Change default time settings from -t =80000 to -t 15
[pachi.git] / uct / search.c
blobff363f177e02b810a6ee99b894d925801deeacc1
1 #include <assert.h>
2 #include <math.h>
3 #include <pthread.h>
4 #include <signal.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <time.h>
10 #define DEBUG
12 #include "debug.h"
13 #include "distributed/distributed.h"
14 #include "move.h"
15 #include "random.h"
16 #include "timeinfo.h"
17 #include "uct/dynkomi.h"
18 #include "uct/internal.h"
19 #include "uct/search.h"
20 #include "uct/tree.h"
21 #include "uct/uct.h"
22 #include "uct/walk.h"
25 /* Default time settings for the UCT engine. */
26 static struct time_info default_ti;
27 static __attribute__((constructor)) void
28 default_ti_init(void)
30 time_parse(&default_ti, "15");
33 /* When terminating UCT search early, the safety margin to add to the
34 * remaining playout number estimate when deciding whether the result can
35 * still change. */
36 #define PLAYOUT_DELTA_SAFEMARGIN 1000
38 /* Minimal number of simulations to consider early break. */
39 #define PLAYOUT_EARLY_BREAK_MIN 5000
41 /* Minimal time to consider early break (in seconds). */
42 #define TIME_EARLY_BREAK_MIN 1.0
45 /* Pachi threading structure:
47 * main thread
48 * | main(), GTP communication, ...
49 * | starts and stops the search managed by thread_manager
50 * |
51 * thread_manager
52 * | spawns and collects worker threads
53 * |
54 * worker0
55 * worker1
56 * ...
57 * workerK
58 * uct_playouts() loop, doing descend-playout until uct_halt
60 * Another way to look at it is by functions (lines denote thread boundaries):
62 * | uct_genmove()
63 * | uct_search() (uct_search_start() .. uct_search_stop())
64 * | -----------------------
65 * | spawn_thread_manager()
66 * | -----------------------
67 * | spawn_worker()
68 * V uct_playouts() */
70 /* Set in thread manager in case the workers should stop. */
71 volatile sig_atomic_t uct_halt = 0;
72 /* ID of the thread manager. */
73 static pthread_t thread_manager;
74 bool thread_manager_running;
76 static pthread_mutex_t finish_mutex = PTHREAD_MUTEX_INITIALIZER;
77 static pthread_cond_t finish_cond = PTHREAD_COND_INITIALIZER;
78 static volatile int finish_thread;
79 static pthread_mutex_t finish_serializer = PTHREAD_MUTEX_INITIALIZER;
81 static void *
82 spawn_worker(void *ctx_)
84 struct uct_thread_ctx *ctx = ctx_;
85 /* Setup */
86 fast_srandom(ctx->seed);
87 /* Run */
88 ctx->games = uct_playouts(ctx->u, ctx->b, ctx->color, ctx->t, ctx->ti);
89 /* Finish */
90 pthread_mutex_lock(&finish_serializer);
91 pthread_mutex_lock(&finish_mutex);
92 finish_thread = ctx->tid;
93 pthread_cond_signal(&finish_cond);
94 pthread_mutex_unlock(&finish_mutex);
95 return ctx;
98 /* Thread manager, controlling worker threads. It must be called with
99 * finish_mutex lock held, but it will unlock it itself before exiting;
100 * this is necessary to be completely deadlock-free. */
101 /* The finish_cond can be signalled for it to stop; in that case,
102 * the caller should set finish_thread = -1. */
103 /* After it is started, it will update mctx->t to point at some tree
104 * used for the actual search, on return
105 * it will set mctx->games to the number of performed simulations. */
106 static void *
107 spawn_thread_manager(void *ctx_)
109 /* In thread_manager, we use only some of the ctx fields. */
110 struct uct_thread_ctx *mctx = ctx_;
111 struct uct *u = mctx->u;
112 struct tree *t = mctx->t;
113 fast_srandom(mctx->seed);
115 int played_games = 0;
116 pthread_t threads[u->threads];
117 int joined = 0;
119 uct_halt = 0;
121 /* Garbage collect the tree by preference when pondering. */
122 if (u->pondering && t->nodes && t->nodes_size >= t->pruning_threshold) {
123 t->root = tree_garbage_collect(t, t->root);
126 /* Spawn threads... */
127 for (int ti = 0; ti < u->threads; ti++) {
128 struct uct_thread_ctx *ctx = malloc2(sizeof(*ctx));
129 ctx->u = u; ctx->b = mctx->b; ctx->color = mctx->color;
130 mctx->t = ctx->t = t;
131 ctx->tid = ti; ctx->seed = fast_random(65536) + ti;
132 ctx->ti = mctx->ti;
133 pthread_attr_t a;
134 pthread_attr_init(&a);
135 pthread_attr_setstacksize(&a, 1048576);
136 pthread_create(&threads[ti], &a, spawn_worker, ctx);
137 if (UDEBUGL(3))
138 fprintf(stderr, "Spawned worker %d\n", ti);
141 /* ...and collect them back: */
142 while (joined < u->threads) {
143 /* Wait for some thread to finish... */
144 pthread_cond_wait(&finish_cond, &finish_mutex);
145 if (finish_thread < 0) {
146 /* Stop-by-caller. Tell the workers to wrap up
147 * and unblock them from terminating. */
148 uct_halt = 1;
149 /* We need to make sure the workers do not complete
150 * the termination sequence before we get officially
151 * stopped - their wake and the stop wake could get
152 * coalesced. */
153 pthread_mutex_unlock(&finish_serializer);
154 continue;
156 /* ...and gather its remnants. */
157 struct uct_thread_ctx *ctx;
158 pthread_join(threads[finish_thread], (void **) &ctx);
159 played_games += ctx->games;
160 joined++;
161 free(ctx);
162 if (UDEBUGL(3))
163 fprintf(stderr, "Joined worker %d\n", finish_thread);
164 pthread_mutex_unlock(&finish_serializer);
167 pthread_mutex_unlock(&finish_mutex);
169 mctx->games = played_games;
170 return mctx;
174 /*** THREAD MANAGER end */
176 /*** Search infrastructure: */
180 uct_search_games(struct uct_search_state *s)
182 return s->ctx->t->root->u.playouts;
185 void
186 uct_search_start(struct uct *u, struct board *b, enum stone color,
187 struct tree *t, struct time_info *ti,
188 struct uct_search_state *s)
190 /* Set up search state. */
191 s->base_playouts = s->last_dynkomi = s->last_print = t->root->u.playouts;
192 s->print_interval = u->reportfreq * u->threads;
193 s->fullmem = false;
195 if (ti) {
196 if (ti->period == TT_NULL) {
197 *ti = default_ti;
198 time_start_timer(ti);
200 time_stop_conditions(ti, b, u->fuseki_end, u->yose_start, u->max_maintime_ratio, &s->stop);
203 /* Fire up the tree search thread manager, which will in turn
204 * spawn the searching threads. */
205 assert(u->threads > 0);
206 assert(!thread_manager_running);
207 static struct uct_thread_ctx mctx;
208 mctx = (struct uct_thread_ctx) { .u = u, .b = b, .color = color, .t = t, .seed = fast_random(65536), .ti = ti };
209 s->ctx = &mctx;
210 pthread_mutex_lock(&finish_serializer);
211 pthread_mutex_lock(&finish_mutex);
212 pthread_create(&thread_manager, NULL, spawn_thread_manager, s->ctx);
213 thread_manager_running = true;
216 struct uct_thread_ctx *
217 uct_search_stop(void)
219 assert(thread_manager_running);
221 /* Signal thread manager to stop the workers. */
222 pthread_mutex_lock(&finish_mutex);
223 finish_thread = -1;
224 pthread_cond_signal(&finish_cond);
225 pthread_mutex_unlock(&finish_mutex);
227 /* Collect the thread manager. */
228 struct uct_thread_ctx *pctx;
229 thread_manager_running = false;
230 pthread_join(thread_manager, (void **) &pctx);
231 return pctx;
235 void
236 uct_search_progress(struct uct *u, struct board *b, enum stone color,
237 struct tree *t, struct time_info *ti,
238 struct uct_search_state *s, int i)
240 struct uct_thread_ctx *ctx = s->ctx;
242 /* Adjust dynkomi? */
243 int di = u->dynkomi_interval * u->threads;
244 if (ctx->t->use_extra_komi && u->dynkomi->permove
245 && !u->pondering && di
246 && i > s->last_dynkomi + di) {
247 s->last_dynkomi += di;
248 floating_t old_dynkomi = ctx->t->extra_komi;
249 ctx->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, ctx->t);
250 if (UDEBUGL(3) && old_dynkomi != ctx->t->extra_komi)
251 fprintf(stderr, "dynkomi adjusted (%f -> %f)\n",
252 old_dynkomi, ctx->t->extra_komi);
255 /* Print progress? */
256 if (i - s->last_print > s->print_interval) {
257 s->last_print += s->print_interval; // keep the numbers tidy
258 uct_progress_status(u, ctx->t, color, s->last_print, NULL);
261 if (!s->fullmem && ctx->t->nodes_size > u->max_tree_size) {
262 if (UDEBUGL(2))
263 fprintf(stderr, "memory limit hit (%lu > %lu)\n",
264 ctx->t->nodes_size, u->max_tree_size);
265 s->fullmem = true;
270 /* Determine whether we should terminate the search early. */
271 static bool
272 uct_search_stop_early(struct uct *u, struct tree *t, struct board *b,
273 struct time_info *ti, struct time_stop *stop,
274 struct tree_node *best, struct tree_node *best2,
275 int played, bool fullmem)
277 /* If the memory is full, stop immediately. Since the tree
278 * cannot grow anymore, some non-well-expanded nodes will
279 * quickly take over with extremely high ratio since the
280 * counters are not properly simulated (just as if we use
281 * non-UCT MonteCarlo). */
282 /* (XXX: A proper solution would be to prune the tree
283 * on the spot.) */
284 if (fullmem)
285 return true;
287 /* Think at least 100ms to avoid a random move. This is particularly
288 * important in distributed mode, where this function is called frequently. */
289 double elapsed = 0.0;
290 if (ti->dim == TD_WALLTIME) {
291 elapsed = time_now() - ti->len.t.timer_start;
292 if (elapsed < TREE_BUSYWAIT_INTERVAL) return false;
295 /* Break early if we estimate the second-best move cannot
296 * catch up in assigned time anymore. We use all our time
297 * if we are in byoyomi with single stone remaining in our
298 * period, however - it's better to pre-ponder. */
299 bool time_indulgent = (!ti->len.t.main_time && ti->len.t.byoyomi_stones == 1);
300 if (best2 && ti->dim == TD_WALLTIME
301 && played >= PLAYOUT_EARLY_BREAK_MIN && !time_indulgent) {
302 double remaining = stop->worst.time - elapsed;
303 double pps = ((double)played) / elapsed;
304 double estplayouts = remaining * pps + PLAYOUT_DELTA_SAFEMARGIN;
305 if (best->u.playouts > best2->u.playouts + estplayouts) {
306 if (UDEBUGL(2))
307 fprintf(stderr, "Early stop, result cannot change: "
308 "best %d, best2 %d, estimated %f simulations to go (%d/%f=%f pps)\n",
309 best->u.playouts, best2->u.playouts, estplayouts, played, elapsed, pps);
310 return true;
314 /* Early break in won situation. */
315 if (best->u.playouts >= PLAYOUT_EARLY_BREAK_MIN
316 && (ti->dim != TD_WALLTIME || elapsed > TIME_EARLY_BREAK_MIN)
317 && tree_node_get_value(t, 1, best->u.value) >= u->sure_win_threshold) {
318 return true;
321 return false;
324 /* Determine whether we should terminate the search later than expected. */
325 static bool
326 uct_search_keep_looking(struct uct *u, struct tree *t, struct board *b,
327 struct time_info *ti, struct time_stop *stop,
328 struct tree_node *best, struct tree_node *best2,
329 struct tree_node *bestr, struct tree_node *winner, int i)
331 if (!best) {
332 if (UDEBUGL(2))
333 fprintf(stderr, "Did not find best move, still trying...\n");
334 return true;
337 /* Do not waste time if we are winning. Spend up to worst time if
338 * we are unsure, but only desired time if we are sure of winning. */
339 floating_t beta = 2 * (tree_node_get_value(t, 1, best->u.value) - 0.5);
340 if (ti->dim == TD_WALLTIME && beta > 0) {
341 double good_enough = stop->desired.time * beta + stop->worst.time * (1 - beta);
342 double elapsed = time_now() - ti->len.t.timer_start;
343 if (elapsed > good_enough) return false;
346 if (u->best2_ratio > 0) {
347 /* Check best/best2 simulations ratio. If the
348 * two best moves give very similar results,
349 * keep simulating. */
350 if (best2 && best2->u.playouts
351 && (double)best->u.playouts / best2->u.playouts < u->best2_ratio) {
352 if (UDEBUGL(2))
353 fprintf(stderr, "Best2 ratio %f < threshold %f\n",
354 (double)best->u.playouts / best2->u.playouts,
355 u->best2_ratio);
356 return true;
360 if (u->bestr_ratio > 0) {
361 /* Check best, best_best value difference. If the best move
362 * and its best child do not give similar enough results,
363 * keep simulating. */
364 if (bestr && bestr->u.playouts
365 && fabs((double)best->u.value - bestr->u.value) > u->bestr_ratio) {
366 if (UDEBUGL(2))
367 fprintf(stderr, "Bestr delta %f > threshold %f\n",
368 fabs((double)best->u.value - bestr->u.value),
369 u->bestr_ratio);
370 return true;
374 if (winner && winner != best) {
375 /* Keep simulating if best explored
376 * does not have also highest value. */
377 if (UDEBUGL(2))
378 fprintf(stderr, "[%d] best %3s [%d] %f != winner %3s [%d] %f\n", i,
379 coord2sstr(node_coord(best), t->board),
380 best->u.playouts, tree_node_get_value(t, 1, best->u.value),
381 coord2sstr(node_coord(winner), t->board),
382 winner->u.playouts, tree_node_get_value(t, 1, winner->u.value));
383 return true;
386 /* No reason to keep simulating, bye. */
387 return false;
390 bool
391 uct_search_check_stop(struct uct *u, struct board *b, enum stone color,
392 struct tree *t, struct time_info *ti,
393 struct uct_search_state *s, int i)
395 struct uct_thread_ctx *ctx = s->ctx;
397 /* Never consider stopping if we played too few simulations.
398 * Maybe we risk losing on time when playing in super-extreme
399 * time pressure but the tree is going to be just too messed
400 * up otherwise - we might even play invalid suicides or pass
401 * when we mustn't. */
402 assert(!(ti->dim == TD_GAMES && ti->len.games < GJ_MINGAMES));
403 if (i < GJ_MINGAMES)
404 return false;
406 struct tree_node *best = NULL;
407 struct tree_node *best2 = NULL; // Second-best move.
408 struct tree_node *bestr = NULL; // best's best child.
409 struct tree_node *winner = NULL;
411 best = u->policy->choose(u->policy, ctx->t->root, b, color, resign);
412 if (best) best2 = u->policy->choose(u->policy, ctx->t->root, b, color, node_coord(best));
414 /* Possibly stop search early if it's no use to try on. */
415 int played = u->played_all + i - s->base_playouts;
416 if (best && uct_search_stop_early(u, ctx->t, b, ti, &s->stop, best, best2, played, s->fullmem))
417 return true;
419 /* Check against time settings. */
420 bool desired_done;
421 if (ti->dim == TD_WALLTIME) {
422 double elapsed = time_now() - ti->len.t.timer_start;
423 if (elapsed > s->stop.worst.time) return true;
424 desired_done = elapsed > s->stop.desired.time;
426 } else { assert(ti->dim == TD_GAMES);
427 if (i > s->stop.worst.playouts) return true;
428 desired_done = i > s->stop.desired.playouts;
431 /* We want to stop simulating, but are willing to keep trying
432 * if we aren't completely sure about the winner yet. */
433 if (desired_done) {
434 if (u->policy->winner && u->policy->evaluate) {
435 struct uct_descent descent = { .node = ctx->t->root };
436 u->policy->winner(u->policy, ctx->t, &descent);
437 winner = descent.node;
439 if (best)
440 bestr = u->policy->choose(u->policy, best, b, stone_other(color), resign);
441 if (!uct_search_keep_looking(u, ctx->t, b, ti, &s->stop, best, best2, bestr, winner, i))
442 return true;
445 /* TODO: Early break if best->variance goes under threshold
446 * and we already have enough playouts (possibly thanks to tbook
447 * or to pondering)? */
448 return false;
452 struct tree_node *
453 uct_search_result(struct uct *u, struct board *b, enum stone color,
454 bool pass_all_alive, int played_games, int base_playouts,
455 coord_t *best_coord)
457 /* Choose the best move from the tree. */
458 struct tree_node *best = u->policy->choose(u->policy, u->t->root, b, color, resign);
459 if (!best) {
460 *best_coord = pass;
461 return NULL;
463 *best_coord = node_coord(best);
464 if (UDEBUGL(1))
465 fprintf(stderr, "*** WINNER is %s (%d,%d) with score %1.4f (%d/%d:%d/%d games), extra komi %f\n",
466 coord2sstr(node_coord(best), b), coord_x(node_coord(best), b), coord_y(node_coord(best), b),
467 tree_node_get_value(u->t, 1, best->u.value), best->u.playouts,
468 u->t->root->u.playouts, u->t->root->u.playouts - base_playouts, played_games,
469 u->t->extra_komi);
471 /* Do not resign if we're so short of time that evaluation of best
472 * move is completely unreliable, we might be winning actually.
473 * In this case best is almost random but still better than resign.
474 * Also do not resign if we are getting bad results while actually
475 * giving away extra komi points (dynkomi). */
476 if (tree_node_get_value(u->t, 1, best->u.value) < u->resign_threshold
477 && !is_pass(node_coord(best)) && best->u.playouts > GJ_MINGAMES
478 && (!u->t->use_extra_komi || komi_by_color(u->t->extra_komi, color) < 0.5)) {
479 *best_coord = resign;
480 return NULL;
483 /* If the opponent just passed and we win counting, always
484 * pass as well. For option stones_only, we pass only when there
485 * there is nothing else to do, to show how to maximize score. */
486 if (b->moves > 1 && is_pass(b->last_move.coord) && b->rules != RULES_STONES_ONLY) {
487 if (uct_pass_is_safe(u, b, color, pass_all_alive)) {
488 if (UDEBUGL(0))
489 fprintf(stderr, "<Will rather pass, looks safe enough; score %f>\n",
490 board_official_score(b, NULL) / 2);
491 *best_coord = pass;
492 best = u->t->root->children; // pass is the first child
493 assert(is_pass(node_coord(best)));
494 return best;
495 } else {
496 if (UDEBUGL(3))
497 fprintf(stderr, "Refusing to pass, unsafe; pass_all_alive %d, ownermap #playouts %d, raw score %f\n",
498 pass_all_alive, u->ownermap.playouts,
499 board_official_score(b, NULL) / 2);
503 return best;