update files to correct FSF address
[openocd.git] / src / flash / nand / arm_io.c
blob67b15088542362797a4f87c9256f26b6f646e6b3
1 /*
2 * Copyright (C) 2009 by Marvell Semiconductors, Inc.
3 * Written by Nicolas Pitre <nico at marvell.com>
5 * Copyright (C) 2009 by David Brownell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the
19 * Free Software Foundation, Inc.,
20 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
27 #include "core.h"
28 #include "arm_io.h"
29 #include <helper/binarybuffer.h>
30 #include <target/arm.h>
31 #include <target/armv7m.h>
32 #include <target/algorithm.h>
34 /**
35 * Copies code to a working area. This will allocate room for the code plus the
36 * additional amount requested if the working area pointer is null.
38 * @param target Pointer to the target to copy code to
39 * @param code Pointer to the code area to be copied
40 * @param code_size Size of the code being copied
41 * @param additional Size of the additional area to be allocated in addition to
42 * code
43 * @param area Pointer to a pointer to a working area to copy code to
44 * @return Success or failure of the operation
46 static int arm_code_to_working_area(struct target *target,
47 const uint32_t *code, unsigned code_size,
48 unsigned additional, struct working_area **area)
50 uint8_t code_buf[code_size];
51 unsigned i;
52 int retval;
53 unsigned size = code_size + additional;
55 /* REVISIT this assumes size doesn't ever change.
56 * That's usually correct; but there are boards with
57 * both large and small page chips, where it won't be...
60 /* make sure we have a working area */
61 if (NULL == *area) {
62 retval = target_alloc_working_area(target, size, area);
63 if (retval != ERROR_OK) {
64 LOG_DEBUG("%s: no %d byte buffer", __func__, (int) size);
65 return ERROR_NAND_NO_BUFFER;
69 /* buffer code in target endianness */
70 for (i = 0; i < code_size / 4; i++)
71 target_buffer_set_u32(target, code_buf + i * 4, code[i]);
73 /* copy code to work area */
74 retval = target_write_memory(target, (*area)->address,
75 4, code_size / 4, code_buf);
77 return retval;
80 /**
81 * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
82 * For now this supports ARMv4,ARMv5 and ARMv7-M cores.
84 * Enhancements to target_run_algorithm() could enable:
85 * - ARMv6 and ARMv7 cores in ARM mode
87 * Different code fragments could handle:
88 * - 16-bit wide data (needs different setup)
90 * @param nand Pointer to the arm_nand_data struct that defines the I/O
91 * @param data Pointer to the data to be copied to flash
92 * @param size Size of the data being copied
93 * @return Success or failure of the operation
95 int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
97 struct target *target = nand->target;
98 struct arm_algorithm armv4_5_algo;
99 struct armv7m_algorithm armv7m_algo;
100 void *arm_algo;
101 struct arm *arm = target->arch_info;
102 struct reg_param reg_params[3];
103 uint32_t target_buf;
104 uint32_t exit_var = 0;
105 int retval;
107 /* Inputs:
108 * r0 NAND data address (byte wide)
109 * r1 buffer address
110 * r2 buffer length
112 static const uint32_t code_armv4_5[] = {
113 0xe4d13001, /* s: ldrb r3, [r1], #1 */
114 0xe5c03000, /* strb r3, [r0] */
115 0xe2522001, /* subs r2, r2, #1 */
116 0x1afffffb, /* bne s */
118 /* exit: ARMv4 needs hardware breakpoint */
119 0xe1200070, /* e: bkpt #0 */
122 /* Inputs:
123 * r0 NAND data address (byte wide)
124 * r1 buffer address
125 * r2 buffer length
127 * see contrib/loaders/flash/armv7m_io.s for src
129 static const uint32_t code_armv7m[] = {
130 0x3b01f811,
131 0x3a017003,
132 0xaffaf47f,
133 0xbf00be00,
136 int target_code_size = 0;
137 const uint32_t *target_code_src = NULL;
139 /* set up algorithm */
140 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
141 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
142 armv7m_algo.core_mode = ARM_MODE_THREAD;
143 arm_algo = &armv7m_algo;
144 target_code_size = sizeof(code_armv7m);
145 target_code_src = code_armv7m;
146 } else {
147 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
148 armv4_5_algo.core_mode = ARM_MODE_SVC;
149 armv4_5_algo.core_state = ARM_STATE_ARM;
150 arm_algo = &armv4_5_algo;
151 target_code_size = sizeof(code_armv4_5);
152 target_code_src = code_armv4_5;
155 if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
156 retval = arm_code_to_working_area(target, target_code_src, target_code_size,
157 nand->chunk_size, &nand->copy_area);
158 if (retval != ERROR_OK)
159 return retval;
162 nand->op = ARM_NAND_WRITE;
164 /* copy data to work area */
165 target_buf = nand->copy_area->address + target_code_size;
166 retval = target_write_buffer(target, target_buf, size, data);
167 if (retval != ERROR_OK)
168 return retval;
170 /* set up parameters */
171 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
172 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
173 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
175 buf_set_u32(reg_params[0].value, 0, 32, nand->data);
176 buf_set_u32(reg_params[1].value, 0, 32, target_buf);
177 buf_set_u32(reg_params[2].value, 0, 32, size);
179 /* armv4 must exit using a hardware breakpoint */
180 if (arm->is_armv4)
181 exit_var = nand->copy_area->address + target_code_size - 4;
183 /* use alg to write data from work area to NAND chip */
184 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
185 nand->copy_area->address, exit_var, 1000, arm_algo);
186 if (retval != ERROR_OK)
187 LOG_ERROR("error executing hosted NAND write");
189 destroy_reg_param(&reg_params[0]);
190 destroy_reg_param(&reg_params[1]);
191 destroy_reg_param(&reg_params[2]);
193 return retval;
197 * Uses an on-chip algorithm for an ARM device to read from a NAND device and
198 * store the data into the host machine's memory.
200 * @param nand Pointer to the arm_nand_data struct that defines the I/O
201 * @param data Pointer to the data buffer to store the read data
202 * @param size Amount of data to be stored to the buffer.
203 * @return Success or failure of the operation
205 int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
207 struct target *target = nand->target;
208 struct arm_algorithm armv4_5_algo;
209 struct armv7m_algorithm armv7m_algo;
210 void *arm_algo;
211 struct arm *arm = target->arch_info;
212 struct reg_param reg_params[3];
213 uint32_t target_buf;
214 uint32_t exit_var = 0;
215 int retval;
217 /* Inputs:
218 * r0 buffer address
219 * r1 NAND data address (byte wide)
220 * r2 buffer length
222 static const uint32_t code_armv4_5[] = {
223 0xe5d13000, /* s: ldrb r3, [r1] */
224 0xe4c03001, /* strb r3, [r0], #1 */
225 0xe2522001, /* subs r2, r2, #1 */
226 0x1afffffb, /* bne s */
228 /* exit: ARMv4 needs hardware breakpoint */
229 0xe1200070, /* e: bkpt #0 */
232 /* Inputs:
233 * r0 buffer address
234 * r1 NAND data address (byte wide)
235 * r2 buffer length
237 * see contrib/loaders/flash/armv7m_io.s for src
239 static const uint32_t code_armv7m[] = {
240 0xf800780b,
241 0x3a013b01,
242 0xaffaf47f,
243 0xbf00be00,
246 int target_code_size = 0;
247 const uint32_t *target_code_src = NULL;
249 /* set up algorithm */
250 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
251 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
252 armv7m_algo.core_mode = ARM_MODE_THREAD;
253 arm_algo = &armv7m_algo;
254 target_code_size = sizeof(code_armv7m);
255 target_code_src = code_armv7m;
256 } else {
257 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
258 armv4_5_algo.core_mode = ARM_MODE_SVC;
259 armv4_5_algo.core_state = ARM_STATE_ARM;
260 arm_algo = &armv4_5_algo;
261 target_code_size = sizeof(code_armv4_5);
262 target_code_src = code_armv4_5;
265 /* create the copy area if not yet available */
266 if (nand->op != ARM_NAND_READ || !nand->copy_area) {
267 retval = arm_code_to_working_area(target, target_code_src, target_code_size,
268 nand->chunk_size, &nand->copy_area);
269 if (retval != ERROR_OK)
270 return retval;
273 nand->op = ARM_NAND_READ;
274 target_buf = nand->copy_area->address + target_code_size;
276 /* set up parameters */
277 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
278 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
279 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
281 buf_set_u32(reg_params[0].value, 0, 32, target_buf);
282 buf_set_u32(reg_params[1].value, 0, 32, nand->data);
283 buf_set_u32(reg_params[2].value, 0, 32, size);
285 /* armv4 must exit using a hardware breakpoint */
286 if (arm->is_armv4)
287 exit_var = nand->copy_area->address + target_code_size - 4;
289 /* use alg to write data from NAND chip to work area */
290 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
291 nand->copy_area->address, exit_var, 1000, arm_algo);
292 if (retval != ERROR_OK)
293 LOG_ERROR("error executing hosted NAND read");
295 destroy_reg_param(&reg_params[0]);
296 destroy_reg_param(&reg_params[1]);
297 destroy_reg_param(&reg_params[2]);
299 /* read from work area to the host's memory */
300 retval = target_read_buffer(target, target_buf, size, data);
302 return retval;