_fixed(access, isl_dim_in, i))
2628 break;
2629 access = isl_map_eliminate(access, isl_dim_in, i, 1);
2631 return access;
2634 /* Check if the access relations of group1 and group2 overlap within
2635 * the innermost loop. In particular, ignore any inner dimension
2636 * with a fixed value.
2637 * The copying to and from shared memory will be performed within
2638 * the innermost actual loop so we are only allowed to consider
2639 * the dimensions up to that innermost loop while checking whether
2640 * two access relations overlap.
2642 static int accesses_overlap(struct gpu_array_ref_group *group1,
2643 struct gpu_array_ref_group *group2)
2645 int empty;
2646 isl_map *access1, *access2;
2648 access1 = isl_map_copy(group1->access);
2649 access1 = eliminate_fixed_inner_loops(access1);
2650 access2 = isl_map_copy(group2->access);
2651 access2 = eliminate_fixed_inner_loops(access2);
2652 access1 = isl_map_intersect(access1, access2);
2653 empty = isl_map_is_empty(access1);
2654 isl_map_free(access1);
2656 return !empty;
2659 /* Combine the given two groups into a single group, containing
2660 * the references of both groups.
2662 static struct gpu_array_ref_group *join_groups(
2663 struct gpu_array_ref_group *group1,
2664 struct gpu_array_ref_group *group2)
2666 int i;
2667 isl_ctx *ctx;
2668 struct gpu_array_ref_group *group;
2670 ctx = isl_map_get_ctx(group1->access);
2671 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
2672 assert(group);
2673 group->array = group1->array;
2674 group->access = isl_map_union(isl_map_copy(group1->access),
2675 isl_map_copy(group2->access));
2676 group->write = group1->write || group2->write;
2677 group->exact_write = group1->exact_write && group2->exact_write;
2678 group->n_ref = group1->n_ref + group2->n_ref;
2679 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
2680 group->n_ref);
2681 assert(group->refs);
2682 for (i = 0; i < group1->n_ref; ++i)
2683 group->refs[i] = group1->refs[i];
2684 for (i = 0; i < group2->n_ref; ++i)
2685 group->refs[group1->n_ref + i] = group2->refs[i];
2687 return group;
2690 /* Combine the given two groups into a single group and free
2691 * the original two groups.
2693 static struct gpu_array_ref_group *join_groups_and_free(
2694 struct gpu_array_ref_group *group1,
2695 struct gpu_array_ref_group *group2)
2697 struct gpu_array_ref_group *group;
2699 group = join_groups(group1, group2);
2700 free_array_ref_group(group1);
2701 free_array_ref_group(group2);
2702 return group;
2705 /* Compute the private and/or shared memory tiles for the array
2706 * reference group "group" of array "array".
2707 * Return 0 on success and -1 on error.
2709 * If the array is a read-only scalar or if the user requested
2710 * not to use shared or private memory, then we do not need to do anything.
2712 * If the array group involves any may writes (that are not must writes),
2713 * then we would have to make sure that we load the data into shared/private
2714 * memory first in case the data is not written by the kernel
2715 * (but still written back out to global memory).
2716 * Since we don't have any such mechanism at the moment, we don't
2717 * compute shared/private tiles for groups involving may writes.
2719 * We only try to compute a shared memory tile if there is any reuse
2720 * or if the access is not coalesced.
2722 * For computing a private memory tile, we also require that there is
2723 * some reuse. Moreover, we require that the access is private
2724 * to the thread. That is, we check that any given array element
2725 * is only accessed by a single thread.
2726 * We compute an access relation that maps the shared tile loop iterators
2727 * and the shared point loop iterators that will be wrapped over the
2728 * threads to the array elements.
2729 * We actually check that those iterators that will be wrapped
2730 * partition the array space. This check is stricter than necessary
2731 * since several iterations may be mapped onto the same thread
2732 * and then they could be allowed to access the same memory elements,
2733 * but our check does not allow this situation.
2735 * We also check that the index expression only depends on parallel
2736 * loops. That way, we can move those loops innermost and unroll them.
2737 * Again, we use a test that is stricter than necessary.
2738 * We actually check whether the index expression only depends
2739 * on the iterators that are wrapped over the threads.
2740 * These are necessarily parallel, but there may be more parallel loops.
2742 * Combining the injectivity of the first test with the single-valuedness
2743 * of the second test, we simply test for bijectivity.
2745 * If the array is marked force_private, then we bypass all checks
2746 * and assume we can (and should) use registers.
2748 * If it turns out we can (or have to) use registers, we compute
2749 * the private memory tile size using can_tile, after introducing a dependence
2750 * on the thread indices.
2752 static int compute_group_bounds_core(struct gpu_gen *gen,
2753 struct gpu_array_ref_group *group)
2755 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
2756 isl_union_map *access;
2757 int n_index = group->array->n_index;
2758 int no_reuse;
2759 isl_map *acc;
2760 int force_private = group->array->force_private;
2761 int use_shared = gen->options->use_shared_memory;
2762 int use_private = force_private || gen->options->use_private_memory;
2764 if (!use_shared && !use_private)
2765 return 0;
2766 if (gpu_array_is_read_only_scalar(group->array))
2767 return 0;
2768 if (!force_private && !group->exact_write)
2769 return 0;
2771 access = group_access_relation(group, 1, 1);
2772 no_reuse = isl_union_map_is_injective(access);
2774 if (use_shared && (!no_reuse || !access_is_coalesced(gen, access))) {
2775 group->shared_tile = create_tile(ctx, group->array->n_index);
2776 if (!can_tile(group->access, group->shared_tile))
2777 group->shared_tile = free_tile(group->shared_tile);
2780 if (!force_private && (!use_private || no_reuse)) {
2781 isl_union_map_free(access);
2782 return 0;
2785 access = isl_union_map_apply_domain(access,
2786 isl_union_map_copy(gen->shared_sched));
2788 acc = isl_map_from_union_map(access);
2790 if (!force_private && !access_is_bijective(gen, acc)) {
2791 isl_map_free(acc);
2792 return 0;
2795 group->private_tile = create_tile(gen->ctx, n_index);
2796 acc = isl_map_apply_domain(acc, isl_map_copy(gen->privatization));
2797 if (!can_tile(acc, group->private_tile))
2798 group->private_tile = free_tile(group->private_tile);
2800 isl_map_free(acc);
2802 if (force_private && !group->private_tile)
2803 isl_die(ctx, isl_error_internal,
2804 "unable to map array reference group to registers",
2805 return -1);
2807 return 0;
2810 /* Compute the private and/or shared memory tiles for the array
2811 * reference group "group" of array "array" and set last_shared.
2812 * Return 0 on success and -1 on error.
2814 static int compute_group_bounds(struct gpu_gen *gen,
2815 struct gpu_array_ref_group *group)
2817 if (compute_group_bounds_core(gen, group) < 0)
2818 return -1;
2819 set_last_shared(gen, group);
2821 return 0;
2824 /* If two groups have overlapping access relations (as determined by
2825 * the "overlap" function) and if one of them involves a write,
2826 * then merge the two groups into one.
2827 * If "compute_bounds" is set, then call compute_group_bounds
2828 * on the merged groups.
2830 * Return the updated number of groups.
2831 * Return -1 on error.
2833 static int group_writes(struct gpu_gen *gen,
2834 int n, struct gpu_array_ref_group **groups,
2835 int (*overlap)(struct gpu_array_ref_group *group1,
2836 struct gpu_array_ref_group *group2), int compute_bounds)
2838 int i, j;
2840 for (i = 0; i < n; ++i) {
2841 for (j = n - 1; j > i; --j) {
2842 if (!groups[i]->write && !groups[j]->write)
2843 continue;
2845 if (!overlap(groups[i], groups[j]))
2846 continue;
2848 groups[i] = join_groups_and_free(groups[i], groups[j]);
2849 if (compute_bounds &&
2850 compute_group_bounds(gen, groups[i]) < 0)
2851 return -1;
2852 if (j != n - 1)
2853 groups[j] = groups[n - 1];
2854 groups[n - 1] = NULL;
2855 n--;
2859 return n;
2862 /* If two groups have overlapping access relations (within the innermost
2863 * loop) and if one of them involves a write, then merge the two groups
2864 * into one.
2866 * Return the updated number of groups.
2868 static int group_overlapping_writes(struct gpu_gen *gen,
2869 int n, struct gpu_array_ref_group **groups)
2871 return group_writes(gen, n, groups, &accesses_overlap, 0);
2874 /* Check if the access relations of group1 and group2 overlap within
2875 * the outermost min(group1->last_shared, group2->last_shared) loops.
2877 static int last_shared_accesses_overlap(struct gpu_array_ref_group *group1,
2878 struct gpu_array_ref_group *group2)
2880 int last_shared;
2881 int dim;
2882 int empty;
2883 isl_map *map_i, *map_j, *map;
2885 last_shared = group1->last_shared;
2886 if (group2->last_shared < last_shared)
2887 last_shared = group2->last_shared;
2888 map_i = isl_map_copy(group1->access);
2889 dim = isl_map_dim(map_i, isl_dim_in);
2890 map_i = isl_map_eliminate(map_i, isl_dim_in,
2891 last_shared + 1, dim - (last_shared + 1));
2892 map_j = isl_map_copy(group2->access);
2893 map_j = isl_map_eliminate(map_j, isl_dim_in,
2894 last_shared + 1, dim - (last_shared + 1));
2895 map = isl_map_intersect(map_i, map_j);
2896 empty = isl_map_is_empty(map);
2897 isl_map_free(map);
2899 return !empty;
2902 /* If two groups have overlapping access relations (within the outer
2903 * last_shared loops) and if one of them involves a write,
2904 * then merge the two groups into one.
2906 * Return the updated number of groups.
2908 static int group_last_shared_overlapping_writes(struct gpu_gen *gen, int n,
2909 struct gpu_array_ref_group **groups)
2911 return group_writes(gen, n, groups, &last_shared_accesses_overlap, 1);
2914 /* Is the size of the tile specified by "tile" smaller than the sum of
2915 * the sizes of the tiles specified by "tile1" and "tile2"?
2917 static int smaller_tile(isl_ctx *ctx, struct gpu_array_tile *tile,
2918 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
2920 int smaller;
2921 isl_val *size, *size1, *size2;
2923 size = tile_size(ctx, tile);
2924 size1 = tile_size(ctx, tile1);
2925 size2 = tile_size(ctx, tile2);
2927 size = isl_val_sub(size, size1);
2928 size = isl_val_sub(size, size2);
2929 smaller = isl_val_is_neg(size);
2931 isl_val_free(size);
2933 return smaller;
2936 /* Given an initial grouping of array references and shared memory tiles
2937 * for each group that allows for a shared memory tile, merge two groups
2938 * if both have a shared memory tile, the merged group also has
2939 * a shared memory tile and the size of the tile for the merge group
2940 * is smaller than the sum of the tile sizes of the individual groups.
2942 * If merging two groups decreases the "last_shared" dimension of
2943 * one or both of the two groups, then we need to check for overlapping
2944 * writes again.
2946 * Return the number of groups after merging.
2947 * Return -1 on error.
2949 static int group_common_shared_memory_tile(struct gpu_gen *gen,
2950 struct gpu_array_info *array, int n,
2951 struct gpu_array_ref_group **groups)
2953 int i, j;
2954 int recompute_overlap = 0;
2955 isl_ctx *ctx = isl_space_get_ctx(array->space);
2957 for (i = 0; i < n; ++i) {
2958 if (!groups[i]->shared_tile)
2959 continue;
2960 for (j = n - 1; j > i; --j) {
2961 isl_map *map;
2962 int empty;
2963 struct gpu_array_ref_group *group;
2965 if (!groups[j]->shared_tile)
2966 continue;
2968 map = isl_map_intersect(isl_map_copy(groups[i]->access),
2969 isl_map_copy(groups[j]->access));
2970 empty = isl_map_is_empty(map);
2971 isl_map_free(map);
2973 if (empty)
2974 continue;
2976 group = join_groups(groups[i], groups[j]);
2977 if (compute_group_bounds(gen, group) < 0) {
2978 free_array_ref_group(group);
2979 return -1;
2981 if (!group->shared_tile ||
2982 !smaller_tile(ctx, group->shared_tile,
2983 groups[i]->shared_tile,
2984 groups[j]->shared_tile)) {
2985 free_array_ref_group(group);
2986 continue;
2989 if (group->last_shared < groups[i]->last_shared ||
2990 group->last_shared < groups[j]->last_shared)
2991 recompute_overlap = 1;
2992 free_array_ref_group(groups[i]);
2993 free_array_ref_group(groups[j]);
2994 groups[i] = group;
2995 if (j != n - 1)
2996 groups[j] = groups[n - 1];
2997 n--;
3001 if (recompute_overlap)
3002 n = group_last_shared_overlapping_writes(gen, n, groups);
3003 return n;
3006 /* Set array->n_group and array->groups to n and groups.
3008 * Additionally, set the "nr" field of each group
3009 * and the "group" field of each reference in each group.
3011 static void set_array_groups(struct gpu_array_info *array,
3012 int n, struct gpu_array_ref_group **groups)
3014 int i, j;
3016 array->n_group = n;
3017 array->groups = groups;
3019 for (i = 0; i < n; ++i) {
3020 groups[i]->nr = i;
3022 for (j = 0; j < groups[i]->n_ref; ++j)
3023 groups[i]->refs[j]->group = i;
3027 /* Group array references that should be considered together when
3028 * deciding whether to access them from private, shared or global memory.
3029 * Return -1 on error.
3031 * In particular, if two array references overlap and if one of them
3032 * is a write, then the two references are grouped together.
3033 * We first perform an initial grouping based only on the access relation.
3034 * After computing shared and private memory tiles, we check for
3035 * overlapping writes again, but this time taking into account
3036 * the "last_shared" property.
3038 * Furthermore, if two groups admit a shared memory tile and if the
3039 * combination of the two also admits a shared memory tile, we merge
3040 * the two groups.
3042 * If the array contains structures, then there is no need to compute
3043 * reference groups since we do not map such arrays to private or shared
3044 * memory.
3046 static int group_array_references(struct gpu_gen *gen,
3047 struct gpu_array_info *array, __isl_keep isl_union_map *sched)
3049 int i;
3050 int n;
3051 isl_ctx *ctx = isl_union_map_get_ctx(sched);
3052 struct gpu_array_ref_group **groups;
3054 if (array->has_compound_element)
3055 return 0;
3057 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
3058 array->n_ref);
3059 if (!groups)
3060 return -1;
3062 n = populate_array_references(array, sched, groups);
3064 n = group_overlapping_writes(gen, n, groups);
3066 for (i = 0; i < n; ++i)
3067 if (compute_group_bounds(gen, groups[i]) < 0)
3068 n = -1;
3070 n = group_last_shared_overlapping_writes(gen, n, groups);
3072 n = group_common_shared_memory_tile(gen, array, n, groups);
3074 set_array_groups(array, n, groups);
3076 if (n >= 0)
3077 return 0;
3079 for (i = 0; i < array->n_ref; ++i)
3080 free_array_ref_group(groups[i]);
3081 return -1;
3084 /* Take tiled_sched, project it onto the shared tile loops and
3085 * the loops that will be wrapped over the threads and
3086 * store the result in gen->shared_sched.
3087 * Also compute a projection that projects out the loops that will be
3088 * wrapped over the threads and store this projection in gen->shared_proj.
3090 static void compute_shared_sched(struct gpu_gen *gen)
3092 isl_space *dim;
3093 isl_map *proj;
3094 isl_set *par;
3095 isl_union_map *sched;
3097 sched = isl_union_map_copy(gen->tiled_sched);
3099 dim = isl_union_map_get_space(sched);
3100 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
3101 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3103 dim = isl_union_map_get_space(sched);
3104 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
3106 gen->shared_sched = sched;
3107 gen->shared_proj = isl_union_map_from_map(proj);
3110 /* For each scalar in the input program, check if there are any
3111 * order dependences active inside the current kernel, within
3112 * the same iteration of the host schedule.
3113 * If so, mark the scalar as force_private so that it will be
3114 * mapped to a register.
3116 static void check_scalar_live_ranges(struct gpu_gen *gen)
3118 int i;
3119 isl_map *proj;
3120 isl_union_map *sched;
3121 isl_union_set *domain;
3122 isl_union_map *same_host_iteration;
3124 gen->any_force_private = 0;
3126 if (!gen->options->live_range_reordering)
3127 return;
3129 sched = gen->shared_sched;
3130 sched = isl_union_map_universe(isl_union_map_copy(sched));
3131 domain = isl_union_map_domain(sched);
3133 sched = isl_union_map_copy(gen->sched);
3134 proj = projection(isl_union_map_get_space(sched),
3135 gen->untiled_len, gen->tile_first);
3136 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3137 same_host_iteration = isl_union_map_apply_range(sched,
3138 isl_union_map_reverse(isl_union_map_copy(sched)));
3140 for (i = 0; i < gen->prog->n_array; ++i) {
3141 struct gpu_array_info *array = &gen->prog->array[i];
3142 isl_union_map *order;
3144 array->force_private = 0;
3145 if (array->n_index != 0)
3146 continue;
3147 order = isl_union_map_copy(array->dep_order);
3148 order = isl_union_map_intersect_domain(order,
3149 isl_union_set_copy(domain));
3150 order = isl_union_map_intersect_range(order,
3151 isl_union_set_copy(domain));
3152 order = isl_union_map_intersect(order,
3153 isl_union_map_copy(same_host_iteration));
3154 if (!isl_union_map_is_empty(order)) {
3155 array->force_private = 1;
3156 gen->any_force_private = 1;
3158 isl_union_map_free(order);
3161 isl_union_map_free(same_host_iteration);
3162 isl_union_set_free(domain);
3165 /* Group references of all arrays in the program.
3167 static int group_references(struct gpu_gen *gen)
3169 int i;
3170 int r = 0;
3171 isl_union_map *sched;
3173 sched = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
3174 isl_union_map_copy(gen->shared_proj));
3176 for (i = 0; i < gen->prog->n_array; ++i) {
3177 r = group_array_references(gen, &gen->prog->array[i], sched);
3178 if (r < 0)
3179 break;
3182 isl_union_map_free(sched);
3184 return r;
3187 /* Free all array information that is local to the current kernel.
3189 static void free_local_array_info(struct gpu_gen *gen)
3191 int i, j;
3193 for (i = 0; i < gen->prog->n_array; ++i) {
3194 struct gpu_array_info *array = &gen->prog->array[i];
3196 for (j = 0; j < array->n_group; ++j)
3197 free_array_ref_group(array->groups[j]);
3198 free(array->groups);
3202 /* Compute the size of a bounding box around the origin and "set",
3203 * where "set" is assumed to contain only non-negative elements.
3204 * In particular, compute the maximal value of "set" in each direction
3205 * and add one.
3207 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
3208 __isl_keep isl_set *context)
3210 int i, n;
3211 isl_multi_pw_aff *mpa;
3213 n = isl_set_dim(set, isl_dim_set);
3214 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
3215 for (i = 0; i < n; ++i) {
3216 isl_space *space;
3217 isl_aff *one;
3218 isl_pw_aff *bound;
3220 bound = isl_set_dim_max(isl_set_copy(set), i);
3221 bound = isl_pw_aff_coalesce(bound);
3222 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
3224 space = isl_pw_aff_get_domain_space(bound);
3225 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
3226 one = isl_aff_add_constant_si(one, 1);
3227 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
3228 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
3230 isl_set_free(set);
3232 return mpa;
3235 /* Compute the effective grid size as a list of the sizes in each dimension.
3237 * The grid size specified by the user or set by default
3238 * in read_grid_sizes() and applied in tile_schedule(),
3239 * may be too large for the given code in the sense that
3240 * it may contain blocks that don't need to execute anything.
3241 * We therefore don't return this grid size, but instead the
3242 * smallest grid size that ensures that all blocks that actually
3243 * execute code are included in the grid.
3245 * We first extract a description of the grid, i.e., the possible values
3246 * of the block ids, from gen->tiled_sched.
3247 * The block ids are parameters in gen->tiled_sched.
3248 * We simply need to change them into set dimensions.
3250 * Then, for each block dimension, we compute the maximal value of the block id
3251 * and add one.
3253 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
3254 struct ppcg_kernel *kernel)
3256 int i;
3257 isl_set *grid;
3259 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
3260 grid = isl_set_from_params(grid);
3261 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
3262 for (i = 0; i < gen->n_grid; ++i) {
3263 int pos;
3264 char name[20];
3266 snprintf(name, sizeof(name), "b%d", i);
3267 pos = isl_set_find_dim_by_name(grid, isl_dim_param, name);
3268 assert(pos >= 0);
3269 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
3270 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
3273 return extract_size(grid, kernel->context);
3276 /* Compute the size of a fixed bounding box around the origin and "set",
3277 * where "set" is assumed to contain only non-negative elements,
3278 * and store the results in "size".
3279 * In particular, compute the maximal value of "set" in each direction
3280 * and add one.
3282 static void extract_fixed_size(__isl_take isl_set *set, int *size)
3284 int i, n;
3285 isl_local_space *ls;
3286 isl_aff *obj;
3288 n = isl_set_dim(set, isl_dim_set);
3289 ls = isl_local_space_from_space(isl_set_get_space(set));
3290 obj = isl_aff_zero_on_domain(ls);
3291 for (i = 0; i < n; ++i) {
3292 isl_val *max;
3294 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
3295 max = isl_set_max_val(set, obj);
3296 size[i] = isl_val_get_num_si(max) + 1;
3297 isl_val_free(max);
3298 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
3300 isl_aff_free(obj);
3301 isl_set_free(set);
3304 /* Compute the effective block size as a list of the sizes in each dimension
3305 * and store the sizes in kernel->block_dim.
3307 * The block size specified by the user or set by default
3308 * in read_block_sizes() and applied in thread_tile_schedule(),
3309 * may be too large for the given code in the sense that
3310 * it may contain threads that don't need to execute anything.
3311 * We therefore don't store this block size in kernel->block_dim,
3312 * but instead the smallest block size that ensures that all threads
3313 * that actually execute code are included in the block.
3315 * The current implementation eliminates all parameters, ensuring
3316 * that the size is a fixed constant in each dimension.
3317 * In principle we could also compute parametric sizes.
3318 * We would have to make sure to project out all b%d and t%d parameters,
3319 * however.
3321 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3323 int i;
3324 int nparam;
3325 isl_set *block;
3326 isl_multi_pw_aff *mpa;
3328 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
3329 block = isl_set_from_params(block);
3330 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
3331 kernel->n_block = gen->n_block;
3332 for (i = 0; i < gen->n_block; ++i) {
3333 int pos;
3334 char name[20];
3336 snprintf(name, sizeof(name), "t%d", i);
3337 pos = isl_set_find_dim_by_name(block, isl_dim_param, name);
3338 assert(pos >= 0);
3339 block = isl_set_equate(block, isl_dim_param, pos,
3340 isl_dim_set, i);
3342 nparam = isl_set_dim(block, isl_dim_param);
3343 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
3345 extract_fixed_size(block, kernel->block_dim);
3348 void ppcg_kernel_free(void *user)
3350 struct ppcg_kernel *kernel = user;
3351 int i;
3353 if (!kernel)
3354 return;
3356 isl_multi_pw_aff_free(kernel->grid_size);
3357 isl_set_free(kernel->context);
3358 isl_union_set_free(kernel->arrays);
3359 isl_space_free(kernel->space);
3360 isl_ast_node_free(kernel->tree);
3362 for (i = 0; i < kernel->n_array; ++i)
3363 isl_pw_aff_list_free(kernel->array[i].bound);
3364 free(kernel->array);
3366 for (i = 0; i < kernel->n_var; ++i) {
3367 free(kernel->var[i].name);
3368 isl_vec_free(kernel->var[i].size);
3370 free(kernel->var);
3372 free(kernel);
3375 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
3376 struct ppcg_kernel_var *var)
3378 int j;
3379 struct gpu_array_tile *tile;
3380 isl_printer *p;
3381 char *name;
3383 var->array = group->array;
3385 tile = group->private_tile;
3386 var->type = ppcg_access_private;
3387 if (!tile) {
3388 tile = group->shared_tile;
3389 var->type = ppcg_access_shared;
3392 p = isl_printer_to_str(ctx);
3393 p = print_array_name(p, group);
3394 var->name = isl_printer_get_str(p);
3395 isl_printer_free(p);
3397 var->size = isl_vec_alloc(ctx, group->array->n_index);
3399 for (j = 0; j < group->array->n_index; ++j)
3400 var->size = isl_vec_set_element_val(var->size, j,
3401 isl_val_copy(tile->bound[j].size));
3404 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
3406 int i, j, n;
3408 n = 0;
3409 for (i = 0; i < gen->prog->n_array; ++i) {
3410 struct gpu_array_info *array = &gen->prog->array[i];
3412 for (j = 0; j < array->n_group; ++j) {
3413 struct gpu_array_ref_group *group = array->groups[j];
3414 if (group->private_tile || group->shared_tile)
3415 ++n;
3419 kernel->n_var = n;
3420 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
3421 assert(kernel->var);
3423 n = 0;
3424 for (i = 0; i < gen->prog->n_array; ++i) {
3425 struct gpu_array_info *array = &gen->prog->array[i];
3427 for (j = 0; j < array->n_group; ++j) {
3428 struct gpu_array_ref_group *group = array->groups[j];
3429 if (!group->private_tile && !group->shared_tile)
3430 continue;
3431 create_kernel_var(gen->ctx, group, &kernel->var[n]);
3432 ++n;
3437 /* The sizes of the arrays on the host that have been computed by
3438 * extract_array_info may depend on the parameters. Use the extra
3439 * constraints on the parameters that are valid at "host_domain"
3440 * to simplify these expressions and store the results in kernel->array.
3442 * We only need these localized bounds for arrays that are accessed
3443 * by the current kernel. If we have found at least one reference group
3444 * then the array is accessed by the kernel. If the array has compound
3445 * elements then we skipped the construction of array reference groups.
3447 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
3448 __isl_keep isl_set *host_domain)
3450 int i, j;
3451 isl_set *context;
3453 kernel->array = isl_calloc_array(gen->ctx,
3454 struct gpu_local_array_info, gen->prog->n_array);
3455 assert(kernel->array);
3456 kernel->n_array = gen->prog->n_array;
3458 context = isl_set_copy(host_domain);
3459 context = isl_set_params(context);
3461 for (i = 0; i < gen->prog->n_array; ++i) {
3462 struct gpu_array_info *array = &gen->prog->array[i];
3463 isl_pw_aff_list *local;
3465 if (array->n_group == 0 && !array->has_compound_element)
3466 continue;
3468 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
3470 for (j = 0; j < array->n_index; ++j) {
3471 isl_pw_aff *pwaff;
3473 pwaff = isl_pw_aff_copy(array->bound[j]);
3474 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
3475 local = isl_pw_aff_list_add(local, pwaff);
3478 kernel->array[i].bound = local;
3480 isl_set_free(context);
3483 /* Find the element in gen->stmt that has the given "id".
3484 * Return NULL if no such gpu_stmt can be found.
3486 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
3488 int i;
3490 for (i = 0; i < prog->n_stmts; ++i) {
3491 if (id == prog->stmts[i].id)
3492 break;
3495 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
3498 /* Set gen->tile_len and gen->n_parallel to those of the statement
3499 * affected by the first map (part of the schedule)
3500 * on which this function is called.
3501 * Because of the way the schedule is constructed, the other statements
3502 * in the list, if any, should have the same values for these properties.
3504 static int extract_tile_len(__isl_take isl_map *map, void *user)
3506 struct gpu_gen *gen = (struct gpu_gen *) user;
3507 isl_id *id;
3508 struct gpu_stmt *stmt;
3510 id = isl_map_get_tuple_id(map, isl_dim_in);
3511 stmt = find_stmt(gen->prog, id);
3512 isl_id_free(id);
3514 isl_map_free(map);
3516 if (!stmt)
3517 isl_die(gen->ctx, isl_error_unknown,
3518 "statement not found", return -1);
3520 gen->tile_len = stmt->tile_len;
3521 gen->n_parallel = stmt->n_parallel;
3523 return -1;
3526 void ppcg_kernel_stmt_free(void *user)
3528 int i;
3529 struct ppcg_kernel_stmt *stmt = user;
3531 if (!stmt)
3532 return;
3534 switch (stmt->type) {
3535 case ppcg_kernel_copy:
3536 isl_ast_expr_free(stmt->u.c.index);
3537 isl_ast_expr_free(stmt->u.c.local_index);
3538 break;
3539 case ppcg_kernel_domain:
3540 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
3541 break;
3542 case ppcg_kernel_sync:
3543 break;
3546 free(stmt);
3549 /* Set the options of "context" to
3551 * { space -> [x] : x >= first }
3553 static __isl_give isl_ast_build *set_unroll(
3554 __isl_take isl_ast_build *build, __isl_take isl_space *space,
3555 int first)
3557 isl_ctx *ctx;
3558 isl_map *unroll;
3559 isl_union_map *opt;
3561 ctx = isl_ast_build_get_ctx(build);
3563 space = isl_space_from_domain(space);
3564 space = isl_space_add_dims(space, isl_dim_out, 1);
3565 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
3566 unroll = isl_map_universe(space);
3567 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
3568 opt = isl_union_map_from_map(unroll);
3570 build = isl_ast_build_set_options(build, opt);
3572 return build;
3575 /* Return a list of isl_ids of the form "prefix%d".
3577 static __isl_give isl_id_list *generate_names(isl_ctx *ctx,
3578 int n, const char *prefix)
3580 int i;
3581 char name[10];
3582 isl_id_list *names;
3584 names = isl_id_list_alloc(ctx, n);
3585 for (i = 0; i < n; ++i) {
3586 isl_id *id;
3588 snprintf(name, sizeof(name), "%s%d", prefix, i);
3589 id = isl_id_alloc(ctx, name, NULL);
3590 names = isl_id_list_add(names, id);
3593 return names;
3596 /* Extend the schedule "schedule" with the part of "extension"
3597 * starting at "first" up to "len".
3599 static __isl_give isl_union_map *extend_schedule(
3600 __isl_take isl_union_map *schedule,
3601 __isl_take isl_union_map *extension, int first, int len)
3603 isl_space *space;
3604 isl_map *proj;
3605 isl_union_map *umap;
3606 isl_set *set;
3608 space = isl_union_map_get_space(schedule);
3609 space = isl_space_set_from_params(space);
3610 space = isl_space_add_dims(space, isl_dim_set, len);
3611 proj = isl_set_identity(isl_set_universe(space));
3612 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
3613 extension = isl_union_map_apply_range(extension,
3614 isl_union_map_from_map(proj));
3616 schedule = isl_union_map_range_product(schedule, extension);
3618 return schedule;
3621 /* Return the gpu_stmt_access in the list "accesses" that corresponds
3622 * to "ref_id".
3624 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
3625 __isl_keep isl_id *ref_id)
3627 struct gpu_stmt_access *access;
3629 for (access = accesses; access; access = access->next)
3630 if (access->ref_id == ref_id)
3631 return access;
3633 return NULL;
3636 /* Return the index of the array called "name" in the list of arrays.
3638 static int find_array_index(struct gpu_gen *gen, const char *name)
3640 int i;
3642 for (i = 0; i < gen->prog->n_array; ++i)
3643 if (!strcmp(name, gen->prog->array[i].name))
3644 return i;
3646 return -1;
3649 /* Internal data structure for the index and AST expression transformation
3650 * callbacks for pet_stmt_build_ast_exprs.
3652 * "accesses" is the list of gpu_stmt_access in the statement.
3653 * "iterator_map" expresses the statement iterators in terms of
3654 * the AST loop iterators.
3655 * "sched2shared" expresses the first shared_len dimensions of
3656 * the computed schedule in terms of the AST loop iterators.
3658 * The following fields are set in transform_index and used in transform_expr.
3659 * "array" is the array that is being accessed.
3660 * "global" is set if the global array is accessed (rather than
3661 * shared/private memory).
3662 * "local_array" refers to information on the array specialized
3663 * to the current kernel.
3665 struct ppcg_transform_data {
3666 struct gpu_gen *gen;
3667 struct gpu_stmt_access *accesses;
3668 isl_pw_multi_aff *iterator_map;
3669 isl_pw_multi_aff *sched2shared;
3671 struct gpu_array_info *array;
3672 int global;
3673 struct gpu_local_array_info *local_array;
3676 /* Return the name of the outer array (of structs) accessed by "access".
3678 static const char *get_outer_array_name(__isl_keep isl_map *access)
3680 isl_space *space;
3681 const char *name;
3683 space = isl_space_range(isl_map_get_space(access));
3684 while (space && isl_space_is_wrapping(space))
3685 space = isl_space_domain(isl_space_unwrap(space));
3686 name = isl_space_get_tuple_name(space, isl_dim_set);
3687 isl_space_free(space);
3689 return name;
3692 /* Index transformation callback for pet_stmt_build_ast_exprs.
3694 * "index" expresses the array indices in terms of statement iterators
3696 * We first reformulate "index" in terms of the AST loop iterators.
3697 * Then we check if we are accessing the global array or
3698 * a shared/private copy. In the former case, we simply return
3699 * the updated index. If "index" is an affine expression rather
3700 * than an array access, then we also return the updated index here.
3702 * If no reference groups have been computed for the array,
3703 * then we can only be accessing the global array.
3705 * Otherwise, we apply the tiling to the index.
3706 * This tiling is of the form
3708 * [D -> A] -> T
3710 * The index is of the form
3712 * L -> A
3714 * We update the tiling to refer to the AST loop iteratos
3716 * [L -> A] -> T
3718 * and modify index to keep track of those iterators
3720 * L -> [L -> A]
3722 * Combining these two yields a tiled index expression in terms
3723 * of the AST loop iterators
3725 * L -> T
3727 static __isl_give isl_multi_pw_aff *transform_index(
3728 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
3729 void *user)
3731 struct ppcg_transform_data *data = user;
3732 struct gpu_stmt_access *access;
3733 struct gpu_array_ref_group *group;
3734 struct gpu_array_tile *tile;
3735 isl_pw_multi_aff *iterator_map;
3736 int i;
3737 const char *name;
3738 isl_space *space;
3739 isl_multi_pw_aff *tiling;
3740 isl_pw_multi_aff *pma;
3741 isl_multi_pw_aff *mpa;
3743 data->array = NULL;
3745 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
3746 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
3748 access = find_access(data->accesses, ref_id);
3749 if (!access)
3750 return index;
3751 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
3752 return index;
3754 name = get_outer_array_name(access->access);
3755 i = find_array_index(data->gen, name);
3756 if (i < 0)
3757 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
3758 "cannot find array",
3759 return isl_multi_pw_aff_free(index));
3760 data->array = &data->gen->prog->array[i];
3761 data->local_array = &data->gen->kernel->array[i];
3763 if (access->group < 0) {
3764 data->global = 1;
3765 return index;
3768 group = data->array->groups[access->group];
3769 tile = group->private_tile;
3770 if (!tile)
3771 tile = group->shared_tile;
3772 data->global = !tile;
3773 if (!tile)
3774 return index;
3776 space = isl_space_range(isl_multi_pw_aff_get_space(index));
3777 space = isl_space_map_from_set(space);
3778 pma = isl_pw_multi_aff_identity(space);
3779 pma = isl_pw_multi_aff_product(
3780 isl_pw_multi_aff_copy(data->sched2shared), pma);
3781 tiling = isl_multi_pw_aff_from_multi_aff(
3782 isl_multi_aff_copy(tile->tiling));
3783 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
3785 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
3786 space = isl_space_map_from_set(space);
3787 mpa = isl_multi_pw_aff_identity(space);
3788 index = isl_multi_pw_aff_range_product(mpa, index);
3789 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
3791 return index;
3794 /* Dereference "expr" by adding an index [0].
3795 * The original "expr" is assumed not to have any indices.
3797 * If "expr" is a member access, then the dereferencing needs
3798 * to be applied to the structure argument of this member access.
3800 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
3802 isl_ctx *ctx;
3803 isl_ast_expr *res;
3804 isl_ast_expr_list *list;
3806 if (isl_ast_expr_get_op_type(expr) == isl_ast_op_member) {
3807 isl_ast_expr *arg;
3809 arg = isl_ast_expr_get_op_arg(expr, 0);
3810 arg = dereference(arg);
3811 expr = isl_ast_expr_set_op_arg(expr, 0, arg);
3813 return expr;
3816 ctx = isl_ast_expr_get_ctx(expr);
3817 res = isl_ast_expr_from_val(isl_val_zero(ctx));
3818 list = isl_ast_expr_list_from_ast_expr(res);
3819 res = isl_ast_expr_get_op_arg(expr, 0);
3820 res = isl_ast_expr_access(res, list);
3821 isl_ast_expr_free(expr);
3823 return res;
3826 /* Linearize the index expression "expr" based on the array bounds
3827 * of "array".
3829 * That is, transform expression
3831 * A[i_0][i_1]...[i_n]
3833 * to
3835 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
3837 * where b_0, b_1, ..., b_n are the bounds on the array.
3839 * If the base of "expr" is a member access, then the linearization needs
3840 * to be applied to the structure argument of this member access.
3842 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
3843 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
3845 int i, n;
3846 isl_ctx *ctx;
3847 isl_set *context;
3848 isl_ast_expr *arg0;
3849 isl_ast_expr *res;
3850 isl_ast_expr_list *list;
3851 isl_ast_build *build;
3853 arg0 = isl_ast_expr_get_op_arg(expr, 0);
3854 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
3855 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
3856 isl_ast_expr *arg;
3858 arg = isl_ast_expr_get_op_arg(arg0, 0);
3859 arg = gpu_local_array_info_linearize_index(array, arg);
3860 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
3861 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
3863 return expr;
3865 isl_ast_expr_free(arg0);
3867 ctx = isl_ast_expr_get_ctx(expr);
3868 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
3869 build = isl_ast_build_from_context(context);
3871 n = isl_ast_expr_get_op_n_arg(expr);
3872 res = isl_ast_expr_get_op_arg(expr, 1);
3873 for (i = 2; i < n; ++i) {
3874 isl_pw_aff *bound_i;
3875 isl_ast_expr *expr_i;
3877 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i - 1);
3878 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
3879 res = isl_ast_expr_mul(res, expr_i);
3880 expr_i = isl_ast_expr_get_op_arg(expr, i);
3881 res = isl_ast_expr_add(res, expr_i);
3884 isl_ast_build_free(build);
3886 list = isl_ast_expr_list_from_ast_expr(res);
3887 res = isl_ast_expr_get_op_arg(expr, 0);
3888 res = isl_ast_expr_access(res, list);
3890 isl_ast_expr_free(expr);
3892 return res;
3895 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
3897 * If the AST expression refers to a global scalar that is not
3898 * a read-only scalar, then its address was passed to the kernel and
3899 * we need to dereference it.
3901 * If the AST expression refers to an access to a global array,
3902 * then we linearize the access exploiting the bounds in data->local_array.
3904 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
3905 __isl_keep isl_id *id, void *user)
3907 struct ppcg_transform_data *data = user;
3909 if (!data->array)
3910 return expr;
3911 if (gpu_array_is_read_only_scalar(data->array))
3912 return expr;
3913 if (!data->global)
3914 return expr;
3915 if (data->array->n_index == 0)
3916 return dereference(expr);
3917 if (!data->array->linearize)
3918 return expr;
3920 return gpu_local_array_info_linearize_index(data->local_array, expr);
3923 /* This function is called for each instance of a user statement
3924 * in the kernel.
3926 * We attach a struct ppcg_kernel_stmt to the "node", containing
3927 * a computed AST expression for each access.
3928 * These AST expressions are computed from iterator_map,
3929 * which expresses the domain
3930 * elements in terms of the generated loops, and sched2shared,
3931 * which expresses the first shared_len dimensions of the schedule
3932 * computed by PPCG in terms of the generated loops.
3934 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
3935 __isl_keep isl_ast_build *build, void *user)
3937 struct ppcg_transform_data data;
3938 struct gpu_gen *gen = (struct gpu_gen *) user;
3939 struct ppcg_kernel_stmt *stmt;
3940 isl_id *id;
3941 isl_pw_multi_aff *sched2shared;
3942 isl_map *map;
3943 isl_pw_multi_aff *iterator_map;
3944 isl_ast_expr *expr, *arg;
3945 isl_union_map *schedule;
3946 int i, n;
3947 struct gpu_stmt_access *access;
3949 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
3950 if (!stmt)
3951 return isl_ast_node_free(node);
3953 expr = isl_ast_node_user_get_expr(node);
3954 arg = isl_ast_expr_get_op_arg(expr, 0);
3955 id = isl_ast_expr_get_id(arg);
3957 schedule = isl_ast_build_get_schedule(build);
3958 map = isl_map_reverse(isl_map_from_union_map(schedule));
3959 iterator_map = isl_pw_multi_aff_from_map(map);
3960 sched2shared = compute_sched_to_shared(gen,
3961 isl_pw_multi_aff_copy(iterator_map));
3963 stmt->type = ppcg_kernel_domain;
3964 stmt->u.d.stmt = find_stmt(gen->prog, id);
3965 if (!stmt->u.d.stmt)
3966 goto error;
3968 data.gen = gen;
3969 data.accesses = stmt->u.d.stmt->accesses;
3970 data.iterator_map = iterator_map;
3971 data.sched2shared = sched2shared;
3972 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
3973 build, &transform_index, &data,
3974 &transform_expr, &data);
3976 isl_id_free(id);
3977 isl_pw_multi_aff_free(iterator_map);
3978 isl_pw_multi_aff_free(sched2shared);
3979 isl_ast_expr_free(arg);
3980 isl_ast_expr_free(expr);
3982 id = isl_id_alloc(gen->ctx, NULL, stmt);
3983 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
3984 return isl_ast_node_set_annotation(node, id);
3985 error:
3986 isl_id_free(id);
3987 isl_pw_multi_aff_free(iterator_map);
3988 ppcg_kernel_stmt_free(stmt);
3989 isl_pw_multi_aff_free(sched2shared);
3990 return isl_ast_node_free(node);
3993 /* This function is called when code has been generated for the shared
3994 * tile loops. The "schedule" refers only to the original statements.
3996 * We extend the schedule with that part of gen->local_sched that hasn't
3997 * been taken into account yet. This introduces parameters referring
3998 * to thread ids in the schedule, so we add them (with the appropriate
3999 * bounds to the context as well).
4000 * Finally, we set the appropriate unrolling options
4001 * if gen->first_unroll is set.
4003 static __isl_give isl_ast_node *create_domain_leaf(
4004 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
4005 void *user)
4007 struct gpu_gen *gen = (struct gpu_gen *) user;
4008 isl_space *space;
4009 isl_union_map *sched;
4010 isl_ast_node *tree;
4011 isl_set *set;
4012 isl_id_list *iterators;
4013 int n;
4015 schedule = extend_schedule(schedule,
4016 isl_union_map_copy(gen->local_sched),
4017 gen->shared_len, gen->thread_tiled_len);
4019 space = isl_ast_build_get_schedule_space(build);
4020 set = isl_set_universe(space);
4021 set = add_bounded_parameters(set, gen->kernel->n_block,
4022 gen->kernel->block_dim, "t");
4023 build = isl_ast_build_restrict(build, set);
4025 n = gen->thread_tiled_len - gen->shared_len;
4027 if (gen->first_unroll >= 0) {
4028 space = isl_space_set_alloc(gen->ctx, 0, n);
4029 build = set_unroll(build, space, gen->first_unroll);
4031 iterators = generate_names(gen->ctx, n, "c");
4032 build = isl_ast_build_set_iterators(build, iterators);
4033 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
4034 tree = isl_ast_build_ast_from_schedule(build, schedule);
4035 isl_ast_build_free(build);
4037 return tree;
4040 /* This function is called for each statement node in the AST of the code
4041 * for copying to or from shared/private memory.
4042 * Attach a pointer to a ppcg_kernel_stmt representing the copy
4043 * statement to the node.
4044 * The statement name is "read" or "write", depending on whether we are
4045 * reading from global memory or writing to global memory.
4046 * The name of the T space is {shared,private}_<array>.
4048 * The schedule is of the form
4050 * type[A -> T] -> L
4052 * where A refers to a piece of an array and T to the corresponding
4053 * shifted tile. We split this schedule into mappings L -> A and L -> T
4054 * and store the corresponding expressions in stmt->index and stmt->local_index,
4055 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
4057 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
4058 __isl_keep isl_ast_build *build, void *user)
4060 struct gpu_gen *gen = (struct gpu_gen *) user;
4061 struct ppcg_kernel_stmt *stmt;
4062 isl_id *id;
4063 isl_ast_expr *expr;
4064 isl_space *space;
4065 isl_map *access, *local_access, *map;
4066 isl_pw_multi_aff *pma;
4067 const char *type;
4068 int array_index;
4070 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4071 if (!stmt)
4072 return isl_ast_node_free(node);
4074 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
4075 type = isl_map_get_tuple_name(access, isl_dim_in);
4076 stmt->u.c.read = !strcmp(type, "read");
4077 access = isl_map_reverse(access);
4078 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
4079 local_access = isl_map_copy(access);
4081 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
4082 id = isl_map_get_tuple_id(access, isl_dim_out);
4083 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4084 access = isl_map_apply_range(access, map);
4085 pma = isl_pw_multi_aff_from_map(access);
4086 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4087 stmt->u.c.index = expr;
4089 map = isl_map_range_map(isl_map_universe(space));
4090 id = isl_map_get_tuple_id(local_access, isl_dim_out);
4091 map = isl_map_set_tuple_id(map, isl_dim_in, id);
4092 local_access = isl_map_apply_range(local_access, map);
4093 pma = isl_pw_multi_aff_from_map(local_access);
4094 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
4095 stmt->u.c.local_index = expr;
4097 stmt->u.c.array = gen->copy_group->array;
4098 array_index = stmt->u.c.array - gen->prog->array;
4099 stmt->u.c.local_array = &gen->kernel->array[array_index];
4100 stmt->type = ppcg_kernel_copy;
4102 id = isl_id_alloc(gen->ctx, NULL, stmt);
4103 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4104 return isl_ast_node_set_annotation(node, id);
4107 /* Given a schedule of the form
4109 * [S -> A] -> L
4111 * (with S the first shared_len dimensions of the computed schedule,
4112 * A the array and L the schedule correponding to the generated loops),
4113 * indicating where to copy the array elements that need to be copied,
4114 * construct code for performing the copying.
4116 * "group" is the array reference group that is being copied
4117 * "type" is either "read" or "write"
4118 * private is set if copying needs to be performed to/from registers
4120 * We first construct a mapping to a shifted tile of the array,
4122 * [S -> A] -> T(S,A) (1)
4124 * If private is set, then we also use this mapping as a schedule
4125 * (which is already thread-specific and will be completely unrolled).
4126 * Otherwise, we wrap/tile the range over the threads.
4127 * The result is
4129 * [S -> A] -> T'(S,A)
4131 * Combined with the given schedule, we have
4133 * [S -> A] -> [L -> T'(S,A)] (2)
4135 * From the shifted tile mapping, we construct a mapping
4137 * [S -> A] -> [A -> T(S,A)]
4139 * and apply it to the schedule (2), obtaining
4141 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
4143 * Note that we can project out S because it is uniquely defined by L.
4145 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
4146 __isl_take isl_map *sched,
4147 const char *type, struct gpu_array_ref_group *group,
4148 __isl_take isl_ast_build *build, int private)
4150 isl_space *space;
4151 isl_ast_node *tree;
4152 isl_map *schedule, *shift, *map;
4153 isl_set *set;
4154 isl_id_list *iterators;
4155 int n;
4157 shift = shift_access(group);
4159 schedule = isl_map_copy(shift);
4160 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
4161 if (!private)
4162 schedule = tile_access_schedule(gen, schedule);
4164 n = isl_map_dim(schedule, isl_dim_out);
4165 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
4166 set = add_bounded_parameters(set, gen->kernel->n_block,
4167 gen->kernel->block_dim, "t");
4169 schedule = isl_map_range_product(sched, schedule);
4171 space = isl_space_domain(isl_map_get_space(shift));
4172 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
4173 map = isl_map_range_product(map, shift);
4175 schedule = isl_map_apply_domain(schedule, map);
4177 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
4179 build = isl_ast_build_restrict(build, set);
4181 gen->copy_group = group;
4183 if (private) {
4184 space = isl_space_range(isl_map_get_space(schedule));
4185 space = isl_space_range(isl_space_unwrap(space));
4186 build = set_unroll(build, space, 0);
4188 iterators = generate_names(gen->ctx, n, "c");
4189 build = isl_ast_build_set_iterators(build, iterators);
4190 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
4191 tree = isl_ast_build_ast_from_schedule(build,
4192 isl_union_map_from_map(schedule));
4193 isl_ast_build_free(build);
4195 return tree;
4198 /* Return code for reading into or writing from shared memory
4199 * the given array reference group.
4201 * If we are performing a read from global memory to shared memory and
4202 * if the array involved is not a scalar, then we copy
4203 * the entire tile to shared memory. This may result in some extra
4204 * elements getting copied, but it should lead to simpler code
4205 * (which means that fewer registers may be needed) and less divergence.
4207 * Otherwise, we only copy the elements that will be read or have been written
4208 * in the kernel.
4211 * The input "sched" is of the form.
4213 * type[S -> A] -> L
4215 * with S the first shared_len dimensions of the computed schedule,
4216 * A the array and L the schedule correponding to the generated loops.
4218 * We first drop "type",
4220 * [S -> A] -> L
4222 * If the above conditions are satisfied, we project out A,
4223 * resulting in
4225 * S -> L
4227 * and then introduce the group tile [S -> T], resulting in
4229 * [S -> T] -> L
4231 static __isl_give isl_ast_node *copy_group_shared_accesses(
4232 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4233 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4235 const char *type;
4236 int read;
4237 isl_union_map *access;
4239 type = isl_map_get_tuple_name(sched, isl_dim_in);
4240 read = !strcmp(type, "read");
4242 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4244 if (read && !gpu_array_is_scalar(group->array)) {
4245 isl_space *space;
4246 isl_map *map;
4248 space = isl_space_domain(isl_map_get_space(sched));
4249 space = isl_space_unwrap(space);
4250 map = isl_map_domain_map(isl_map_universe(space));
4251 sched = isl_map_apply_domain(sched, map);
4253 map = group_tile(group);
4254 map = isl_map_reverse(isl_map_domain_map(map));
4255 sched = isl_map_apply_domain(sched, map);
4258 return copy_access(gen, sched, type, group, build, 0);
4261 /* Return code for reading into or writing from private memory
4262 * the given array reference group.
4264 * Let S be the first shared_len dimensions of the computed schedule,
4265 * D the iteration domains, A the array and L the schedule correponding
4266 * to the generated loops.
4267 * "sched" is of the form
4269 * type[S -> A] -> L
4271 * where type is either "read" or "write".
4272 * We apply the privatization D -> S(t), with t the thread ids,
4273 * to the access relation D -> A to obtain the privatized access relation
4275 * S(t) -> A
4277 * We drop the type from "sched" and intersect with the privatized access
4278 * relation to obtain
4280 * [S(t) -> A] -> L
4282 static __isl_give isl_ast_node *copy_group_private_accesses(
4283 struct gpu_gen *gen, struct gpu_array_ref_group *group,
4284 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
4286 const char *type;
4287 int read;
4288 isl_union_map *priv;
4289 isl_union_map *access;
4290 isl_map *access_map;
4292 type = isl_map_get_tuple_name(sched, isl_dim_in);
4293 read = !strcmp(type, "read");
4295 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
4296 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
4297 priv);
4299 access = group_access_relation(group, read, !read);
4300 access = isl_union_map_apply_domain(access, priv);
4301 access_map = isl_map_from_union_map(access);
4303 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
4304 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
4306 return copy_access(gen, sched, type, group, build, 1);
4309 /* Return code for reading into or writing from shared or private memory.
4311 * "schedule" is of the form
4313 * type[S -> A] -> L
4315 * with S be the first shared_len dimensions of the computed schedule,
4316 * A the array and L the schedule correponding to the generated loops.
4317 * The array reference group is attached to "type".
4319 static __isl_give isl_ast_node *create_access_leaf(
4320 struct gpu_gen *gen, __isl_take isl_map *schedule,
4321 __isl_take isl_ast_build *build)
4323 struct gpu_array_ref_group *group;
4324 isl_id *id;
4326 id = isl_map_get_tuple_id(schedule, isl_dim_in);
4327 group = isl_id_get_user(id);
4328 isl_id_free(id);
4330 if (group->private_tile)
4331 return copy_group_private_accesses(gen, group, schedule,
4332 build);
4333 else
4334 return copy_group_shared_accesses(gen, group, schedule,
4335 build);
4338 /* Create a domain node representing a synchronization.
4340 static __isl_give isl_ast_node *create_sync_leaf(
4341 struct gpu_gen *gen, __isl_take isl_map *schedule,
4342 __isl_take isl_ast_build *build)
4344 struct ppcg_kernel_stmt *stmt;
4345 isl_id *id;
4346 isl_space *space;
4347 isl_ast_node *node;
4348 isl_ast_expr *expr;
4350 isl_map_free(schedule);
4352 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
4353 if (!stmt)
4354 return NULL;
4356 stmt->type = ppcg_kernel_sync;
4358 space = isl_ast_build_get_schedule_space(build);
4359 space = isl_space_from_domain(space);
4360 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
4361 expr = isl_ast_build_call_from_pw_multi_aff(build,
4362 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
4363 node = isl_ast_node_alloc_user(expr);
4364 isl_ast_build_free(build);
4366 id = isl_id_alloc(gen->ctx, NULL, stmt);
4367 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
4368 return isl_ast_node_set_annotation(node, id);
4371 /* This function is called during the code generation at the point
4372 * where the schedule domain element is completely determined by
4373 * the generated code. The input schedule contains the original
4374 * statements as well as synchronization and copy "statements".
4375 * The latter are scheduled at different points than any of the original
4376 * statements, so they will only arrive here in isolation.
4378 * If the current schedule only refers to a single statement,
4379 * we check if it is a copy or synchronization statement and
4380 * call the appropriate functions.
4381 * Otherwise, we assume we are dealing with the original statements
4382 * and we call create_domain_leaf.
4384 static __isl_give isl_ast_node *create_kernel_leaf(
4385 __isl_take isl_ast_build *build, void *user)
4387 struct gpu_gen *gen = (struct gpu_gen *) user;
4388 isl_map *map;
4389 isl_union_map *schedule;
4390 const char *name;
4392 schedule = isl_ast_build_get_schedule(build);
4394 if (isl_union_map_n_map(schedule) != 1)
4395 return create_domain_leaf(schedule, build, user);
4397 map = isl_map_from_union_map(schedule);
4398 name = isl_map_get_tuple_name(map, isl_dim_in);
4399 if (!strcmp(name, "read") || !strcmp(name, "write"))
4400 return create_access_leaf(gen, map, build);
4401 if (!strcmp(name, "sync"))
4402 return create_sync_leaf(gen, map, build);
4404 return create_domain_leaf(isl_union_map_from_map(map), build, user);
4407 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
4408 * have value 0) and all even schedule dimensions as "unroll".
4410 * That is, the options look as follows
4412 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
4413 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
4415 * The even positions are used to be able to schedule copying blocks
4416 * and synchronization before or after each level of the shared memory
4417 * tile loops and we want to make sure that code for these is generated
4418 * separately (within each level).
4420 static __isl_give isl_ast_build *set_atomic_and_unroll(
4421 __isl_take isl_ast_build *build,
4422 __isl_take isl_space *space, int sched_len)
4424 isl_ctx *ctx;
4425 isl_map *map;
4426 isl_constraint *c;
4427 isl_union_map *opt;
4428 isl_local_space *ls;
4429 int i, n;
4431 ctx = isl_ast_build_get_ctx(build);
4433 space = isl_space_params(space);
4434 space = isl_space_add_dims(space, isl_dim_set, sched_len);
4435 space = isl_space_from_domain(space);
4436 space = isl_space_add_dims(space, isl_dim_out, 2);
4437 map = isl_map_universe(isl_space_copy(space));
4438 for (i = 0; i < sched_len; i += 2)
4439 map = isl_map_fix_si(map, isl_dim_in, i, 0);
4440 ls = isl_local_space_from_space(isl_map_get_space(map));
4441 c = isl_equality_alloc(ls);
4442 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4443 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4444 c = isl_constraint_set_constant_si(c, 1);
4445 map = isl_map_add_constraint(map, c);
4446 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4447 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
4448 opt = isl_union_map_from_map(map);
4450 map = isl_map_universe(space);
4451 ls = isl_local_space_from_space(isl_map_get_space(map));
4452 c = isl_equality_alloc(ls);
4453 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
4454 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
4455 map = isl_map_add_constraint(map, c);
4456 map = isl_map_project_out(map, isl_dim_out, 1, 1);
4457 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
4458 opt = isl_union_map_add_map(opt, map);
4460 build = isl_ast_build_set_options(build, opt);
4462 return build;
4465 /* Return a map that maps a space of dimension gen->shared_len
4466 * to its last dimensions starting at gen->tile_first.
4467 * The range is of dimension
4469 * 2 * (gen->shared_len - gen->tile_first) + 1
4471 * The input dimensions are mapped to the odd dimensions in the output,
4472 * while the even dimensions (except 2*pos) are fixed to 0.
4473 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
4474 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
4475 * are mapped to the output. The remaining input dimensions are projected
4476 * out and the corresponding output dimensions are fixed to 0.
4478 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
4479 __isl_take isl_space *space, int pos, int val)
4481 int i, n;
4482 isl_map *proj;
4484 space = isl_space_set_from_params(space);
4485 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
4486 space = isl_space_map_from_set(space);
4487 proj = isl_map_identity(space);
4488 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
4489 n = gen->shared_len - gen->tile_first;
4490 for (i = 0; i <= n; ++i) {
4491 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
4492 if (i == pos)
4493 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
4494 else
4495 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
4498 if (pos < 0)
4499 return proj;
4501 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
4502 gen->shared_len - (gen->tile_first + pos));
4503 for (i = pos; i < n; ++i)
4504 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
4506 return proj;
4509 /* Given the AST context schedule "schedule" and the mapping from
4510 * domains to the shared tile loops "shared_sched", add a schedule
4511 * for a synchronization operation at position "val" of loop level "pos".
4513 * schedule is of the form
4515 * D -> L
4517 * (with D the iteration domains and L the already generated loops),
4518 * while shared_sched is of the form
4520 * D -> S
4522 * We combine them into
4524 * L -> S
4526 * apply a mapping
4528 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4530 * and use the result as a schedule for "sync".
4532 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
4533 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4534 __isl_keep isl_union_map *shared_sched, int pos, int val)
4536 isl_space *space;
4537 isl_map *proj, *map;
4539 shared_sched = isl_union_map_copy(shared_sched);
4540 schedule = isl_union_map_copy(schedule);
4542 space = isl_union_map_get_space(shared_sched);
4543 schedule = isl_union_map_apply_domain(shared_sched, schedule);
4544 map = isl_map_from_union_map(schedule);
4546 proj = insert_even(gen, space, pos, val);
4547 map = isl_map_apply_range(map, proj);
4548 map = isl_map_from_range(isl_map_wrap(map));
4549 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
4551 res = isl_union_map_add_map(res, map);
4553 return res;
4556 /* Given a set of wrapped references "ref", return the corresponding
4557 * access relations based on the tagged access relations "tagged".
4559 * The elements of "ref" are of the form
4561 * [D -> R]
4563 * with D an iteration domains and R a reference.
4564 * The elements of "tagged" are of the form
4566 * [D -> R] -> A
4568 * with A an array.
4570 * Extend "tagged" to include the iteration domain in the range, i.e.,
4572 * [D -> R] -> [D -> A]
4574 * apply the result to "ref" and then unwrap the resulting set
4575 * to obtain relations of the form
4577 * D -> A
4579 static __isl_give isl_union_map *wrapped_reference_to_access(
4580 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
4582 isl_union_map *tag2access;
4584 tag2access = isl_union_map_copy(tagged);
4585 tag2access = isl_union_map_universe(tag2access);
4586 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
4587 tag2access = isl_union_map_domain_map(tag2access);
4588 tag2access = isl_union_map_range_product(tag2access, tagged);
4590 ref = isl_union_set_coalesce(ref);
4591 ref = isl_union_set_apply(ref, tag2access);
4593 return isl_union_set_unwrap(ref);
4596 /* Given an access relation "access" from "group", remove those reads
4597 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
4598 * communicate data within the same iteration of the last_shared dimension
4599 * of the group.
4601 * If the access is a read then it is necessarily an element of
4603 * live_in union (range flow)
4605 * where live_in and flow may be overapproximations.
4606 * If the access is a write then it is necessarily an element of
4608 * live_out union (domain flow)
4610 * In both cases, the access relation is also a subset of
4611 * the group access relation.
4613 * Essentially, we compute the intersection of "access" with either
4615 * live_in union (range non-local-flow)
4617 * or
4619 * live_out union (domain non-local-flow)
4621 * We first construct a relation "local"
4623 * [[D -> R] -> [D' -> R']]
4625 * of pairs of domain iterations accessing the reference group
4626 * and references in the group that are scheduled to the same iteration
4627 * of the last_shared dimension.
4629 * If this relation does not intersect the dataflow dependences,
4630 * then there is nothing we can possibly remove and we simply
4631 * return the input.
4633 * Otherwise, we remove the "local" dataflow dependences from
4634 * the set of all dataflow dependences.
4635 * Note that if the potential dataflow dependences are an overapproximation
4636 * of the actual dataflow dependences, then the result remains an
4637 * overapproximation of the non-local dataflow dependences.
4638 * Copying to/from global memory is only needed for the references
4639 * in the domain/range of the result or for accesses that are live out/in
4640 * for the entire scop.
4642 * We therefore map the domain/range of the "external" relation
4643 * to the corresponding access relation and take the union with
4644 * the live out/in relation.
4646 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
4647 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
4648 int read)
4650 int empty;
4651 isl_union_map *tagger;
4652 isl_union_set *domain;
4653 isl_space *space;
4654 isl_union_map *sched, *local, *tagged, *external;
4655 isl_union_set *tag_set;
4656 isl_map *proj;
4658 if (isl_union_map_is_empty(access))
4659 return access;
4661 tagged = group_tagged_access_relation(group);
4663 sched = isl_union_map_copy(gen->sched);
4665 space = isl_union_map_get_space(sched);
4666 proj = projection(space, gen->untiled_len, group->last_shared + 1);
4667 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
4669 tagger = isl_union_map_copy(gen->prog->scop->tagger);
4670 domain = isl_union_map_domain(isl_union_map_copy(tagged));
4671 tagger = isl_union_map_intersect_range(tagger, domain);
4672 sched = isl_union_map_apply_domain(sched, tagger);
4674 local = isl_union_map_apply_range(sched,
4675 isl_union_map_reverse(isl_union_map_copy(sched)));
4676 local = isl_union_map_intersect(local,
4677 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
4679 empty = isl_union_map_is_empty(local);
4680 if (empty < 0 || empty) {
4681 isl_union_map_free(tagged);
4682 isl_union_map_free(local);
4683 if (empty < 0)
4684 return isl_union_map_free(access);
4685 return access;
4688 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
4689 external = isl_union_map_intersect_params(external,
4690 isl_set_copy(gen->prog->scop->context));
4691 external = isl_union_map_subtract(external, local);
4693 if (read) {
4694 tag_set = isl_union_map_range(external);
4695 external = wrapped_reference_to_access(tag_set, tagged);
4696 external = isl_union_map_union(external,
4697 isl_union_map_copy(gen->prog->scop->live_in));
4698 } else {
4699 tag_set = isl_union_map_domain(external);
4700 external = wrapped_reference_to_access(tag_set, tagged);
4701 external = isl_union_map_union(external,
4702 isl_union_map_copy(gen->prog->scop->live_out));
4705 access = isl_union_map_intersect(access, external);
4707 return access;
4710 /* Given the AST context schedule "schedule" and the mapping from
4711 * domains to the shared tile loops "shared_sched", add a schedule
4712 * for copying an array reference group to/from shared/private memory.
4713 * "read" is set if data should be copied from global memory
4714 * to shared/private memory.
4715 * "k" represents the current group
4716 * "s" is the total number of groups
4718 * We schedule an operation before or after the innermost loop
4719 * of "shared_sched" that affects the tile of the array reference group.
4721 * schedule is of the form
4723 * D -> L
4725 * (with D the iteration domains and L the already generated loops),
4726 * while shared_sched is of the form
4728 * D -> S
4730 * We first compute the access relation for the reference group
4732 * D -> A
4734 * and remove from this access relation those reads or writes
4735 * that only needed to communicate data within the same iteration
4736 * of the last_shared dimension of the group.
4737 * We then combine what is left with shared_sched into
4739 * D -> [S -> A]
4741 * If this results in an empty relation, no copying needs to be performed
4742 * at this point.
4743 * Otherwise, we invert the relation and combine it with "schedule" into
4745 * [S -> A] -> L
4747 * The actual additional piece of the schedule is obtained from combining
4749 * [S -> A] -> S
4751 * with a mapping
4753 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
4755 * The position of "val" corresponds to the innermost loop that affects
4756 * the tile and the value indicates where the copying is scheduled
4757 * with respect to the actual kernel code (at value 0).
4758 * Reads are schedule before the code, writes to global memory from
4759 * private memory are scheduled at values 1 to s, writes to global
4760 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
4762 * If we are scheduling a read from global memory to shared memory,
4763 * we insert a synchronization before the kernel code (at the innermost
4764 * level).
4765 * If we are scheduling a write to global memory, then we add
4766 * a synchronization after all writes (at value 2 *s + 2).
4767 * However, there is no need for a synchronization after the outermost loop.
4768 * A write to global memory from private memory at the innermost level
4769 * does not require a synchronization, because it is covered by
4770 * the synchronization after the kernel inserted by body_schedule.
4772 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
4773 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
4774 __isl_keep isl_union_map *shared_sched,
4775 struct gpu_array_ref_group *group, int read, int k, int s)
4777 int n;
4778 int pos, val;
4779 isl_space *space;
4780 isl_union_map *access;
4781 isl_map *map, *proj, *access_map;
4782 isl_id *id;
4784 access = group_access_relation(group, read, !read);
4785 access = remove_local_accesses(gen, group, access, read);
4786 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
4787 access);
4789 if (isl_union_map_is_empty(access)) {
4790 isl_union_map_free(access);
4791 return res;
4794 access = isl_union_map_reverse(access);
4795 access = isl_union_map_apply_range(access,
4796 isl_union_map_copy(schedule));
4797 access_map = isl_map_from_union_map(access);
4799 space = isl_space_copy(group->array->space);
4800 space = isl_space_from_range(space);
4801 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
4802 map = isl_map_domain_map(isl_map_universe(space));
4804 space = isl_union_map_get_space(schedule);
4805 pos = group->last_shared + 1 - gen->tile_first;
4806 assert(pos >= 0);
4807 if (read)
4808 val = -2 - k;
4809 else if (group->private_tile)
4810 val = 1 + k;
4811 else
4812 val = 1 + s + 1 + k;
4813 proj = insert_even(gen, space, pos, val);
4814 map = isl_map_apply_range(map, proj);
4816 access_map = isl_map_range_product(access_map, map);
4818 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
4819 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
4821 res = isl_union_map_add_map(res, access_map);
4823 n = gen->shared_len - gen->tile_first;
4824 if (read) {
4825 if (!group->private_tile)
4826 res = add_sync_schedule(gen, res, schedule,
4827 shared_sched, n, -1);
4828 } else {
4829 if (pos == 0)
4830 return res;
4831 if (pos == n && group->private_tile)
4832 return res;
4833 res = add_sync_schedule(gen, res, schedule, shared_sched,
4834 pos, 2 * s + 2);
4837 return res;
4840 /* Return a schedule for the shared tile loops based on the current
4841 * AST context schedule.
4843 * We create a "shared_sched" that maps the domains to the first
4844 * shared_len dimensions of the computed schedule, project out the
4845 * first tile_first dimensions (as these are already covered by
4846 * the host code) and insert "statement-level" dimensions at even
4847 * positions so that we can schedule copy blocks and synchronization
4848 * before/after each level.
4850 * In particular, copy blocks are inserted inside the innermost
4851 * level that affect the tile. For the copying to global memory,
4852 * those from private memory are scheduled before those from shared
4853 * memory such that synchronization can be inserted between the two
4854 * at the innermost level.
4855 * Synchronization is inserted at the innermost level before the
4856 * actual kernel code if there is any copying from global memory
4857 * to shared memory. It is inserted unconditionally at the innermost
4858 * level after the actual kernel code and the copying to global memory
4859 * from private memory (if any). Finally, it is inserted after
4860 * any copying to global memory, except at the outermost level
4861 * and at the innermost level if there is no copying from shared
4862 * memory. The copying from private memory is covered by the unconditional
4863 * synchronization at the innermost level.
4865 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
4866 __isl_take isl_union_map *schedule)
4868 isl_space *space;
4869 isl_union_map *res;
4870 isl_union_map *shared_sched;
4871 isl_union_map *sched;
4872 isl_map *proj, *map;
4873 int i, j, k, s;
4875 shared_sched = isl_union_map_copy(gen->tiled_sched);
4876 proj = projection(isl_union_map_get_space(shared_sched),
4877 gen->tiled_len, gen->shared_len);
4878 shared_sched = isl_union_map_apply_range(shared_sched,
4879 isl_union_map_from_map(proj));
4880 space = isl_union_map_get_space(shared_sched);
4881 proj = insert_even(gen, space, -1, 0);
4882 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
4883 isl_union_map_from_map(proj));
4885 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
4887 s = 0;
4888 for (i = 0; i < gen->prog->n_array; ++i)
4889 s += gen->prog->array[i].n_group;
4891 k = 0;
4892 for (i = 0; i < gen->prog->n_array; ++i) {
4893 struct gpu_array_info *array = &gen->prog->array[i];
4895 for (j = 0; j < array->n_group; ++j) {
4896 struct gpu_array_ref_group *group;
4898 group = array->groups[j];
4899 if (!group->private_tile && !group->shared_tile)
4900 continue;
4901 res = add_group_schedule(gen, res, schedule,
4902 shared_sched, group, 0, k, s);
4903 res = add_group_schedule(gen, res, schedule,
4904 shared_sched, group, 1, k, s);
4905 ++k;
4909 res = add_sync_schedule(gen, res, schedule, shared_sched,
4910 gen->shared_len - gen->tile_first, 1 + s);
4912 isl_union_map_free(shared_sched);
4913 isl_union_map_free(schedule);
4915 return res;
4918 /* Generate code for "kernel" in the given "context".
4920 * We first generate code for the shared tile loops (T1T, T1P and T2)
4921 * in a context that includes the block ids.
4922 * Within each iteration of these loops an additional code generation
4923 * is performed (within create_kernel_leaf) for the rest of the schedule
4924 * in a context that includes the thread ids.
4926 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
4927 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
4928 __isl_keep isl_multi_pw_aff *grid_size)
4930 isl_space *space;
4931 isl_set *set;
4932 isl_id_list *iterators;
4933 isl_union_map *schedule;
4934 isl_ast_node *tree;
4935 int sched_len;
4937 schedule = isl_ast_build_get_schedule(build);
4939 build = isl_ast_build_copy(build);
4940 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
4941 space = isl_ast_build_get_schedule_space(build);
4942 set = isl_set_universe(isl_space_copy(space));
4943 set = add_bounded_parameters_dynamic(set, grid_size, "b");
4944 build = isl_ast_build_restrict(build, set);
4946 schedule = body_schedule(gen, schedule);
4948 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
4950 build = set_atomic_and_unroll(build, space, sched_len);
4951 iterators = generate_names(gen->ctx, sched_len, "g");
4952 build = isl_ast_build_set_iterators(build, iterators);
4953 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
4954 tree = isl_ast_build_ast_from_schedule(build, schedule);
4955 isl_ast_build_free(build);
4957 return tree;
4960 /* Attach "id" to the given node.
4962 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
4963 __isl_keep isl_ast_build *build, void *user)
4965 isl_id *id = user;
4967 node = isl_ast_node_set_annotation(node, id);
4969 return node;
4972 /* Construct an AST node for performing a kernel launch and attach
4973 * the information about the kernel to that node.
4975 * The kernel AST has been constructed in the context of the range
4976 * of "schedule". In particular, the grid size has been computed
4977 * in the context. We therefore still need to make sure that these
4978 * constraints are expressed in the code. We do this by creating a schedule
4980 * kernel[] -> [S -> []]
4982 * where S is the schedule domain, i.e., the range of "schedule".
4983 * The AST generation will then create a single call surrounded by
4984 * all the condition in "S" that have not been expressed yet.
4986 * The kernel information is attached to this node in attach_id.
4988 static __isl_give isl_ast_node *construct_launch(
4989 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
4990 __isl_take struct ppcg_kernel *kernel)
4992 isl_id *id;
4993 isl_ctx *ctx;
4994 isl_union_set *domain;
4995 isl_set *set;
4996 isl_map *map;
4997 isl_ast_node *node;
4999 ctx = isl_ast_build_get_ctx(build);
5001 id = isl_id_alloc(ctx, NULL, kernel);
5002 id = isl_id_set_free_user(id, &ppcg_kernel_free);
5004 domain = isl_union_map_range(schedule);
5005 set = isl_set_from_union_set(domain);
5006 map = isl_map_from_domain(set);
5007 map = isl_map_from_range(isl_map_wrap(map));
5008 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
5009 schedule = isl_union_map_from_map(map);
5011 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
5012 node = isl_ast_build_ast_from_schedule(build, schedule);
5013 isl_ast_build_free(build);
5015 return node;
5018 /* This function is called for each leaf in the AST of the host code.
5019 * We first specialize the schedule to the site of the leaf, compute
5020 * the size of shared memory and then construct the body of the host code
5021 * and the associated kernel.
5023 * The necessary information for printing the kernel launch is
5024 * stored in a struct ppcg_kernel and attached to the leaf node
5025 * created to represent the launch.
5027 static __isl_give isl_ast_node *create_host_leaf(
5028 __isl_take isl_ast_build *build, void *user)
5030 struct gpu_gen *gen = (struct gpu_gen *) user;
5031 isl_id *id;
5032 isl_ast_node *node;
5033 struct ppcg_kernel *kernel;
5034 isl_set *host_domain;
5035 isl_union_map *schedule;
5036 isl_union_map *local_sched;
5037 isl_union_map *access;
5038 isl_union_set *domain;
5039 int i;
5041 schedule = isl_ast_build_get_schedule(build);
5043 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
5044 read_sizes(gen);
5046 domain = isl_union_map_domain(isl_union_map_copy(schedule));
5048 local_sched = isl_union_map_copy(gen->sched);
5049 local_sched = isl_union_map_intersect_domain(local_sched, domain);
5050 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
5051 isl_union_map_copy(gen->prog->may_write));
5052 access = isl_union_map_apply_domain(access,
5053 isl_union_map_copy(local_sched));
5055 gen->tiled_sched = tile_schedule(gen, local_sched);
5056 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
5057 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
5059 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
5060 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
5061 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
5063 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
5064 if (!kernel)
5065 goto error;
5067 kernel->id = gen->kernel_id++;
5068 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
5069 kernel->grid_size = extract_grid_size(gen, kernel);
5070 extract_block_size(gen, kernel);
5071 kernel->arrays = isl_union_map_range(access);
5072 kernel->arrays = isl_union_set_apply(kernel->arrays,
5073 isl_union_map_copy(gen->prog->to_outer));
5074 kernel->space = isl_ast_build_get_schedule_space(build);
5076 gen->private_access = NULL;
5077 compute_shared_sched(gen);
5078 gen->privatization = compute_privatization(gen);
5079 check_scalar_live_ranges(gen);
5080 if (group_references(gen) < 0)
5081 schedule = isl_union_map_free(schedule);
5082 compute_private_access(gen);
5083 host_domain = isl_set_from_union_set(isl_union_map_range(
5084 isl_union_map_copy(schedule)));
5085 localize_bounds(gen, kernel, host_domain);
5087 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
5088 check_shared_memory_bound(gen);
5089 compute_group_tilings(gen);
5091 kernel->tree = generate_kernel(gen, build, host_domain,
5092 kernel->grid_size);
5093 create_kernel_vars(gen, kernel);
5095 free_local_array_info(gen);
5096 isl_map_free(gen->privatization);
5097 isl_union_map_free(gen->private_access);
5098 isl_union_map_free(gen->local_sched);
5099 isl_union_map_free(gen->tiled_sched);
5100 isl_union_map_free(gen->shared_sched);
5101 isl_union_map_free(gen->shared_proj);
5102 isl_set_free(host_domain);
5103 free(gen->tile_size);
5105 node = construct_launch(build, schedule, kernel);
5107 return node;
5108 error:
5109 isl_union_map_free(schedule);
5110 return NULL;
5113 /* Use isl to generate code for the outer gen->tile_first loops
5114 * of the global schedule in gen->sched, resulting in the host code.
5115 * Within each iteration of this partial schedule, i.e., for each kernel
5116 * launch, create_host_leaf takes care of generating the kernel code.
5118 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
5120 isl_ast_build *build;
5121 isl_ast_node *tree;
5122 isl_union_map *sched;
5123 isl_map *proj;
5124 isl_id_list *iterators;
5126 sched = isl_union_map_copy(gen->sched);
5127 proj = projection(isl_union_map_get_space(sched),
5128 gen->untiled_len, gen->tile_first);
5129 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
5131 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
5132 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
5133 iterators = generate_names(gen->ctx, gen->tile_first, "h");
5134 build = isl_ast_build_set_iterators(build, iterators);
5135 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
5136 tree = isl_ast_build_ast_from_schedule(build, sched);
5137 isl_ast_build_free(build);
5139 return tree;
5142 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
5144 if (!str)
5145 return NULL;
5146 return isl_union_map_read_from_str(ctx, str);
5149 /* Information about the outermost tilable bands in the forest of bands.
5151 * tile_len and n_parallel are only sets on band_info structures
5152 * that correspond to outermost bands. For other bands (in particular,
5153 * ancestors of the outermost bands), n_parallal is set to 0.
5155 * prefix is the (padded) schedule leading up to the outermost tilable bands.
5157 * tile_first is the number of schedule dimensions in prefix.
5159 * suffix is the schedule of the outermost tilable bands and their descendants.
5161 struct band_info {
5162 struct gpu_gen *gen;
5163 int tile_first;
5164 int tile_len;
5165 int n_parallel;
5166 isl_union_map *prefix;
5167 isl_union_map *suffix;
5170 /* Set tile_len and n_parallel of the statement to that of
5171 * their outermost band, recorded in the band_info.
5173 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
5175 struct band_info *info = user;
5176 struct gpu_stmt *stmt;
5177 isl_id *id;
5179 id = isl_map_get_tuple_id(map, isl_dim_in);
5180 stmt = find_stmt(info->gen->prog, id);
5181 isl_id_free(id);
5183 stmt->tile_len = info->tile_len;
5184 stmt->n_parallel = info->n_parallel;
5186 isl_map_free(map);
5188 return 0;
5191 static void list_select_outer_band(struct gpu_gen *gen,
5192 __isl_take isl_band_list *list, int pos, struct band_info *list_info);
5194 /* Check if this band has any parallel loops. If so, take it as
5195 * the outermost tilable band. If not, continue looking for the
5196 * outermost tilable band in the children of the current band.
5198 static void band_select_outer_band(struct gpu_gen *gen,
5199 __isl_take isl_band *band, int pos, struct band_info *info)
5201 int n = isl_band_n_member(band);
5202 int n_parallel;
5204 for (n_parallel = 0; n_parallel < n; ++n_parallel)
5205 if (!isl_band_member_is_coincident(band, n_parallel))
5206 break;
5208 info->n_parallel = n_parallel;
5209 if (n_parallel) {
5210 gen->any_parallelism = 1;
5211 info->gen = gen;
5212 info->tile_first = pos;
5213 info->tile_len = n;
5214 info->prefix = isl_band_get_prefix_schedule(band);
5215 info->suffix = isl_union_map_flat_range_product(
5216 isl_band_get_partial_schedule(band),
5217 isl_band_get_suffix_schedule(band));
5218 isl_union_map_foreach_map(info->prefix,
5219 &set_stmt_tile_len, info);
5220 } else if (isl_band_has_children(band)) {
5221 isl_band_list *children;
5222 children = isl_band_get_children(band);
5223 list_select_outer_band(gen, children, pos + n, info);
5224 } else {
5225 info->gen = gen;
5226 info->tile_first = pos + n;
5227 info->tile_len = 0;
5228 info->prefix = isl_union_map_flat_range_product(
5229 isl_band_get_prefix_schedule(band),
5230 isl_band_get_partial_schedule(band));
5231 info->suffix = isl_band_get_suffix_schedule(band);
5232 isl_union_map_foreach_map(info->prefix,
5233 &set_stmt_tile_len, info);
5236 isl_band_free(band);
5239 /* Comparison function that returns a non-zero value for band_infos
5240 * with different tile_len fields or different n_parallel fields.
5242 static int cmp_band(const void *p1, const void *p2)
5244 const struct band_info *info1 = p1;
5245 const struct band_info *info2 = p2;
5247 if (info1->tile_len != info2->tile_len)
5248 return info1->tile_len - info2->tile_len;
5250 return info1->n_parallel - info2->n_parallel;
5253 /* Extend "umap" with coordinates with fixed value "val"
5254 * to a total length of "dst_len", assuming the original dimension is "src_len".
5256 static __isl_give isl_union_map *extend_range(
5257 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
5259 isl_space *dim;
5260 isl_map *map;
5261 int i;
5263 dim = isl_union_map_get_space(umap);
5264 map = isl_map_reverse(projection(dim, dst_len, src_len));
5265 for (i = src_len; i < dst_len; ++i)
5266 map = isl_map_fix_si(map, isl_dim_out, i, val);
5268 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
5270 return umap;
5273 /* Group bands with the same values for tile_len and n_parallel.
5274 * The prefix schedule is then extended with a fixed coordinate that
5275 * is different for each such group.
5276 * Note that the actual values for this coordinate are not important.
5277 * The bands have already been effectively separated at a higher level
5278 * or they are independent and may be executed in parallel.
5279 * The list of band_info has been sorted before this functions is called.
5281 static void separate_bands(struct band_info *info, int n)
5283 int i;
5284 int j = 0;
5286 for (i = 0; i < n; ++i) {
5287 int l = info[i].tile_first;
5289 if (i &&
5290 (info[i].tile_len != info[i - 1].tile_len ||
5291 info[i].n_parallel != info[i - 1].n_parallel))
5292 j++;
5294 info[i].prefix = extend_range(info[i].prefix,
5295 l, l + 1, j);
5296 info[i].tile_first = l + 1;
5300 /* Select the outermost bands in the elements of the list, align
5301 * their prefix schedules, separate bands with different values
5302 * for tile_len and/or n_parallel and then combine the resulting
5303 * prefix and suffix schedules into a single pair of prefix and
5304 * suffix schedules for the entire list.
5306 static void list_select_outer_band(struct gpu_gen *gen,
5307 __isl_take isl_band_list *list, int pos, struct band_info *list_info)
5309 isl_band *band;
5310 int i;
5311 int n = isl_band_list_n_band(list);
5312 isl_ctx *ctx = isl_band_list_get_ctx(list);
5313 struct band_info *info;
5314 int max_tile_first;
5315 isl_union_map *prefix;
5316 isl_union_map *suffix;
5318 assert(n >= 1);
5319 info = isl_calloc_array(ctx, struct band_info, n);
5320 assert(info);
5322 max_tile_first = 0;
5323 for (i = 0; i < n; ++i) {
5324 band = isl_band_list_get_band(list, i);
5325 band_select_outer_band(gen, band, pos, &info[i]);
5326 if (info[i].tile_first > max_tile_first)
5327 max_tile_first = info[i].tile_first;
5330 for (i = 0; i < n; ++i) {
5331 if (info[i].tile_first == max_tile_first)
5332 continue;
5333 info[i].prefix = extend_range(info[i].prefix,
5334 info[i].tile_first, max_tile_first, 0);
5335 info[i].tile_first = max_tile_first;
5338 qsort(info, n, sizeof(struct band_info), &cmp_band);
5340 for (i = 0; i < n - 1; ++i)
5341 if (info[i].tile_len != info[i + 1].tile_len ||
5342 info[i].n_parallel != info[i + 1].n_parallel)
5343 break;
5345 if (i < n -1)
5346 separate_bands(info, n);
5348 prefix = info[0].prefix;
5349 suffix = info[0].suffix;
5351 for (i = 1; i < n; ++i) {
5352 prefix = isl_union_map_union(prefix, info[i].prefix);
5353 suffix = isl_union_map_union(suffix, info[i].suffix);
5356 list_info->tile_first = info[0].tile_first;
5357 list_info->tile_len = -1;
5358 list_info->prefix = prefix;
5359 list_info->suffix = suffix;
5361 isl_band_list_free(list);
5362 free(info);
5365 /* Select the outermost tilable band that (by construction)
5366 * has at least one parallel loop.
5367 * The starting position of the aligned band is stored in the pair
5368 * gen->tile_first.
5369 * The sizes and number of parallel loops may be different in different
5370 * parts of the band forest and are therefore stored in the gpu_stmts.
5372 * Return the complete schedule, with the tilable bands aligned
5373 * at gen->tile_first and padded with zero, if needed.
5375 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
5376 __isl_keep isl_schedule *schedule)
5378 isl_band_list *list;
5379 struct band_info info;
5381 gen->n_parallel = 0;
5382 gen->tile_len = -1;
5384 list = isl_schedule_get_band_forest(schedule);
5386 if (isl_band_list_n_band(list) == 0) {
5387 isl_band_list_free(list);
5388 return isl_schedule_get_map(schedule);
5391 list_select_outer_band(gen, list, 0, &info);
5393 gen->tile_first = info.tile_first;
5394 info.suffix = align_range(info.suffix);
5396 return isl_union_map_flat_range_product(info.prefix, info.suffix);
5399 /* Set gen->untiled_len to the number of scheduling dimensions
5400 * for the schedule of the first domain.
5401 * We assume here that this number is the same for all domains.
5403 static int set_untiled_len(__isl_take isl_map *map, void *user)
5405 unsigned *untiled_len = user;
5407 *untiled_len = isl_map_dim(map, isl_dim_out);
5409 isl_map_free(map);
5410 return -1;
5413 /* Compute an appropriate schedule based on the accesses in
5414 * gen->read and gen->write.
5416 * We use the dependences in gen->prog->scop to compute
5417 * a schedule that has a parallel loop in each tilable band.
5418 * Finally, we select the outermost tilable band.
5420 * If live range reordering is allowed, then we need to make sure
5421 * that live ranges on arrays are not run in parallel since doing
5422 * so would require array expansion. We therefore add the array
5423 * order dependences to the coincidence dependences. Non-zero array
5424 * order dependences will then prevent a schedule dimension from being
5425 * considered parallel.
5426 * Live ranges derived from scalars are allowed to be run in parallel
5427 * since we force the scalars to be mapped to private memory in
5428 * check_scalar_live_ranges.
5429 * If live range reordering is allowed, then the false dependences
5430 * are not added to the validity constraints as that would prevent
5431 * reordering. Instead, the external false dependences that enforce that reads
5432 * from potentially live-in data precede any later write and
5433 * that writes of potentially live-out data follow any other earlier write
5434 * are added to the validity constraints.
5435 * The false dependences are still added to the proximity constraints
5436 * for consistency with the case where live range reordering is not allowed.
5438 static void compute_schedule(struct gpu_gen *gen)
5440 isl_union_set *domain;
5441 isl_union_map *dep_raw, *dep;
5442 isl_union_map *validity, *proximity, *coincidence;
5443 isl_union_map *sched;
5444 isl_schedule_constraints *sc;
5445 isl_schedule *schedule;
5447 domain = isl_union_set_copy(gen->prog->scop->domain);
5448 domain = isl_union_set_intersect_params(domain,
5449 isl_set_copy(gen->prog->scop->context));
5450 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
5451 if (gen->options->live_range_reordering) {
5452 sc = isl_schedule_constraints_set_conditional_validity(sc,
5453 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
5454 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
5455 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
5456 validity = isl_union_map_copy(proximity);
5457 validity = isl_union_map_union(validity,
5458 isl_union_map_copy(gen->prog->scop->dep_external));
5459 proximity = isl_union_map_union(proximity,
5460 isl_union_map_copy(gen->prog->scop->dep_false));
5461 coincidence = isl_union_map_copy(validity);
5462 coincidence = isl_union_map_union(coincidence,
5463 isl_union_map_copy(gen->prog->array_order));
5464 } else {
5465 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
5466 dep = isl_union_map_copy(gen->prog->scop->dep_false);
5467 dep = isl_union_map_union(dep, dep_raw);
5468 dep = isl_union_map_coalesce(dep);
5469 proximity = isl_union_map_copy(dep);
5470 coincidence = isl_union_map_copy(dep);
5471 validity = dep;
5473 sc = isl_schedule_constraints_set_validity(sc, validity);
5474 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
5475 sc = isl_schedule_constraints_set_proximity(sc, proximity);
5477 if (gen->options->debug->dump_schedule_constraints)
5478 isl_schedule_constraints_dump(sc);
5479 schedule = isl_schedule_constraints_compute_schedule(sc);
5480 if (gen->options->debug->dump_schedule)
5481 isl_schedule_dump(schedule);
5483 sched = select_outer_tilable_band(gen, schedule);
5485 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
5486 sched = isl_union_map_intersect_domain(sched, domain);
5487 gen->sched = sched;
5489 isl_schedule_free(schedule);
5492 /* Compute the sets of outer array elements that need to be copied in and out.
5494 * In particular, for each array that is possibly written anywhere in
5495 * gen->prog and that is visible outside the corresponding scop,
5496 * we copy out its entire extent.
5498 * Any array elements that is read without first being written needs
5499 * to be copied in. Furthermore, if there are any array elements that
5500 * are copied out, but that may not be written inside gen->prog, then
5501 * they also need to be copied in to ensure that the value after execution
5502 * is the same as the value before execution.
5503 * In case the array elements are structures, we need to take into
5504 * account that all members of the structures need to be written
5505 * by gen->prog before we can avoid copying the data structure in.
5507 * While computing the set of array elements that are copied out but
5508 * not necessarily written, we intersect both sets with the context.
5509 * This helps in those cases where the arrays are declared with a fixed size,
5510 * while the accesses are parametric and the context assigns a fixed value
5511 * to the parameters.
5513 * If an element from a local array is read without first being written,
5514 * then there is no point in copying it in since it cannot have been
5515 * written prior to the scop. Warn about the uninitialized read instead.
5517 static void compute_copy_in_and_out(struct gpu_gen *gen)
5519 int i;
5520 isl_union_set *local;
5521 isl_union_set *may_write, *must_write;
5522 isl_union_set *copy_in, *copy_out;
5523 isl_union_set *not_written;
5524 isl_union_map *uninitialized;
5525 isl_union_map *local_uninitialized;
5527 must_write = isl_union_map_range(
5528 isl_union_map_copy(gen->prog->must_write));
5529 must_write = isl_union_set_intersect_params(must_write,
5530 isl_set_copy(gen->prog->context));
5531 may_write = isl_union_map_range(
5532 isl_union_map_copy(gen->prog->may_write));
5533 may_write = isl_union_set_intersect_params(may_write,
5534 isl_set_copy(gen->prog->context));
5535 may_write = isl_union_set_universe(may_write);
5536 may_write = isl_union_set_apply(may_write,
5537 isl_union_map_copy(gen->prog->to_outer));
5538 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
5539 local = isl_union_set_copy(copy_out);
5541 for (i = 0; i < gen->prog->n_array; ++i) {
5542 isl_space *space;
5543 isl_set *write_i;
5544 int empty;
5546 space = isl_space_copy(gen->prog->array[i].space);
5548 if (gen->prog->array[i].local) {
5549 isl_set *set;
5551 set = isl_set_universe(space);
5552 local = isl_union_set_add_set(local, set);
5553 continue;
5556 write_i = isl_union_set_extract_set(may_write, space);
5557 empty = isl_set_fast_is_empty(write_i);
5558 isl_set_free(write_i);
5559 if (empty)
5560 continue;
5562 write_i = isl_set_copy(gen->prog->array[i].extent);
5563 copy_out = isl_union_set_add_set(copy_out, write_i);
5565 isl_union_set_free(may_write);
5567 copy_out = isl_union_set_intersect_params(copy_out,
5568 isl_set_copy(gen->prog->context));
5570 gen->prog->copy_out = isl_union_set_copy(copy_out);
5572 copy_out = isl_union_set_apply(copy_out,
5573 isl_union_map_copy(gen->prog->to_inner));
5574 not_written = isl_union_set_subtract(copy_out, must_write);
5576 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
5577 local_uninitialized = isl_union_map_copy(uninitialized);
5579 local = isl_union_set_apply(local,
5580 isl_union_map_copy(gen->prog->to_inner));
5581 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5582 local);
5583 if (!isl_union_map_is_empty(local_uninitialized)) {
5584 fprintf(stderr,
5585 "possibly uninitialized reads (not copied in):\n");
5586 isl_union_map_dump(local_uninitialized);
5588 uninitialized = isl_union_map_subtract(uninitialized,
5589 local_uninitialized);
5590 copy_in = isl_union_map_range(uninitialized);
5591 copy_in = isl_union_set_union(copy_in, not_written);
5592 copy_in = isl_union_set_apply(copy_in,
5593 isl_union_map_copy(gen->prog->to_outer));
5595 gen->prog->copy_in = copy_in;
5598 /* Extract a gpu_stmt_access from "expr", append it to the list
5599 * that ends in *next_access and return the updated end of the list.
5601 static struct gpu_stmt_access **expr_extract_access(struct pet_expr *expr,
5602 struct gpu_stmt_access **next_access)
5604 struct gpu_stmt_access *access;
5605 isl_ctx *ctx = isl_map_get_ctx(expr->acc.access);
5607 access = isl_alloc_type(ctx, struct gpu_stmt_access);
5608 assert(access);
5609 access->next = NULL;
5610 access->read = expr->acc.read;
5611 access->write = expr->acc.write;
5612 access->access = pet_expr_access_get_may_access(expr);
5613 access->tagged_access = pet_expr_access_get_tagged_may_access(expr);
5614 access->exact_write = !expr->acc.write ||
5615 isl_map_is_equal(expr->acc.access, access->access);
5616 access->ref_id = isl_id_copy(expr->acc.ref_id);
5617 access->group = -1;
5619 *next_access = access;
5620 next_access = &(*next_access)->next;
5621 return next_access;
5624 static struct gpu_stmt_access **expr_extract_accesses(struct pet_expr *expr,
5625 struct gpu_stmt_access **next_access)
5627 int i;
5629 for (i = 0; i < expr->n_arg; ++i)
5630 next_access = expr_extract_accesses(expr->args[i],
5631 next_access);
5633 if (expr->type == pet_expr_access)
5634 next_access = expr_extract_access(expr, next_access);
5636 return next_access;
5639 static void pet_stmt_extract_accesses(struct gpu_stmt *stmt)
5641 struct gpu_stmt_access **next_access = &stmt->accesses;
5643 stmt->accesses = NULL;
5644 expr_extract_accesses(stmt->stmt->body, next_access);
5647 /* Return an array of gpu_stmt representing the statements in "scop".
5649 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5650 __isl_keep isl_set *context)
5652 int i;
5653 struct gpu_stmt *stmts;
5655 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->n_stmt);
5656 if (!stmts)
5657 return NULL;
5659 for (i = 0; i < scop->n_stmt; ++i) {
5660 struct gpu_stmt *s = &stmts[i];
5662 s->id = isl_set_get_tuple_id(scop->stmts[i]->domain);
5663 s->stmt = scop->stmts[i];
5664 pet_stmt_extract_accesses(s);
5667 return stmts;
5670 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
5672 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
5674 struct gpu_gen *gen = user;
5676 return gen->print(p, gen->prog, gen->tree, &gen->types,
5677 gen->print_user);
5680 /* Generate CUDA code for "scop" and print it to "p".
5681 * After generating an AST for the transformed scop as explained below,
5682 * we call "gen->print" to print the AST in the desired output format
5683 * to "p".
5685 * If it turns out that it does not make sense to generate GPU code,
5686 * then we generate CPU code instead.
5688 * The GPU code is generated in a context where at least one
5689 * statement instance is executed. The corresponding guard (if any) is printed
5690 * around the entire generated GPU code, except for the declaration
5691 * of the arrays that are visible outside of the scop and that therefore
5692 * cannot be declared inside the body of any possible guard.
5694 * We first compute a schedule that respects the dependences
5695 * of the original program and select the outermost band
5696 * of tilable dimensions that has at least one parallel loop.
5697 * We then have three blocks of dimensions
5699 * H B G
5701 * The tilable band "B" is first tiled according to "tile" sizes, resulting
5702 * in
5704 * H T P G
5706 * For each iteration of the T loop and for each array, we compute
5707 * the array elements accessed by that iteration, construct a rectangular
5708 * box around it and shift it to the origin. The result is used
5709 * as shared memory for the array.
5711 * We then split off at most 2 parallel loops from the T loops and
5712 * at most 3 parallel loops from the P loops
5714 * H T1 T2 P1 P2 G
5716 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
5717 * according to "grid"/"block" sizes.
5719 * H T1T T1P T2 P1T P1P P2 G
5721 * Finally, the T1P and P1P iterators are equated to the block and
5722 * thread dimensions respectively and so are effectively removed.
5723 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
5724 * are run on the GPU.
5726 * Code is generated in three stages. We first generate code for the
5727 * host (the H loops), with iterators h%d. Then, for each leaf node
5728 * of the resulting AST, we generate code for the shared loops (up to
5729 * and including T2), with iterators g%d and after equating the H loops
5730 * to h%d parameters and the T1P loops to the block dimensions.
5731 * Finally, we generate code for the remaining loops in a similar fashion.
5733 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5734 struct gpu_gen *gen, struct ppcg_scop *scop,
5735 struct ppcg_options *options)
5737 struct gpu_prog *prog;
5738 isl_ctx *ctx;
5739 isl_set *context, *guard;
5741 if (!scop)
5742 return isl_printer_free(p);
5744 ctx = isl_printer_get_ctx(p);
5745 prog = gpu_prog_alloc(ctx, scop);
5746 if (!prog)
5747 return isl_printer_free(p);
5749 context = isl_set_copy(prog->context);
5750 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5751 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5753 gen->prog = prog;
5754 gen->any_parallelism = 0;
5755 compute_schedule(gen);
5757 if (!gen->any_parallelism) {
5758 isl_set_free(context);
5759 isl_set_free(guard);
5760 p = print_cpu(p, scop, options);
5761 } else {
5762 compute_copy_in_and_out(gen);
5763 gen->tree = generate_host_code(gen);
5764 p = ppcg_print_exposed_declarations(p, prog->scop);
5765 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
5766 isl_ast_node_free(gen->tree);
5769 isl_union_map_free(gen->sched);
5771 gpu_prog_free(prog);
5773 return p;
5776 /* Wrapper around generate for use as a ppcg_transform callback.
5778 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5779 struct ppcg_scop *scop, void *user)
5781 struct gpu_gen *gen = user;
5783 return generate(p, gen, scop, gen->options);
5786 /* Transform the code in the file called "input" by replacing
5787 * all scops by corresponding GPU code and write the results to "out".
5789 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5790 struct ppcg_options *options,
5791 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5792 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5793 struct gpu_types *types, void *user), void *user)
5795 struct gpu_gen gen;
5796 int r;
5797 int i;
5799 gen.ctx = ctx;
5800 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5801 gen.options = options;
5802 gen.kernel_id = 0;
5803 gen.print = print;
5804 gen.print_user = user;
5805 gen.types.n = 0;
5806 gen.types.name = NULL;
5808 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5810 isl_union_map_free(gen.sizes);
5811 for (i = 0; i < gen.types.n; ++i)
5812 free(gen.types.name[i]);
5813 free(gen.types.name);
5815 return r;
5818 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5820 struct gpu_prog *prog;
5822 if (!scop)
5823 return NULL;
5825 prog = isl_calloc_type(ctx, struct gpu_prog);
5826 assert(prog);
5828 prog->ctx = ctx;
5829 prog->scop = scop;
5830 prog->context = isl_set_copy(scop->context);
5831 prog->n_stmts = scop->n_stmt;
5832 prog->stmts = extract_stmts(ctx, scop, prog->context);
5833 prog->read = isl_union_map_copy(scop->reads);
5834 prog->may_write = isl_union_map_copy(scop->may_writes);
5835 prog->must_write = isl_union_map_copy(scop->must_writes);
5836 prog->to_inner = compute_to_inner(scop);
5837 prog->to_outer = isl_union_map_copy(prog->to_inner);
5838 prog->to_outer = isl_union_map_reverse(prog->to_outer);
5840 if (!prog->stmts)
5841 return gpu_prog_free(prog);
5843 if (collect_array_info(prog) < 0)
5844 return gpu_prog_free(prog);
5846 return prog;
5849 void *gpu_prog_free(struct gpu_prog *prog)
5851 if (!prog)
5852 return NULL;
5853 free_array_info(prog);
5854 free_stmts(prog->stmts, prog->n_stmts);
5855 isl_union_map_free(prog->to_outer);
5856 isl_union_map_free(prog->to_inner);
5857 isl_union_set_free(prog->copy_in);
5858 isl_union_set_free(prog->copy_out);
5859 isl_union_map_free(prog->read);
5860 isl_union_map_free(prog->may_write);
5861 isl_union_map_free(prog->must_write);
5862 isl_union_map_free(prog->array_order);
5863 isl_set_free(prog->context);
5864 free(prog);
5865 return NULL;