fangle

SAM LIDDICOTT

sam@liddicott.com

August 2009

INTRODUCTION 3

Introduction

FANGLE is a tool for fangled literate programming. Newfangled is defined as New and often need-
lessly novel by THEFREEDICTIONARY.COM.

In this case, fangled means yet another not-so-new"” method for literate programming.

LITERATE PROGRAMMING has a long history starting with the great DONALD KNUTH himself,
whose literate programming tools seem to make use of as many escape sequences for semantic
markup as TEX (also by DONALD KNUTH).

NORMAN RAMSEY wrote the NOWEB set of tools (notangle, noweave and noroots) and helpfully
reduced the amount of magic character sequences to pretty much just <<, >> and @, and in doing
so brought the wonders of literate programming within my reach.

While using the IyX editor for INTEX editing I had various troubles with the noweb tools, some
of which were my fault, some of which were noweb’s fault and some of which were IyX’s fault.

NOWEB generally brought literate programming to the masses through removing some of the
complexity of the original literate programming, but this would be of no advantage to me if the
IyX / IMTEX combination brought more complications in their place.

FANGLE was thus born (originally called NEWFANGLE) as an awk replacement for notangle, adding
some important features, like better integration with LyX and IATEX (and later TEXyacg), mul-
tiple output format conversions, and fixing notangle bugs like indentation when using -L for line
numbers.

Significantly, fangle is just one program which replaces various programs in NOWEB. Noweave
is done away with and implemented directly as IATEX macros, and noroots is implemented as a
function of the untangler fangle.

Fangle is written in awk for portability reasons, awk being available for most platforms. A Python
version? was considered for the benefit of LyX but a scheme version for TEXyacg Wwill probably
materialise first; as TEXyacg macro capabilities help make edit-time and format-time rendering of
fangle chunks simple enough for my weak brain.

As an extension to many literate-programming styles, Fangle permits code chunks to take param-
eters and thus operate somewhat like C pre-processor macros, or like C++ templates. Name
parameters (or even local variables in the callers scope) are anticipated, as parameterized chunks
— useful though they are — are hard to comprehend in the literate document.

T. but improved.

2. hasn’t anyone implemented awk in python yet?

4a

10
11
12
13
14
15

16

4 COMPILE-LOG-LYX

License

Fangle is licensed under the GPL 3 (or later).
This doesn’t mean that sources generated by fangle must be licensed under the GPL 3.

This doesn’t mean that you can’t use or distribute fangle with sources of an incompatible license,
but it means you must make the source of fangle available too.

As fangle is currently written in awk, an interpreted language, this should not be too hard.

(gpl3-copyright[1](), lang=text) =

fangle - fully featured notangle replacement in awk
Copyright (C) 2009-2010 Sam Liddicott <sam@liddicott.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Table of contents

Introduction
License

I Using Fangle
1 Introduction to Literate Programming

2 Running Fangle

2.1 Listing roots
2.2 Extracting roots
2.3 Formatting the document

3 Using Fangle with IANTEX

4 Using Fangle with IyX

4.1 Installing the LyX module
4.2 Obtaining a decent mono font
4.2.1 txfonts

4.2.2 ams pmb
4.2.3 Luximono
4.3 Formatting your Lyx document

4.3.1 Customising the listing appearance . .

4.3.2 Global customisations
4.4 Configuring the build script
441 ..

5 Using Fangle with TEXy;acs

6 Fangle with Makefiles

6.1 A word about makefiles formats
6.2 Extracting Sources
6.2.1 Converting from IyX to IMNTEX
6.2.2 Converting from TEXyacs
6.3 Extracting Program Source
6.4 Extracting Source Files
6.5 Extracting Documentation
6.5.1 Formatting TpX
6.5.1.1 Running pdflatex

6.5.2 Formatting TEXyiacs

6.5.3 Building the Documentation as a Whole

6.6 Other helpers
6.7 Boot-strapping the extraction

6.8 Incorporating Makefile.inc into existing projects

Example

IT Source Code

6 TABLE OF CONTENTS

7 Fangle awk source code B35
7.1 AWK tricks o 37
7.2 Catching errors e 87
8 TEXMACS ATES « o o o o e e e e e 38
9 IAMTEX and Istlistings B9
9.1 Additional Istlstings parameters 4t
9.2 Parsing chunk arguments L ar
9.3 Expanding parameters in the text L 43
10 Language Modes & Quoting aa
10.1 Modes to keep code together ar
10.2 Modes affect included chunks ar
10.3 Modes operation ar
10.4 Quoting scenarios 48
10.4.1 Direct quoting 49
10.5 Language Mode Definitions L 49
10.5.1 Backslash b0
10.5.2 Strings oo b1
10.5.3 Parentheses, Braces and Brackets b1
10.5.4 Customizing Standard Modes 52
10.5.5 Comments b3
10.5.6 Regex b3
10.5.7 Perl . o b3
10.5.8 sh . . oo b6
10.5.9 Make o b6
10.6 Some tests b7
10.7 A non-recursive mode tracker b7
10.7.1 Constructor b8
10.7.2 Management b8
10.7.3 Tracker b9
10.7.3.1 One happy chunk 62
10.7.3.2 Tests . . o o o e 62

10.8 Escaping and Quoting 63
11 Recognizing Chunks 65
11.1 Chunk start 65
O) 65
11.1.2 Istlistingso oo 66
11.2 Chunk Body 67
B R) 67
11.2.2 Noweb 68
11.3 Chunk end e 68
11.3.1 Istlistings o 68
11.3.2 moweb 69
11.4 Chunk contents 69
11.4.1 Istlistings oo 70

12 Processing Options 73
13 Generating the Output 75
13.1 Assembling the Chunks 76
13.1.1 Chunk Parts 76

14 Storing Chunks e 81

TABLE OF CONTENTS 7

15 getopt e 83
16 Fangle LaTeX source code 87
16.1 fangle module i
16.1.1 The Chunk style 87
16.1.2 The chunkref style 88
16.2 Latex Macros 88
16.2.1 The chunk command 89
16.2.1.1 Chunk parameters 90

16.2.2 The noweb styled caption 90
16.2.3 The chunk counter 90
16.2.4 Cross references 93
16.2.5 Theend 94
17 Extracting fangle 95
17.1 Extracting from Lyx 95
17.2 Extracting documentation L 95
17.3 Extracting from the command line 96
IIT Tests 97
18 Tests e 99
19 Chunk Parameters 10T
19.1 INX o oo 1ot
19.2 TEXMACS -« « + v v o e e e e e e 1ot

20 Compile-log-lyx e 103

Part 1

Using Fangle

Chapter 1

Introduction to Literate Programming

Todo: Should really follow on from a part-0 explanation of what literate programming is.

11

Chapter 2
Running Fangle

Fangle is a replacement for NOWER, which consists of notangle, noroots and noweave.

Like notangle and noroots, fangle can read multiple named files, or from stdin.

2.1 Listing roots

The -r option causes fangle to behave like noroots.
fangle -r filename.tex
will print out the fangle roots of a tex file.

Unlike the noroots command, the printed roots are not enclosed in angle brackets e.g. <<name>>,
unless at least one of the roots is defined using the notangle notation <<name>>=.

Also, unlike noroots, it prints out all roots — not just those that are not used elsewhere. I find
that a root not being used doesn’t make it particularly top level — and so-called top level roots
could also be included in another root as well.

My convention is that top level roots to be extracted begin with ./ and have the form of a filename.

Makefile.inc, discussed in 16, can automatically extract all such sources prefixed with ./

2.2 Extracting roots

notangle’s -R and -L options are supported.

If you are using IyX or IANTEX, the standard way to extract a file would be:
fangle -R./Makefile.inc fangle.tex > ./Makefile.inc

If you are using TEXyacs, the standard way to extract a file would similarly be:
fangle -R./Makefile.inc fangle.txt > ./Makefile.inc

TEXyiacs users would obtain the text file with a verbatim export from TEXy;acg Which can be done
on the command line with texmacs -s -c fangle.tm fangle.txt -q

Unlike the noroots command, the -L option to generate C pre-preocessor #file style line-number
directives,does not break indenting of the generated file..

Also, thanks to mode tracking (described in 1T) the -L option does not interrupt (and break) multi-
line C macros either.

This does mean that sometimes the compiler might calculate the source line wrongly when gen-
erating error messages in such cases, but there isn’t any other way around if multi-line macros
include other chunks.

Future releases will include a mapping file so that line/character references from the C compiler
can be converted to the correct part of the source document.

2.3 Formatting the document

The noweave replacement built into the editing and formatting environment for TEXyacq LyX
(which uses IMTEX), and even for raw IMTEX.

Use of fangle with TEXyacs, LyX and IATEX are explained the the next few chapters.

13

Chapter 3
Using Fangle with IANTEX

Because the noweave replacement is impemented in IATEX, there is no processing stage required
before running the INTEX command. Of course, INTEX may need running two or more times, so
that the code chunk references can be fully calculated.

The formatting is managed by a set of macros shown in 17, and can be included with:
\usepackage{fangle.sty}

Norman Ramsay’s origial noweb.sty package is currently required as it is used for formatting the
code chunk captions.

The listings.sty package is required, and is used for formatting the code chunks and syntax
highlighting.

The xargs. sty package is also required, and makes writing INTEX macro so much more pleasant.

| To do: Add examples of use of Macros ‘

15

Chapter 4
Using Fangle with InX

LyX uses the same IANTEX macros shown in [17 as part of a LyX module file fangle.module, which
automatically includes the macros in the document pre-amble provided that the fangle IyX module
is used in the document.

4.1 Installing the IyyX module

Copy fangle.module to your LyX layouts directory, which for unix users will be ~/.1lyx/layouts

In order to make the new literate styles availalble, you will need to reconfigure LyX by clicking
Tools->Reconfigure, and then re-start LyX.

4.2 Obtaining a decent mono font

The syntax high-lighting features of LSTLISTINGS makes use of bold; however a mono-space tt font
is used to typeset the listings. Obtaining a bold tt font can be impossibly difficult and amazingly
easy. I spent many hours at it, following complicated instructions from those who had spend many
hours over it, and was finally delivered the simple solution on the lyx mailing list.

4.2.1 txfonts

The simple way was to add this to my preamble:

\usepackage{txfonts}
\renewcommand{\ttdefault}{txtt}

4.2.2 ams pmb

The next simplest way was to use ams poor-mans-bold, by adding this to the pre-amble:

\usepackage{amsbsy}
%\renewcommand{\ttdefault}{txtt}
%somehow make \pmb be the command for bold, forgot how, sorry, above line not work

It works, but looks wretched on the dvi viewer.

4.2.3 Luximono

The Istlistings documention suggests using Luximono.

17

18 Using FANGLE wiTH LyX

Luximono was installed according to the instructions in Ubuntu Forums thread 11591817 with tips
from miknight? stating that sudo updmap --enable MixedMap ul9.map is required. It looks fine
in PDF and PS view but still looks rotten in dvi view.

4.3 Formatting your Lyx document

It is not necessary to base your literate document on any of the original IyX literate classes; so
select a regular class for your document type.

Add the new module Fangle Literate Listings and also Logical Markup which is very useful.
In the drop-down style listbox you should notice a new style defined, called Chunk.

When you wish to insert a literate chunk, you enter it’s plain name in the Chunk style, instead of
the old NOWEB method that uses <<name>>= type tags. In the line (or paragraph) following the
chunk name, you insert a listing with: Insert->Program Listing.

Inside the white listing box you can type (or paste using shift+ctrl+V) your listing. There is no
need to use ctrl+enter at the end of lines as with some older LiyX literate techniques — just press
enter as normal.

4.3.1 Customising the listing appearance

The code is formatted using the LSTLISTINGS package. The chunk style doesn’t just define the
chunk name, but can also define any other chunk options supported by the lstlistings package
\1lstset command. In fact, what you type in the chunk style is raw latex. If you want to set the
chunk language without having to right-click the listing, just add , lanuage=C after the chunk name.
(Currently the language will affect all subsequent listings, so you may need to specify ,language=
quite a lot).

| To do: so fix the bug ‘

Of course you can do this by editing the listings box advanced properties by right-clicking on the
listings box, but that takes longer, and you can’t see at-a-glance what the advanced settings are
while editing the document; also advanced settings apply only to that box — the chunk settings
apply through the rest of the document?.

| To do: So make sure they only apply to chunks of that name |

4.3.2 Global customisations
As Istlistings is used to set the code chunks, it’s \1stset command can be used in the pre-amble
to set some document wide settings.

If your source has many words with long sequences of capital letters, then columns=fullflexible
may be a good idea, or the capital letters will get crowded. (I think Istlistings ought to use a
slightly smaller font for captial letters so that they still fit).

The font family \ttfamily looks more normal for code, but has no bold (an alternate typewriter
font is used).

With \ttfamily, I must also specify columns=fullflexible or the wrong letter spacing is used.

In my IATEX pre-amble I usually specialise my code format with:

1. http://ubuntuforums.org/showthread.php?t=1159181
2. http://miknight.blogspot.com/2005/11 /how-to-install-luxi-mono-font-in.html
3. It ought to apply only to subsequent chunks of the same name. I'll fix that later

19a

© ® N e o s w N e

19b

4.4 CONFIGURING THE BUILD SCRIPT 19

(document-preamble[1](), lang=tex) =

\1lstset{

numbers=left, stepnumber=1, numbersep=5pt,
breaklines=false,
basicstyle=\footnotesize\ttfamily,
numberstyle=\tiny,

language=C,

columns=fullflexible,
numberfirstline=true

}

4.4 Configuring the build script

You can invoke code extraction and building from the LyX menu option Document->Build Pro-
gram.

First, make sure you don’t have a conversion defined for Lyx->Program
From the menu Tools->Preferences, add a conversion from Latex(Plain)->Program as:

set -x ; fangle -Rlyx-build $$i |
env LYX_b=$$b LYX_i=$$i LYX_o=$$o0 LYX_p=$$p LYX_r=$$r bash

(But don’t cut-n-paste it from this document or you may be be pasting a multi-line string which
will break your lyx preferences file).

I hope that one day, Ly X will set these into the environment when calling the build script.
You may also want to consider adding options to this conversion...
parselog=/usr/share/lyx/scripts/listerrors

...but if you do you will lose your stderr?.

Now, a shell script chunk called 1yx-build will be extracted and run whenever you choose the
Document->Build Program menu item.

This document was originally managed using IyX and lyx-build script for this document is shown
here for historical reference.

lyx -e latex fangle.lyx && \
fangle fangle.lyx > ./autoboot

This looks simple enough, but as mentioned, fangle has to be had from somewhere before it can
be extracted.

4.4.1

When the lyx-build chunk is executed, the current directory will be a temporary directory, and
LYX_SOURCE will refer to the tex file in this temporary directory. This is unfortunate as our makefile
wants to run from the project directory where the Lyx file is kept.

We can extract the project directory from $$r, and derive the probable Lyx filename from the
noweb file that Lyx generated.
(lyx-build-helper[1](), lang=sh) = 95b>

PROJECT_DIR="$LYX_r"
LYX_SRC="$PROJECT_DIR/${LYX_i%.tex}.lyx"

4. There is some bash plumbing to get a copy of stderr but this footnote is too small

19b

20a

(lyx-build-helper[1](), lang=sh) = 95b>

TEX_DIR="$LYX_p"
TEX_SRC="$TEX_DIR/$LYX_i"

And then we can define a lyx-build fragment similar to the autoboot fragment
(lyx-build[1](), lang=sh) = 95a>

#! /bin/sh
(1lyx-build-helper [I9B)
cd $PROJECT_DIR || exit 1

#/usr/bin/fangle -filter ./notanglefix-filter \

-R./Makefile.inc "../../noweb-lyx/noweb-1lyx3.lyx" \
| sed ’/NOWEB_SOURCE=/s/=.*/=samba4-dfs.lyx/’ \

> ./Makefile.inc

#

#make -f ./Makefile.inc fangle_sources

ANAANANAAANNNANANNAAAAANANAAAAAAAAAAANAANAAAAAAAAANAAAAAANAAAAAAAAAAAAAANAAAAAAANANAANANAN

Chapter 5
Using Fangle with TEXy;acs

| To do: Write this chapter |

21

23a

23b

1

2

Chapter 6
Fangle with Makefiles

Here we describe a Makefile.inc that you can include in your own Makefiles, or glue as a recursive
make to other projects.

Makefile.inc will cope with extracting all the other source files from this or any specified literate
document and keeping them up to date.

It may also be included by a Makefile or Makefile.am defined in a literate document to automat-
ically deal with the extraction of source files and documents during normal builds.

Thus, if Makefile.inc is included into a main project makefile it add rules for the source files,
capable of extracting the source files from the literate document.

6.1 A word about makefiles formats

Whitespace formatting is very important in a Makefile. The first character of each action line must
be a TAB.

target: pre-requisite
— action
— action

This requires that the literate programming environment have the ability to represent a TAB
character in a way that fangle will generate an actual TAB character.

We also adopt a convention that code chunks whose names beginning with ./ should always be
automatically extracted from the document. Code chunks whose names do not begin with ./ are for
internal reference. Such chunks may be extracted directly, but will not be automatically extracted
by this Makefile.

6.2 Extracting Sources

Our makefile has two parts; variables must be defined before the targets that use them.

As we progress through this chapter, explaining concepts, we will be adding lines to (Makefile.inc-

vars 23b) and (Makefile.inc-targets 24c) which are included in (./Makefile.inc 23a) below.
./Makefile.inc[1](), lang=make) =
Makefile.inc-vars [D23b)
Makefile.inc-default-targets [28a)
Makefile.inc-targets [24d)

(
(
(
(

We first define a placeholder for the tool fangle in case it cannot be found in the path.

(Makefile.inc-vars|[1](), lang=make) = 24ar>

FANGLE=fangle
AWK=awk

23

24a

24b

24c

o o s w N e

24d

10

24 FANGLE WITH MAKEFILES

RUN_FANGLE=$ (AWK) -f $(FANGLE)

We also define a placeholder for LITERATE_SOURCE to hold the name of this document. This will
normally be passed on the command line or set by the including makefile.

(Makefile.inc-vars|2]() 23b, lang=) += <123b R4bv
#LITERATE_SOURCE=

Fangle cannot process LiyX or TEXyacg documents directly, so the first stage is to convert these to
more suitable text based formats’.

6.2.1 Converting from LyX to INTEX

The first stage will always be to convert the IyX file to a INTEX file. Fangle must run on a TEX
file because the IyX command server-goto-file-line? requries that the line number provided
be a line of the TEX file and always maps this the line in the LyX docment. We use server-goto-
file-line when moving the cursor to error lines during compile failures.

The command lyx -e literate fangle.lyx will produce fangle.tex, a TEX file; so we define a
make target to be the same as the IyX file but with the .tex extension.

The EXTRA_DIST is for automake support so that the TEX files will automaticaly be distributed
with the source, to help those who don’t have IyX installed.

(Makefile.inc-vars[3]() 123b, lang=) += AR4a 24dv

LYX_SOURCE=$ (LITERATE_SOURCE) # but only the .lyx files
TEX_SOURCE=$ (LYX_SOURCE: . lyx=.tex)
EXTRA_DIST+=$(TEX_SOURCE)

We then specify that the TEX source is to be generated from the LyX source.

(Makefile.inc-targets|1](), lang=make) = 25a>
.SUFFIXES: .tex .lyx

.lyx.tex:

— lyx -e latex $<

clean_tex:

> rm -f -- $(TEX_SOURCE)

clean: clean_tex

6.2.2 Converting from TEX} acs

Fangle cannot process TEXyacg files directly®, but must first convert them to text files.

The command texmacs -c fangle.tm fangle.txt -q will produce fangle.txt, a text file; so we
define a make target to be the same as the TEXyacg file but with the .txt extension.

The EXTRA_DIST is for automake support so that the TEX files will automaticaly be distributed
with the source, to help those who don’t have IyX installed.

(Makefile.inc-vars[4]() 123b, lang=) += AR4N 25bp>

TEXMACS_SOURCE=$ (LITERATE_SOURCE) # but only the .tm files
TXT_SOURCE=$ (LITERATE_SOURCE: . tm=. txt)
EXTRA_DIST+=$ (TXT_SOURCE)

I. IyX and TEXyacs formats are text-based, but not suitable for fangle
2. The Lyx command server-goto-file-line is used to position the Lyx cursor at the compiler errors.

8. but this is planned when TEXyzcg uses xml as it’s native format

11

14
15
16
17
18

19

6.4 EXTRACTING SOURCE FILEs 25

| To do: Add loop around each $< so multiple targets can be specified |

(Makefile.inc-targets|2]() 124c, lang=) += <24c 25dv
.SUFFIXES: .txt .tm

.tm.txt:

— texmacs -s -c $< $@ -q

.PHONEY: clean_txt

clean_txt:

— rm -f -- $(TXT_SOURCE)

clean: clean_txt

6.3 Extracting Program Source

The program source is extracted using fangle, which is designed to operate on text or a INTEX
documents?.

(Makefile.inc-vars|5]() 123b, lang=) += <124d 25¢cv
FANGLE_SOURCE=$ (TXT_SOURCE)

The literate document can result in any number of source files, but not all of these will be changed
each time the document is updated. We certainly don’t want to update the timestamps of these files
and cause the whole source tree to be recompiled just because the literate explanation was revised.
We use CPIF from the Noweb tools to avoid updating the file if the content has not changed, but
should probably write our own.

However, if a source file is not updated, then the fangle file will always have a newer time-stamp and
the makefile would always re-attempt to extact a newer source file which would be a waste of time.

Because of this, we use a stamp file which is always updated each time the sources are fully
extracted from the INTEX document. If the stamp file is newer than the document, then we can
avoid an attempt to re-extract any of the sources. Because this stamp file is only updated when
extraction is complete, it is safe for the user to interrupt the build-process mid-extraction.

We use echo rather than touch to update the stamp file beause the touch command does not work
very well over an sshfs mount that I was using.

> (Makefile.inc-vars(6]() 123D, lang=) += ARS5H 262>

FANGLE_SOURCE_STAMP=$ (FANGLE_SOURCE) . stamp

(Makefile.inc-targets|3]() 124c, lang=) += AR5a 26>

$ (FANGLE_SQOURCE_STAMP) : $(FANGLE_SOURCE) \

— $ (FANGLE_SOURCES) ; \
— echo -n > $(FANGLE_SOURCE_STAMP)
clean_stamp:

— rm -f $(FANGLE_SOURCE_STAMP)

clean: clean_stamp

6.4 Extracting Source Files

We compute FANGLE_SOURCES to hold the names of all the source files defined in the document.
We compute this only once, by means of := in assignent. The sed deletes the any << and >> which
may surround the roots names (for compatibility with Noweb’s noroots command).

4. IATEX documents are just slightly special text documents

26 FANGLE WITH MAKEFILES

As we use chunk names beginning with ./ to denote top level fragments that should be extracted,
we filter out all fragments that do not begin with ./

Note 1. FANGLE_PREFIX is set to ./ by default, but whatever it may be overridden to, the prefix
is replaced by a literal ./ before extraction so that files will be extracted in the current directory
whatever the prefix. This helps namespace or sub-project prefixes like documents: for chunks like
documents:docbook/intro.xml

| To do: This doesn’t work though, because it loses the full name and doesn’t know what to extact!

26a (Makefile.inc-vars(7]() 123D, lang=) += <125d 26ev

13 FANGLE_PREFIX:=\.\/

14 FANGLE_SOURCES:=$(shell \

15 $ (RUN_FANGLE) -r $(FANGLE_SOURCE) |\

16 sed -e ’s/~[<1[<1//;s/[>1[>1$$//;/~$(FANGLE_PREFIX)/!'d’> \
17 -e ’s/~$(FANGLE_PREFIX)/\.\//’)

The target below, echo_fangle_sources is a helpful debugging target and shows the names of the
files that would be extracted.

26b (Makefile.inc-targets|4]() 1124c, lang=) += <25d 26cv

20 .PHONY: echo_fangle_sources
21 echo_fangle_sources: ; Qecho $(FANGLE_SOURCES)

We define a convenient target called fangle_sources so that make -f fangle_sources will re-
extract the source if the literate document has been updated.

26c (Makefile.inc-targets([5]() 124c, lang=) += AR6D 26dV

22 .PHONY: fangle_sources
23 fangle_sources: $(FANGLE_SOURCE_STAMP)

And also a convenient target to remove extracted sources.
26d (Makefile.inc-targets|6]() N124c, lang=) += AR6c R71>

22 .PHONY: clean_fangle_sources
25 clean_fangle_sources: ; \
26 rm -f -- $(FANGLE_SOURCE_STAMP) $(FANGLE_SOURCES)

We now look at the extraction of the source files.

This makefile macro if _extension takes 4 arguments: the filename $ (1), some extensions to match
$(2) and a shell command to return if the filename does match the exensions $(3), and a shell
command to return if it does not match the extensions $(4).
26e (Makefile.inc-vars(8]() 123b, lang=) += ARG 273>
18 if_extension=$(if $(findstring $(suffix $(1)),$(2)),$(3),$(4))

For some source files like C files, we want to output the line number and filename of the original
IMTEX document from which the source came®.

To make this easier we define the file extensions for which we want to do this.

b. I plan to replace this option with a separate mapping file so as not to pollute the generated source, and also to allow a
code pretty-printing reformatter like indent be able to re-format the file and adjust for changes through comparing the
character streams.

27a

19

27b

20
21

22

27c

23

24

27d

25
26
27
28

29

27e

30
31
32
33

34

27f

27
28

29

27g

30

6.4 EXTRACTING SOURCE FILEs 27

(Makefile.inc-vars|9]() 123b, lang=) += <26e 27bv
C_EXTENSIONS=.c .h

We can then use the if_extensions macro to define a macro which expands out to the -L option
if fangle is being invoked in a C source file, so that C compile errors will refer to the line number
in the TEX document.

(Makefile.inc-vars[10]() 1230, lang=) += ARTA 27cV

TABS=8
nf_line=-L -T$(TABS)
fangle=$ (RUN_FANGLE) $(call if_extension,$(2),$(C_EXTENSIONS),$(nf_line)) -R"$(2)" $(1)

We can use a similar trick to define an indent macro which takes just the filename as an argument
and can return a pipeline stage calling the indent command. Indent can be turned off with make
fangle_sources indent=

(Makefile.inc-vars[11]() 1230, lang=) += ARTH 27dV

indent_options=-npro -kr -i8 -ts8 -sob -180 -ss -ncs
indent=$(call if_extension,$(1),$(C_EXTENSIONS), | indent $(indent_options))

We now define the pattern for extracting a file. The files are written using noweb’s cpif so that
the file timestamp will not be touched if the contents haven’t changed. This avoids the need to
rebuild the entire project because of a typographical change in the documentation, or if none or a
few C source files have changed.

(Makefile.inc-vars[12]() 1230, lang=) += ARTd DTev

fangle_extract=@mkdir -p $(dir $(1)) && \
$(call fangle,$(2),$(1)) > "$(1).tmp" && \
cat "$(1).tmp" $(indent) | cpif "$(1)" \
&& rm -f -- "$(1).tmp" || \
(echo error fangling $(1) from $(2) ; exit 1)

We define a target which will extract or update all sources. To do this we first defined a makefile
template that can do this for any source file in the INTEX document.

(Makefile.inc-vars|[13]() 123D, lang=) += ARTd 28bp>
define FANGLE_template
$(1): $(2)
— $$(call fangle_extract,$(1),$(2))
FANGLE_TARGETS+=$(1)
endef

We then enumerate the discovered FANGLE_SOURCES to generate a makefile rule for each one using
the makefile template we defined above.

(Makefile.inc-targets|7]() 124c, lang=) += <26d 27gv

$(foreach source,$(FANGLE_SOURCES),\
$(eval $(call FANGLE_template,$(source),$(FANGLE_SOURCE))) \
)

These will all be built with FANGLE_SOURCE_STAMP.
We also remove the generated sources on a make distclean.
(Makefile.inc-targets|8]() f124c, lang=) += ARTE 28>

_distclean: clean_fangle_sources

28a

28b

35

28c

31
32
33
34
35
36
37

38

28d

36

28e

39
40
41
42
43
44

45

28 FANGLE WITH MAKEFILES

6.5 Extracting Documentation

We then identify the intermediate stages of the documentation and their build and clean targets.

(Makefile.inc-default-targets|1](), lang=) =

.PHONEY : clean_pdf

6.5.1 Formatting TEpX

6.5.1.1 Running pdflatex

We produce a pdf file from the tex file.

(Makefile.inc-vars|14]() 123D, lang=) += <27e 28dv
FANGLE_PDF+=$ (TEX_SOURCE: . tex=.pdf)

We run pdflatex twice to be sure that the contents and aux files are up to date. We certainly are
required to run pdflatex at least twice if these files do not exist.

(Makefile.inc-targets|9]() 124c, lang=) += <27g 28ev
.SUFFIXES: .tex .pdf

.tex.pdf:

— pdflatex $< && pdflatex $<

clean_pdf_tex:

— rm -f -- $(FANGLE_PDF) $(TEX_SOURCE:.tex=.toc) \
— $ (TEX_SOURCE: . tex=.1log) $(TEX_SOURCE:.tex=.aux)
clean_pdf: clean_pdf_tex

6.5.2 Formatting TEX, acs

TEXyacs can produce a PDF file directly.

(Makefile.inc-vars[15]() 123D, lang=) += AR8H 292>
FANGLE_PDF+=$ (LITERATE_SOURCE: . tm=.pdf)

To do: Outputting the PDF may not be enough to update the links and page references. I think
we need to update twice, generate a pdf, update twice mode and generate a new PDF.

Basically the PDF export of TEXyacg is pretty rotten and doesn’t work properly from the CLI

(Makefile.inc-targets|[10]() 11244, lang=) += AR28d 29b>
.SUFFIXES: .tm .pdf

.tm.pdf:

— texmacs -s -c $< $@ -q

clean_pdf_texmacs:
— rm -f -- $(FANGLE_PDF)
clean_pdf: clean_pdf_texmacs

6.5.3 Building the Documentation as a Whole

Currently we only build pdf as a final format, but FANGLE_DOCS may later hold other output
formats.

29a

37

29b

46
47

48

29c¢

49
50
51
52
53

54

29d
1
2
3
4
5
6
7
8
9

10

6.7 BOOT-STRAPPING THE EXTRACTION 29

(Makefile.inc-vars[16]() 11230, lang=) += <128d
FANGLE_DOCS=$ (FANGLE_PDF)

We also define fangle_docs as a convenient phony target.

(Makefile.inc-targets|11]() 11244, lang=) += <28e 29cv

.PHONY: fangle_docs
fangle_docs: $(FANGLE_DOCS)
docs: fangle_docs

And define a convenient clean_fangle_docs which we add to the regular clean target

(Makefile.inc-targets|[12]() f24d, lang=) += AR9b

.PHONEY: clean_fangle_docs
clean_fangle_docs: clean_tex clean_pdf
clean: clean_fangle_docs

distclean_fangle_docs: clean_tex clean_fangle_docs
distclean: clean distclean_fangle_docs

6.6 Other helpers

If Makefile. inc is included into Makefile, then extracted files can be updated with this command:
make fangle_sources
otherwise, with:

make -f Makefile.inc fangle_sources

6.7 Boot-strapping the extraction

As well as having the makefile extract or update the source files as part of it’s operation, it also
seems convenient to have the makefile re-extracted itself from this document.

It would also be convenient to have the code that extracts the makefile from this document to also
be part of this document, however we have to start somewhere and this unfortunately requires us
to type at least a few words by hand to start things off.

Therefore we will have a minimal root fragment, which, when extracted, can cope with extracting
the rest of the source. This shell script fragment can do that. It’s name is * — out of regard for
NOWEB, but when extracted might better be called autoupdate.

| To do: De-lyxify ‘
(*[1](), lang=sh) =
#! /bin/sh

MAKE_SRC="${1:-${NW_LYX:-../../noweb-1lyx/noweb-lyx3.1lyx}}"
MAKE_SRC=‘dirname "$MAKE_SRC"‘/‘basename "$MAKE_SRC" .lyx‘
NOWEB_SRC="${2: -${NOWEB_SRC: -$MAKE_SRC.1lyx}}"

lyx -e latex $MAKE_SRC

fangle -R./Makefile.inc ${MAKE_SRC}.tex \
| sed "/FANGLE_SOURCE=/s/~/#/;T;aNOWEB_SOURCE=$FANGLE_SRC" \
| cpif ./Makefile.inc

29d

11

12

30a

30b

30c

(*[1](), lang=sh) =

make -f ./Makefile.inc fangle_sources

The general Makefile can be invoked with ./autoboot and can also be included into any automake
file to automatically re-generate the source files.

The autoboot can be extracted with this command:

lyx -e latex fangle.lyx && \
fangle fangle.lyx > ./autoboot

This looks simple enough, but as mentioned, fangle has to be had from somewhere before it can
be extracted.

On a unix system this will extract fangle.module and the fangle awk script, and run some basic
tests.

| To do: cross-ref to test chapter when it is a chapter all on its own

6.8 Incorporating Makefile.inc into existing projects

If you are writing a literate module of an existing non-literate program you may find it easier to
use a slight recursive make instead of directly including Makefile.inc in the projects makefile.

This way there is less chance of definitions in Makefile.inc interfering with definitions in the main
makefile, or with definitions in other Makefile.inc from other literate modules of the same project.

To do this we add some glue to the project makefile that invokes Makefile.inc in the right way.
The glue works by adding a .PHONY target to call the recursive make, and adding this target as an
additional pre-requisite to the existing targets.

Example Sub-module of existing system

In this example, we are building module.so as a literate module of a larger project.

We will show the sort glue that can be inserted into the projects Makefile — or more likely — a
regular Makefile included in or invoked by the projects Makefile.

(makefile-glue[1](), lang=) = 30bv

module_srcdir=modules/module
MODULE_SOURCE=module.tm
MODULE_STAMP=$ (MODULE_SOURCE) . stamp

The existing build system may already have a build target for module.o, but we just add another
pre-requisite to that. In this case we use module.tm.stamp as a pre-requisite, the stamp file’s
modified time indicating when all sources were extracted®.

(makefile-glue[2]() 130a, lang=make) += AB0A B0cv
$(module_srcdir)/module.o: $(module_srcdir)/$(MODULE_STAMP)

The target for this new pre-requisite will be generated by a recursive make using Makefile.inc
which will make sure that the source is up to date, before it is built by the main projects makefile.

(makefile-glue[3]() 130a, lang=) += ABOb BTa>
$ (module_srcdir)/$(MODULE_STAMP) : $(module_srcdir)/$(MODULE_SOURCE)
— $(MAKE) -C $(module_srcdir) -f Makefile.inc fangle_sources LITERATE_SOURCE=$(MODULE_SOURCE)

6. If the projects build system does not know how to build the module from the extracted sources, then just add build
actions here as normal.

6.8 INCORPORATING MAKEFILE.INC INTO EXISTING PROJECTS 31

We can do similar glue for the docs, clean and distclean targets. In this example the main prject
was using a double colon for these targets, so we must use the same in our glue.

3la (makefile-glue[4]() 130a, lang=) += <B0c

7 docs:: docs_module

s .PHONY: docs_module

9 docs_module:

10 > $(MAKE) -C $(module_srcdir) -f Makefile.inc docs LITERATE_SOURCE=$ (MODULE_SOURCE)
11

12 clean:: clean_module

13 .PHONEY: clean_module

14 clean_module:

15 > $(MAKE) -C $(module_srcdir) -f Makefile.inc clean LITERATE_SOURCE=$(MODULE_SOURCE)
16

17 distclean:: distclean_module

18 .PHONY: distclean_module

19 distclean_module:

20 $(MAKE) -C $(module_srcdir) -f Makefile.inc distclean LITERATE_SOURCE=$(MODULE_SOURCE)

We could do similarly for install targets to install the generated docs.

Part 11

Source Code

Chapter 7
Fangle Makefile

We use the copyright notice from chapter 2, and the Makefile.inc from chapter

35a (./Makefile[1](), lang=make) =

1 # (gpl3-copyright #&a)
3 (make-fix-make-shell B5c)
s LITERATE_SOURCE=fangle.tm

7 all: fangle_sources
8 include Makefile.inc

10 fangle: test

11

12 .PHONEY: test

13 test: fangle.txt

14 $(RUN_FANGLE) -R"test:*" fangle.txt > test.sh
15 > bash test.sh ; echo pass $$7

35

37a

37b

o o o~ w

37c

10
11
12
13
14
15
16
17

18

37d

37e

1

2

Chapter 8

Fangle awk source code

We use the copyright notice from chapter 2.

(./fangle[1](), lang=awk) = 87bY

#! /usr/bin/awk -f
(gpl3-copyright Ha)

We also use code from ARNOLD ROBBINS public domain getopt (1993 revision) defined in 85a, and
naturally want to attribute this appropriately.

(./fangle[2]() 13Ta, lang=) += AB7d BTcv

NOTE: Arnold Robbins public domain getopt for awk is also used:
(getopt.awk-header B3a)
(getopt.awk-getopt () 183c)

And include the following chunks (which are explained further on) to make up the program:

(./fangle[3]() 137a, lang=) += A3TH AZa>

(helper-functions B38d)
(mode-tracker ©&2b)
(parse_chunk_args @4a)
(chunk-storage-functions &1b)
(output_chunk_names() [75d)
(output_chunks() [75e)
(write_chunk() [76a)
(expand_chunk_args() @4b)

(begin [73d)
(recognize-chunk Bba)
(end [75c)

8.1 AWK tricks

The portable way to erase an array in awk is to split the empty string, so we define a fangle macro
that can split an array, like this:

(awk-delete-array[1](ARRAY), lang=awk) =
split("", (ARRAY));

For debugging it is sometimes convenient to be able to dump the contents of an array to stderr,
and so this macro is also useful.
(dump-array[1](ARRAY), lang—awk) =

print "\nDump: (ARRAY)\n-------- \n" > "/dev/stderr";
for (_x in (ARRAY)) {

37

37e

3
4

5

38¢

11

13

14

38d

1

(dump-array[1](ARRAY), lang=awk) =

print _x "=" (ARRAY)[_x] "\n" > "/dev/stderr";
}

print "========\n" > "/dev/stderr";

8.2 Catching errors

Fatal errors are issued with the error function:

(error()[1](), lang=awk) = 38bv

function error(message)

{
print "ERROR: " FILENAME ":" FNR " " message > "/dev/stderr";
exit 1;

}

VA %0 2 Y 4 Y Ve e Vo Vo Vi Vi Vo VI Vo Vi Vi Vo Vi Vo Ve Vo Ve Vo Vi Vi Vo Vo Vo Vo Ve Vi Vi Vo Vi Vo Ve Vo Ve VI VI Vo Vo Vo Ve Vo Vi Vo Vi V2 Vi V2 Vo Vo Vi Vo Vi Vo Vo Vo Vo VA Vi Ve Vi Ve Vo Va Ve VA Ve VAN
and likewise for non-fatal warnings:

(error()[2]() 1384, lang—awk) += ABBal B8cv

function warning(message)

{
print "WARNING: " FILENAME ":" FNR " " message > "/dev/stderr";
warnings++;

}

VA A YA YA A YAV Ve Vo Vo Vo VA VaVA VA VA Vo VA VA VA Vi VA VA VA VA VA VA VA VA VA VA VA Vo VA VA Vo Vo Vo Vo VAV Vo Va VA VA VA Vo Vo Vi Vo VAV VA VA VA VA VA VA Vo Ve VA VA VAV VAV VA VA VA VA VA VAVAN
and debug output too:
(error()[3]() 71384, lang—awk) += AB8b

function debug_log(message)
{

print "DEBUG: " FILENAME ":" FNR " " message > "/dev/stderr";
}

| To do: append=helper-functions

(helper-functions[1](), lang=) =

(error() B38a)

Chapter 9
TEX)acs Args

TEXyacs functions with arguments®™ appear like this:

SEp. argument 3 term.
argument 1 gum¢

blah(I came, I saw, I conquered “K, andthen went homeasd ~k)

arguments

Arguments commence after the opening parenthesis. The first argument runs up till the next k.

If the following character is a , then another argument follows. If the next character after the ,
is a space character, then it is also eaten. The fangle stylesheet emits “K , space as separators, but
the fangle untangler will forgive a missing space.

If the following character is) then this is a terminator and there are no more arguments.

39a (constants[1](), lang=) = STa>

1 ARG_SEPARATOR=sprintf ("%c", 11);

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

To process the text in this fashion, we split the string on -k

39b (get chunk args[1](), lang=) =

1 function get_texmacs_chunk_args(text, args, a, done) {

2 split(text, args, ARG_SEPARATOR);

3

4 done=0

5 for (a=1; (a in args); a++) if (a>1) {

6 if (args[a] == "" || substr(args[al, 1, 1) == ")") done=1;

7 if (done) {

8 delete argsl[a];

9 break;

10 }

11

12 if (substr(argsl[al, 1, 2) == ", ") args[al=substr(args[al, 3);
13 else if (substr(args[al, 1, 1) == ",") args[al=substr(args[al, 2);
14 ¥

15}

T. or function declarations with parameters

39

Chapter 10
IAMTEX and lIstlistings

| To do: Split LyX and TeXmacs parts |

For LyX and IATEX, the 1stlistings package is used to format the lines of code chunks. You may
recal from chapter XXX that arguments to a chunk definition are pure INTEX code. This means
that fangle needs to be able to parse INTEX a little.

IAMTEX arguments to 1stlistings macros are a comma seperated list of key-value pairs, and values
containing commas are enclosed in { braces } (which is to be expected for INTEX).

A sample expressions is:

name=thomas, params={a, b}, something, something-else
but we see that this is just a simpler form of this expression:
name=freddie, foo={bar=baz, quux={quirk, a=fleeg}l}, etc

We may consider that we need a function that can parse such INTEX expressions and assign the
values to an AWK associated array, perhaps using a recursive parser into a multi-dimensional
hash™ resulting in:

key value
a[name] freddie
a[foo, bar] baz
a[foo, quux, quirk]

a[foo, quux, aj fleeg
aletc]

Yet, also, on reflection it seems that sometimes such nesting is not desirable, as the braces are also
used to delimit values that contain commas — we may consider that

name={williamson, freddie}
should assign williamson, freddie to name.

In fact we are not so interested in the detail so as to be bothered by this, which turns out to be a
good thing for two reasons. Firstly TEX has a malleable parser with no strict syntax, and secondly
whether or not williamson and freddie should count as two items will be context dependant
anyway.

We need to parse this latex for only one reason; which is that we are extending lstlistings to add
some additional arguments which will be used to express chunk parameters and other chunk
options.

10.1 Additional Istlstings parameters

Further on we define a \Chunk IATEX macro whose arguments will consist of a the chunk name,
optionally followed by a comma and then a comma separated list of arguments. In fact we will
just need to prefix name= to the arguments to in order to create valid lstlistings arguments.

T. as AWK doesn’t have nested-hash support

41

42a

19

42b

s W N e

42¢

© ® N o

10
11
12
13
14

15

42d

42 LATEX AND LSTLISTINGS

There will be other arguments supported too;

params.
As an extension to many literate-programming styles, fangle permits code chunks to take
parameters and thus operate somewhat like C pre-processor macros, or like C++ templates.
Chunk parameters are declared with a chunk argument called params, which holds a semi-
colon separated list of parameters, like this:

achunk, language=C,params=name;address

addto.
a named chunk that this chunk is to be included into. This saves the effort of having to
declare another listing of the named chunk merely to include this one.

Function get chunk args() will accept two paramters, text being the text to parse, and values
being an array to receive the parsed values as described above. The optional parameter path is
used during recursion to build up the multi-dimensional array path.

(./fangle[4]() 137a, lang=) += <BTc
(get_chunk_args() @2B)

(get chunk args()[1](), lang=) = A2cv

function get_tex_chunk_args(text, values,
optional parameters
path, # hierarchical precursors
local vars
a, name)

The strategy is to parse the name, and then look for a value. If the value begins with a brace {,
then we recurse and consume as much of the text as necessary, returning the remaining text when
we encounter a leading close-brace }. This being the strategy — and executed in a loop — we
realise that we must first look for the closing brace (perhaps preceded by white space) in order to
terminate the recursion, and returning remaining text.

(get chunk args()[2]() f42b, lang=) += AA2D
{
split("", values);
while(length(text)) {
if (match(text, "~ *}(.*%)", a)) {
return al[1];
}
(parse-chunk-args 42d)
}
return text;
}

We can see that the text could be inspected with this regex:

(parse-chunk-args|1](), lang=) = A3ar>
if (! match(text, " *([",=]*[",= 1) *(([,=1) *C(([,}]*) *,x x(.*x)) 8", a)) {

return text;

}

and that a will have the following values:

a[n] | assigned text

freddie

=freddie, foo={bar=Dbaz, quux={quirk, a=fleeg}}, etc

freddie

1

2

3 =

4 | freddie, foo={bar=Dbaz, quux={quirk, a=fleeg}}, etc
)

6

, foo={bar=baz, quux={quirk, a=fleeg}}, etc

43a

© @ N o o B

11
12
13
14

15

43b

© ©® N o o s w N e

43c

o s W N e

10.2 PARSING CHUNK ARGUMENTS 43

a[3] will be either = or , and signify whether the option named in a[1] has a value or not
(respectively).

If the option does have a value, then if the expression substr(a[4],1,1) returns a brace { it will
signify that we need to recurse:

(parse-chunk-args[2]() 1142d, lang=) += <@42d

name=al[1];
if (a[3] == "=") {
if (substr(al[4],1,1) == "{") {
text = get_tex_chunk_args(substr(al[4],2), values, path name SUBSEP);
} else {
values[path namel=al[5];
text = al[6];
}
} else {
values[path name]l="";
text = a[2];
}

We can test this function like this:

(gca-test.awk[1](), lang=) =

(get_chunk_args() #20)
BEGIN {
SUBSEP=".";

print get_tex_chunk_args("name=freddie, foo={bar=baz, quux={quirk, a=fleeg}}, etc", a);
for (b in a) {
print "a[" b "] => " a[bl;
}
}

which should give this output:

(gca-test.awk-results|1](), lang=) =

al[foo.quux.quirk] =>
alfoo.quux.al => fleeg
a[foo.bar] => baz
aletc] =>

a[name] => freddie

10.2 Parsing chunk arguments

Arguments to paramterized chunks are expressed in round brackets as a comma separated list of
optional arguments. For example, a chunk that is defined with:

\Chunk{achunk, params=name ; address}

could be invoked as:

\chunkref{achunk} (John Jones, jones@example.com)

An argument list may be as simple as in \chunkref{pull}(thing, otherthing) or as complex as:
\chunkref{pull}(things[x, y], get_other_things(a, "(all)"))

— which for all it’s commas and quotes and parenthesis represents only two parameters: things [x,
y] and get_other_things(a, "(all)").

If we simply split parameter list on commas, then the comma in things[x,y] would split into two
seperate arguments: things[x and y]— neither of which make sense on their own.

44a

© @ N o o s w N e

11

12

44b

© @ N o o s W N e

44 LATEX AND LSTLISTINGS

One way to prevent this would be by refusing to split text between matching delimiters, such as
[,1, (,), {, } and most likely also ", " and ’, *>. Of course this also makes it impossible to pass
such mis-matched code fragments as parameters, but I think that it would be hard for readers to
cope with authors who would pass such code unbalanced fragments as chunk parameters?2.

Unfortunately, the full set of matching delimiters may vary from language to language. In certain
C++ template contexts, < and > would count as delimiters, and yet in other contexts they would
not.

This puts me in the unfortunate position of having to parse-somewhat all programming languages
without knowing what they are!

However, if this universal mode-tracking is possible, then parsing the arguments would be trivial.
Such a mode tracker is described in chapter 11 and used here with simplicity.

(parse chunk args[1](), lang=) =

function parse_chunk_args(1anguage, text, values, mode,
local vars
c, context, rest)

(new-mode-tracker(context, language, mode) 58b)

rest = mode_tracker(context, text, values);

extract values

for(c=1; c <= context[0, "values"]; c++) {
values[c] = context[0, "values", c];

}

return rest;

10.3 Expanding parameters in the text

Within the body of the chunk, the parameters are referred to with: ${name} and ${address}.
There is a strong case that a INTEX style notation should be used, like \param{name} which would
be expressed in the listing as =<\param{name}> and be rendered as (name). Such notation would
make me go blind, but I do intend to adopt it.

We therefore need a function expand_chunk_args which will take a block of text, a list of permitted
parameters, and the arguments which must substitute for the parameters.

Here we split the text on ${ which means that all parts except the first will begin with a parameter
name which will be terminated by }. The split function will consume the literal ${ in each case.

(expand chunk args()[1](), lang=) =

function expand_chunk_args(text, params, args,
p, text_array, next_text, v, t, 1)
{
if (split(text, text_array, "\\${™)) {
(substitute-chunk-args #ba)
}

return text;

}

First, we produce an associative array of substitution values indexed by parameter names. This
will serve as a cache, allowing us to look up the replacement values as we extract each name.

2. T know that I couldn’t cope with users doing such things, and although the GPL3 license prevents me from actually
forbidding anyone from trying, if they want it to work they’ll have to write the code themselves and not expect any support
from me.

45a

45b

45¢

45d

T B S R RN

10.3 EXPANDING PARAMETERS IN THE TEXT 45

(substitute-chunk-args[1|(), lang=) = 45bv

for(p in params) {
v[params [p]]=args[p];
}

We accumulate substituted text in the variable text. As the first part of the split function is the
part before the delimiter — which is ${ in our case — this part will never contain a parameter
reference, so we assign this directly to the result kept in $text.

(substitute-chunk-args|2|() ¥5a, lang=) += AAHE A5CV

text=text_array[1];

We then iterate over the remaining values in the array, and substitute each reference for it’s
argument.

(substitute-chunk-args[3|() 1@5a, lang=) += AABD

for(t=2; t in text_array; t++) {
(substitute-chunk-arg @5d)
}

After the split on ${ a valid parameter reference will consist of valid parameter name terminated
by a close-brace }. A valid character name begins with the underscore or a letter, and may contain
letters, digits or underscores.

A valid looking reference that is not actually the name of a parameter will be and not substituted.
This is good because there is nothing to substitute anyway, and it avoids clashes when writing
code for languages where ${. ..} is a valid construct — such constructs will not be interfered with
unless the parameter name also matches.

(substitute-chunk-arg[1](), lang=) =

if (match(text_arrayl[t]l, "~([a-zA-Z_][a-zA-Z0-9_1%)}", 1) &&

1[1] in v)
{
text = text v[1[1]] substr(text_array[t], length(1[1])+2);
} else {
text = text "${" text_arrayl[t];

}

47a

47b

Chapter 11
Language Modes & Quoting

1stlistings and fangle both recognize source languages, and perform some basic parsing and
syntax highlighting in the rendered document!. 1stlistings can detect strings and comments
within a language definition and perform suitable rendering, such as italics for comments, and
visible-spaces within strings.

Fangle similarly can recognize strings, and comments, etc, within a language, so that any chunks
included with \chunkref{a-chunk} or (a-chunk 7) can be suitably escape or quoted.

11.1 Modes explanation

As an example, the C language has a few parse modes, which affect the interpretation of characters.

One parse mode is the string mode. The string mode is commenced by an un-escaped quotation
mark " and terminated by the same. Within the string mode, only one additional mode can be
commenced, it is the backslash mode \, which is always terminated by the following character.

Another mode is [which is terminated by a] (unless it occurs in a string).

Consider this fragment of C code:

1. (mode
2. [mode 3. (mode
~ = —
do_something| things [x,y] , get_other_things(a,"(all)")

4. " mode

Mode nesting prevents the close parenthesis in the quoted string (part 4) from terminating the
parenthesis mode (part 3).

Each language has a set of modes, the default mode being the null mode. Each mode can lead to
other modes.

11.2 Modes affect included chunks

For instance, consider this chunk with language=perl:

(test:example-perl|1](), lang=perl) =
print "hello world $0\n";

If it were included in a chunk with language=sh, like this:

(test:example-sh[1](), lang=sh) =

perl -e "(test:example-perl H&7a)"

I. although Istlisting supports many more languages

47

48a

48b

48¢c

48d

48e

48 LANGUAGE MobDEs & QUOTING

we might want fangle would to generate output like this:

(test:example-sh.result[1](), lang=sh) =

perl -e "print \"hello world \$0\\n\";"

See that the double quote ", back-slash \ and $ have been quoted with a back-slash to protect
them from shell interpretation.

If that were then included in a chunk with language=make, like this:

(test:example-makefile[1](), lang=make) =

target: pre-req
— (test:example-sh H7b)

We would need the output to look like this — note the $$ as the single $ has been makefile-quoted
with another $.

(test:example-makefile.result[1](), lang=make) =

target: pre-req
— perl -e "print \"hello world \$$0\\n\";"

11.3 Language Mode Definitions

In order to make this work, we must define a mode-tracker supporting each language, that can
detect the various quoting modes, and provide a transformation that may be applied to any
included text so that included text will be interpreted correctly after any interpolation that it may
be subject to at run-time.

For example, the sed transformation for text to be inserted into shell double-quoted strings would
be something like:

s/\\/\\\\/g;s/8/\\$/g;s/"/\\"/g;

which would protect \ $§ "

All modes definitions are stored in a single multi-dimensional hash called modes:
modes [language, mode, properties]

The first index is the language, and the second index is the mode. The third indexes hold properties
such as terminators, possible submodes, transformations, and so forth.

(xmode:set-terminators|1](language, mode, terminators), lang=) =

modes ["(language)", "(mode)", "terminators"]="(terminators)";

(xmode:set-submodes[1](language, mode, submodes), lang=) =

modes ["(language)", "(mode)", "submodes"]="(submodes)";

A useful set of mode definitions for a nameless general C-type language is shown here.

Don’t be confused by the double backslash escaping needed in awk. One set of escaping is for the
string, and the second set of escaping is for the regex.

To do: TODO: Add =<\mode{}> command which will allow us to signify that a string is
regex and thus fangle will quote it for us.

Sub-modes are identified by a backslash, a double or single quote, various bracket styles or a /*
comment; specifically: \ " > { ([/*

49a

49b

49¢c

© @ N o o s w N e

10
11
12
13
14
15
16

17

49d

11.3 LaNnGUAGE MoDE DEFINITIONS 49

For each of these sub-modes modes we must also identify at a mode terminator, and any sub-modes
or delimiters that may be entered?.

(common-mode-definitions|1](language), lang=) = 49bv
modes [(language), "", "submodes"I="\\\\I\"[’[{I\\CI\\[";

In the default mode, a comma surrounded by un-important white space is a delimiter of language
items®. Delimiters are used so that fangle can parse and recognise arguments individually.

(common-mode-definitions|2|(language) 149a, lang=) += AA9a 49dv

modes [(language), "", "delimiters"]=" %, *";

and should pass this test:| To do: Why do the tests run in ?(? mode and not ?? mode |

(test:mode-definitions|1](), lang=) = 50g>

parse_chunk_args("c-like", "1,2,3", a, "");
if (a[1] !'= "1") e++;

if (a[2] = "2") e++;

if (a[3] !'= "3") e++;

if (length(a) != 3) e++;
(pca-test.awk:summary 62d)

parse_chunk_args("c-like", "joe, red", a, "");
if (a[1] !'= "joe") e++;
if (a[2] !'= "red") e++;
if (length(a) != 2) e++;

(pca-test.awk:summary 62d)

parse_chunk_args("c-like", "${colour}", a, "");
if (a[1] !'= "${colour}") e++;

if (length(a) != 1) e++;

(pca-test.awk:summary 62d)

11.3.1 Backslash

The backslash mode has no submodes or delimiters, and is terminated by any character. Note
that we are not so much interested in evaluating or interpolating content as we are in delineating
content. It is no matter that a double backslash (\\) may represent a single backslash while a
backslash-newline may represent white space, but it does matter that the newline in a backslash
newline should not be able to terminate a C pre-processor statement; and so the newline will be
consumed by the backslash terminator however it may uultimately be interpreted.

(common-mode-definitions|3]|(language) 1149a, lang=) += AA9D BOf>

modes [(language), "\\", "terminators"]=".";

11.3.2 Strings

Common languages support two kinds of strings quoting, double quotes and single quotes.

In a string we have one special mode, which is the backslash. This may escape an embedded quote
and prevent us thinking that it should terminate the string.

2. Because we are using the sub-mode characters as the mode identifier it means we can’t currently have a mode character
dependant on it’s context; i.e. { can’t behave differently when it is inside [.

3. whatever a language item might be

50b

50d

50f

18
19
20
21

22

50 LANGUAGE MobDEs & QUOTING

(mode:common-string|1](language, quote), lang=) = 50bv

modes [(language), (quote), "submodes"]="\\\\";

Otherwise, the string will be terminated by the same character that commenced it.

(mode:common-string|2|(language, quote) 1604, lang=) += AB0a BOcv

modes [(language), (quote), "terminators"]=(quote);

In C type languages, certain escape sequences exist in strings. We need to define mechanism to
enclode any chunks included in this mode using those escape sequences. These are expressed in
two parts, s meaning search, and r meaning replace.

The first substitution is to replace a backslash with a double backslash. We do this first as other
substitutions may introduce a backslash which we would not then want to escape again here.

Note: Backslashes need double-escaping in the search pattern but not in the replacement string,
hence we are replacing a literal \ with a literal \\.

> (mode:common-string|3|(language, quote) 1604, lang=) += AB50b 50dv

escapes[(language), (quote), ++escapes[(language), (quote)], "s"I="\\\\";
escapes[(language), (quote), escapes[(language), (quote)], "r"l1="\\\\";

If the quote character occurs in the text, it should be preceded by a backslash, otherwise it would
terminate the string unexpectedly.

(mode:common-string|[4|(language, quote) 1604, lang=) += Ab0d blev

escapes[(language), (quote), ++escapesl[(language), (quote)l, "s"l=(quote);
escapes[(language), (quote), escapes[(language), (quote)], "r"I="\\" (quote);

Any newlines in the string, must be replaced by \n.
(mode:common-string|5|(language, quote) 1504, lang=) += AB0d

escapes[(language), (quote), ++escapes[(language), (quote)], "s"]="\n";
escapes[(language), (quote), escapes[(language), (quote)]l, "r"]J="\\n";

For the common modes, we define this string handling for double and single quotes.

(common-mode-definitions[4](language) 1149a, lang=) += <49d B1br>

(mode : common-string({anguage} "\"") bOa)
(mode : common-string({anguage} "’") B0a)

Working strings should pass this test:

(test:mode-definitions|2|() 496, lang=) += <A9¢ 57h>
parse_chunk_args("c-like", "say \"I said, \\\"Hello, how are you\\\".\", for me", a, "");

if (a[1] !'= "say \"I said, \\\"Hello, how are youl\\\".\"") e++;

if (al[2] !'= "for me") e++;

if (length(a) != 2) e++;
(pca-test.awk:summary 62d)

11.3.3 Parentheses, Braces and Brackets

Where quotes are closed by the same character, parentheses, brackets and braces are closed by an
alternate character.

11.3 LaNnGUAGE MoDE DEFINITIONS 51

5la (mode:common-brackets|1](language, open, close), lang=) =

1 modes[(language), (open), "submodes" J="\\\\I\"I{INNCINNLI?1/*";
> modes[(language), (open), "delimiters"]=" %, *";
3 modes[(language), (open), "terminators"l]=(close);

Note that the open is NOT a regex but the «close token IS.
| To do: When we can quote regex we won’t have to put the slashes in here ‘

51b (common-mode-definitions|5](language) 1149a, lang=) += <B0f
6 (mode:common-brackets({anguage) "{", "}") bla)
7 (mode:common-brackets({anguage) "[", "\\]1") BIa)
s (mode:common-brackets({anguage) "(", "\\)") bIa)

11.3.4 Customizing Standard Modes

5lc (mode:add-submode[1](language, mode, submode), lang=) =

1 modes[(language), (mode), "submodes"] = modes[(language), (mode), "submodes"] "|" (submode);

51d (mode:add-escapes|1|(language, mode, search, replace), lang=) =

1 escapes([(language), (mode), ++escapes[(language), (mode)], "s"l=(search);
2 escapes[(language), (mode), escapes[(language), (mode)l, "r"l=(replace);

11.3.5 Comments

We can define /* comment */ style comments and //comment style comments to be added to any
language:

5le (mode:multi-line-comments|1](language), lang=) =

1 (mode:add-submode({anguage} "", "/\\x") BIc)
2 modes[(language), "/*", "terminators"]="*/";

51f (mode:single-line-slash-comments|1](language), lang=) =

1 (mode:add-submode({anguage) "", "//") EIc)
> modes[(language), "//", "terminators"]="\n";
s (mode:add-escapes({anguage} "//", "\n", "\n//") 5Id)

We can also define # comment style comments (as used in awk and shell scripts) in a similar manner.

| To do: I’'m having to use # for hash and “extbackslash{} for and have hacky work-arounds in the parser for now ‘

51g (mode:add-hash-comments|1|(language), lang=) =

1 (mode:add-submode({anguage) "", "#") BId)
> modes[(language), "#", "terminators"]="\n";
3 (mode:add-escapes({anguage} "#", "\n", "\n#") BId)

In C, the # denotes pre-processor directives which can be multi-line

51h (mode:add-hash-defines|[1|(language), lang=) =

1 (mode:add-submode({anguage) "", "#") EId)
2 modes[(language), "#", "submodes" J="\\\\";
s modes[(language), "#", "terminators"]="\n";

51h

4

52a

1

2

52b

52¢

52g

1

(mode:add-hash-defines|1|(language), lang=) =

(mode:add-escapes({anguage) "#", "\n", "\\\\\n") B5Id)

(mode:quote-dollar-escape[1](language, quote), lang=) =

escapes[(language), (quote), ++escapes[(language), (quote)], "s"I="\\$";
escapes[(language), (quote), escapes[(language), (quote)], "r"I="\\$";

We can add these definitions to various languages

(mode-definitions[1](), lang=) = 53ar>

(common-mode-definitions("c-1like") @9a)

(common-mode-definitions("c") &9a)
(mode:multi-line-comments("c") BId)
(mode:single-line-slash-comments("c") BIT)
(mode:add-hash-defines("c") b1h)
(common-mode-definitions("awk") A9a)
(mode:add-hash-comments ("awk") BIg)

(mode : add-naked-regex ("awk") b2g)

The awk definitions should allow a comment block like this:

(test:comment-quote[1](), lang=awk) =

Comment: (test:comment-text E2d)

(test:comment-text[1](), lang=) =

Now is the time for
the quick brown fox to bring lemonade
to the party

to come out like this:

(test:comment-quote:result[1](), lang=) =

Comment: Now is the time for
#the quick brown fox to bring lemonade
#to the party

The C definition for such a block should have it come out like this:

(test:comment-quote:C-result[1](), lang=) =

Comment: Now is the time for\
the quick brown fox to bring lemonade\
to the party

11.3.6 Regex

This pattern is incomplete, but meant to detect naked regular expressions in awk and perl; e.g.
/.*$/, however required capabilities are not present.

Current it only detects regexes anchored with ~ as used in fangle.

For full regex support, modes need to be named not after their starting character, but some other
more fully qualified name.

(mode:add-naked-regex|1|(language), lang=) =
(mode:add-submode ({anguage) "", "/\\~") EIc)

52g

11
12

13

53b

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

(mode:add-naked-regex|1|(language), lang=) =

modes [(language), "/~", "terminators"]="/";

11.3.7 Perl

(mode-definitions|2|() 152b, lang=) += <152b b3bv

(common-mode-definitions("perl") @9a)
(mode:multi-line-comments("perl") BIe)
(mode : add-hash-comments ("perl") [Ig)

Still need to add add s/, submode /, terminate both with //. This is likely to be impossible as
perl regexes can contain perl.

11.3.8 sh

Shell single-quote strings are different to other strings and have no escape characters. The only
special character is the single quote > which always closes the string. Therefore we cannot use
(common-mode-definitions("sh") 49a) but we will invoke most of it’s definition apart from single-
quote strings.

(mode-definitions[3]|() fi52b, lang=awk) += Ab3a baar>
modes["sh", "", "submodes"I="\\\\I\"I’[{INNCINNTINAS\N(";
modes["sh", "\\", "terminators"]=".";

modes["sh", "\"", "submodes"]="\\\\I\\$\\(";
modes["sh", "\"", "terminators"]="\"";
escapes[“sh“) ||\||||) ++escapes[||sh“) ||\||||] s lls“]:“\\\\“;

escapes["sh", "\"", escapes["sh", "\""], "r"J="\\\\";
escapes["sh", "\"", ++escapes["sh", "\""], "s"]="\"";
escapes["sh", "\"", escapes["sh", "\""], "r"]="\\" "\"";
escapes["sh", "\"", ++escapes["sh", "\""], "s"]="\n";
escapes["sh", "\"", escapes["sh", "\""], "r"]="\\n";
modes["sh", "’", "terminators"]="’";

escapes["sh", "’", ++escapes["sh", "’"], "s"]="’";
escapes["sh", "’", escapes["sh", "’"], "r"]="2\\’>" "o,
(mode : common-brackets("sh", "$(", "\\)") BIa)
(mode:add-tunnel("sh", "$(", "") B3c)

(mode: common-brackets("sh", "{", "}") bIa)
(mode : common-brackets("sh", "[", "\\]") bIa)
(mode : common-brackets("sh", "(", "\\)") bIa)
(mode : add-hash-comments ("sh") plg)
(mode:quote-dollar-escape("sh", "\"") b2a)

The definition of add-tunnel is:

> (mode:add-tunnel|1|(language, mode, tunnel), lang=) =

escapes[(language), (mode), ++escapes[(language), (mode)], "tunnel"]l=(tunnel);

11.3.9 Make
BUGS: makefile tab mode is terminated by newline, but chunks never end in a newline! So tab
mode is never closed unless there is a trailing blank line!

For makefiles, we currently recognize 2 modes: the null mode and — mode, which is tabbed
mode and contains the makefile recipie.

54a

36

54b

37
38

39

©® N o o s w N e

@ N e o s W N e

54 LANGUAGE MobDEs & QUOTING

(mode-definitions[4|() fi52b, lang=awk) += <1563b b4bv

modes ["make", "", '"submodes"]="+> ",

In the null mode the only escape is $ which must be converted to $$, and hash-style comments.
POSIX requires that line-continuations extend hash-style comments and so fangle-style transforma-
tions to replicate the hash at the start of each line is not strictly required, however it is harmless,
easier to read, and required by some implementations of make which do not implement POSIX
requirements correctly.

(mode-definitions[5|() fi52h, lang=awk) += Ab4a 55d>
escapes[“make”) n ll) ++escapes[||make“) n ll] s lls”]=||\\$|| ;
escapes[“make”) n ll) escapes[“make”) n ll] s llr||]=||$$ll;

mode : add-hash-comments ("make")
g

Tabbed mode is harder to manage, as the GNU Make Manual says in the section on splitting lines®.
There is no obvious way to escape a multi-line text that occurs as part of a makefile recipe.

Traditionally, if the newline’s in the shell script all occur at points of top-level shell syntax, then

we could replace them with ;\n— and largely get the right effect.
> (test:make:1[1](), lang=make) = 54d (test:make:1-inc|1](target), lang=sh) =

all 1 if test "(target)" = "all"

— echo making 2 then echo yes, all

— (test:make:1-inc($0) b4d) 3 else echo "(target)" | sed -e ’/~\//{
4 p;s/~/../
5 ¥’
6 fi

The two chunks above could reasonably produce something like this:

(test:make:1.result.bad[1](), lang=make) =

all:

— echo making

— if test "$@" = "all" ;\

— then echo yes, all ;\

— else echo "$@" | sed -e ’/~\//{ ;\

— p;s/~/../ 5\
— N

|—>

fi

However ;\ is not a proper continuation inside a multi-line sed script. There is no simple continu-
ation that fangle could use — and in any case it would depend on what type of quote marks were
used in the bash that contained the sed.

We would prefer to use a more intuitive single backslash at the end of the line, giving these results.

(test:make:1.result[1](), lang=make) =

echo making
if test "$$e@" = "all"\
then echo yes, all\
else echo "$$@" | sed -e ’/~\//{\
p;s/~/../\
A

11111l ie

4. http://www.gnu.org/s/hello/manual /make/Splitting-Lines.html

11.3 LaNnGUAGE MoDE DEFINITIONS 55

The difficulty lies in the way that make handles the recipe. Each line of the recipe is invoked as a
separate shell command (using $ (SHELL) -c) unless the last character of the line was a backslash.
In such a case, the backslash and the newline and the nextline are handed to the shell (although
the tab character that prefixes the next line is stripped).

This behaviour makes it impossible to hand a newline character to the shell unless it is prefixed
by a backslash. If an included shell fragment contained strings with literal newline characters then
there would be no easy way to escape these and preserve the value of the string.

A different style of makefile construction might be used — the recipe could be stored in a target
specific variable® which contains the recipe with a more normal escape mechanism.

A better solution is to use a shell helper that strips the back-slash which precedes the newline
character and then passes the arguments to the normal shell.

Because this is a simple operation and because bash is so flexible, this can be managed in a single
line within the makefile itself.

As a newline will only exist when preceded by the backslash, and as the purpose of the backash is
to protect th newline, that is needed is to remove any backslash that is followed by a newline.

Bash is capable of doing this with its pattern substitution. If A=123:=456:=789 then ${A//:=/=}
will be 123=456=789. We don’t want to just perform the substitution in a single variable but in
fact in all of $@°, however bash will repeat substitution over all members of an array, so this is
done automatically.

In bash, $2\012’ represents the newline character (expressed as an octal escape sequence), so this
expression will replace backslash-newline with a single newline.

(fix-requote-newline[1](), lang=sh) =
"${e//\\$°\012°/$°\012’}"

We use this as part of a larger statement which will invoke such a transformed command ine
using any particular shell. The trailing -- prevents any options in the command line from being
interpreted as options to our bash command — instead they will be transformed and passed to the
inner shell which is invoked with exec so that our fixup-shell does not hang around longer than is
needed.

(fix-make-shell[1](shell), lang=sh) =

bash -c ’exec (shell) (fix-requote-newline BBa)’ --

We can then cinlude a line like this in our makefiles. We should rather pass $ (SHELL) as the chunk
argument than bash, but currently fangle will not track which nested-inclusion level the argument
comes from and will quote the $ in $ (SHELL) in the same way it quotes a $ that may occur in the
bash script, so this would come out as $$(SHELL) and have the wrong effect.

> (make-fix-make-shell[1](), lang=) =

SHELL:=(fix-make-shell(bash) B5H)

The full escaped and quoted text with $(SHELL) and suitale for inclusion in a Makefile is:
SHELL:=bash -c ’exec $(SHELL) "$${@//\\$$°\"’\012°\""/$$>\""\012°\""}"? —-
Based on this, we just need to escape newlines (in tabbed mode) with a regular backslash:

Note that terminators applies to literal, not included text, escapes apply to included, not lit-
eral text; also that the tab character is hard-wired into the pattern, and that the make variable
.RECIPEPREFIX might change this to something else.

5. http://www.gnu.org/s/hello/manual /make/Target _002dspecific.html

55e

55d

40
41

42

o o s w N e

@ N e o s W N e

56¢

1

(test:make:1.result-actual[1](), lang=make) =

(mode-definitions|[6]() 152D, lang=awk) += <54b
modes ["make", "— ", "terminators"]="\\n";

escapes["make", "~ ", ++escapes["make", "> "1, "s"1="\\n";

escapes["make", "— ", escapes["make", "— "1, "r"1="\\\n— "

With this improved quoting, the test on b4c will actually produce this:

> (test:make:1.result-actual[1](), lang=make) =

echo making

if test "$$e@" = "all"\
then echo yes, all\
else echo not all\
fi

111lie

The chunk argument $@ has been quoted (which would have been fine if we were passing the name
of a shell variable), and the other shell lines are (harmlessly) indented by 1 space as part of fangle
indent-matching which should have taken into account the expanded tab size, and should generally
take into account the expanded prefix of the line whose indent it is trying to match, but which in
this case we want to have no effect at all!

To do: The $@ was passed from a make fragment. In what cases should it be converted to $$Q?
Do we need to track the language of sources of arguments?

A more ugly work-around until this problem can be solved would be to use this notation:

(test:make:2[1](), lang=make) =

all:
— echo making
— ARG="$@"; (test:make:1-inc($ARG) B4d)

which produces this output which is more useful (because it works):

(test:make:2.result[1](), lang=make) =

all:

— echo making

— ARG="$@"; if test "$$ARG" = "all"\

— then echo yes, all\

— else echo "$$ARG" | sed -e ’/~\//{\

— p;s/~/../\
— P\

— fi

11.4 Quoting scenarios

11.4.1 Direct quoting

He we give examples of various quoting scenarios and discuss what the expected outcome might
be and how this could be obtained.

(test:q:1[1](), lang=sh) =

echo "$((test:q:1-inc BEA))"

57a

23
24
25
26
27
28

29

57c

30
31
32
33

34

11.5 SOME TESTS 57

(test:q:1-inc[1](), lang=sh) =

echo "hello"

Should this examples produce echo "$(echo "hello")" or echo "$(echo \"hello\")" ?
This depends on what the author intended, but we must provde a way to express that intent.

We might argue that as both chunks have lang=sh the intent must have been to quote the included
chunk — but consider that this might be shell script that writes shell script.

If (test:q:1-inc B56d) had lang=text then it certainly would have been right to quote it, which
leads us to ask: in what ways can we reduce quoting if lang of the included chunk is compatible
with the lang of the including chunk?

If we take a completely nested approach then even though $(mode might do no quoting of it’s
own, " mode will still do it’s own quoting. We need a model where the nested $(mode will prevent
" from quoting.

This leads rise to the tunneling feature. In bash, the $(gives rise to a new top-level parsing scenario,
so we need to enter the null mode, and also ignore any quoting and then undo-this when the $(
mode is terminated by the corresponding close).

We shall say that tunneling is when a mode in a language ignores other modes in the same language
and arrives back at an earlier null mode of the same language.

In example (test:q:1 56d) above, the nesting of modes is: null, ", $(

When mode $(is commenced, the stack of nest modes will be traversed. If the null mode can be
found in the same language, without the language varying, then a tunnel will be established so that
the intervening modes, " in this case, can be skipped when the modes are enumerated to quote the
texted being emitted.

In such a case, the correct result would be:

(test:q:1.result[1](), lang=sh) =
echo "$(echo "hello")"

11.5 Some tests

Also, the parser must return any spare text at the end that has not been processed due to a mode
terminator being found.

(test:mode-definitions|3|() 496, lang=) += <p0g b7cv
rest = parse_chunk_args("c-like", "1, 2, 3) spare", a, "(");
if (al1] '= 1) e++;

if (a[2] '= 2) et++;

if (al3] !'= 3) e++;

if (length(a) != 3) e++;
if (rest != " spare") et+;
(pca-test.awk:summary 62d)

We must also be able to parse the example given earlier.

(test:mode-definitions|4]|() 1496, lang=) += AB7h

parse_chunk_args("c-like", "things[x, y], get_other_things(a, \"(all)\"), 99", a, "(");
if (al1] !'= "things([x, yl") e++;

if (a[2] !'= "get_other_things(a, \"(all)\")") e++;

if (a[3] !'= "99") e++;

if (length(a) != 3) e++;

35

58a

s W N e

58c
1
2
3
4
5
6
7
8
9

10
11
12

13

58 LANGUAGE MobDEs & QUOTING

(pca-test.awk:summary 62d)

11.6 A non-recursive mode tracker

As each chunk is output a new mode tracker for that language is initialized in it’s normal state.
As text is output for that chunk the output mode is tracked. When a new chunk is included, a
transformation appropriate to that mode is selected and pushed onto a stack of transformations.
Any text to be output is passed through this stack of transformations.

It remains to consider if the chunk-include function should return it’s generated text so that
the caller can apply any transformations (and formatting), or if it should apply the stack of
transformations itself.

Note that the transformed included text should have the property of not being able to change the
mode in the current chunk.

| To do: Note chunk parameters should probably also be transformed |

11.6.1 Constructor

The mode tracker holds its state in a stack based on a numerically indexed hash. This function,
when passed an empty hash, will intialize it.

(new mode tracker()[1](), lang=) =

function new_mode_tracker(context, language, mode) {
context[""] = 0;
context [0, "language"] = language;
context [0, "mode"] = mode;

}

Awk functions cannot return an array, but arrays are passed by reference. Because of this we must
create the array first and pass it in, so we have a fangle macro to do this:

(new-mode-tracker|1](context, language, mode), lang—awk) =

(awk-delete-array(éontext) B7d)
new_mode_tracker ({context), (language), (mode));

11.6.2 Management

And for tracking modes, we dispatch to a mode-tracker action based on the current language

(mode _tracker[1](), lang=awk) = 58dv

function push_mode_tracker(context, language, mode,
local vars
top)
{
if (! ("" in context)) {
(new-mode-tracker (context, language, mode) 58D)

return;
} else {
top = context[""];
if (context[top, "language"] == language && mode=="") mode = context[top, "mode"];
if (context[top, "language"] == language && context[top, "mode"] == mode) return top - 1;

old_top = top;
top+t+;

58e

14
15
16
17
18

19

20
21
22
23
24
25
26
27
28

29

30
31

32

33
34
35
36
37

38

59¢

(mode _tracker[3]() f158¢, lang=) += A58d 63a>

context[top, "language"] = language;
context[top, "mode"] = mode;
context[""] = top;

}

return old_top;
}
ANAANNAAANANAANAANAANAANAAANAANAANAANAANAANAAAAANAN
(mode _tracker|2]() fi58¢, lang=) += AB83 h8eV

function dump_mode_tracker (context,
c, d)
{
for(c=0; c <= context[""]; c++) {
printf(" %2d %s:%s\n", c, context[c, "language"l, context[c, "mode"]) > "/dev/stderr";
for(d=1; ((c, "values", d) in context); d++) {

printf (" %2d %s\n", d, context[c, "values", d]) > "/dev/stderr";
)
}
}
AAA
(mode _tracker[3]() fi58¢, lang=) += AB8d 63ar>
function pop_mode_tracker(context, context_origin)
{
if ((context_origin) && ("" in context) && context[""] != (l+context_origin) && context[""] !=
context_origin) {
print "Context level: " context[""] ", origin: " context_origin "\n" > "/dev/stderr"
return O;
}

context[""] = context_origin;
return 1;

}

VA %0 2 Y 4 Y Ve e Vo Vo Vi Vi Vo VI Vo Vi Vi Vo Vi Vo Ve Vo Ve Vo Vi Vi Vo Vo Vo Vo Ve Vi Vi Vo Vi Vo Ve Vo Ve VI VI Vo Vo Vo Ve Vo Vi Vo Vi V2 Vi V2 Vo Vo Vi Vo Vi Vo Vo Vo Vo VA Vi Ve Vi Ve Vo Va Ve VA Ve VAN
This implies that any chunk must be syntactically whole; for instance, this is fine:
(test:whole-chunk|[1](), lang=) =

if (1 Ao
(test:say-hello E9IH)
}

(test:say-hello[1](), lang=) =

print "hello";

But this is not fine; the chunk (test:hidden-else E9d) is not properly cromulent.
(test:partial-chunk[1](), lang=) =

if (1) {
(test:hidden-else B9d)
}

(test:hidden-else[1](), lang=) =

print "I’m fine";
} else {
print "I’m not";

These tests will check for correct behaviour:

(test:cromulencel[1](), lang=) =

echo Cromulence test
passtest $FANGLE -Rtest:whole-chunk $TXT_SRC &>/dev/null || (echo "Whole chunk failed" && exit 1)

60a

10

60b

10
11

12

60c

13

60d

11

60e

12

60 LANGUAGE MobDEs & QUOTING

failtest $FANGLE -Rtest:partial-chunk $TXT_SRC &>/dev/null || (echo "Partial chunk failed" && exit 1
)

11.6.3 Tracker

We must avoid recursion as a language construct because we intend to employ mode-tracking
to track language mode of emitted code, and the code is emitted from a function which is itself
recursive, so instead we implement psuedo-recursion using our own stack based on a hash.

(mode _tracker()[1](), lang=awk) = 60ar>

function mode_tracker(context, text, values,
optional parameters
local vars
mode, submodes, language,
cindex, c, a, part, item, name, result, new_values, new_mode,
delimiters, terminators)

We could be re-commencing with a valid context, so we need to setup the state according to the
last context.

(mode _tracker()[2]() 11598, lang=) += <b9f 160dvV

cindex = context[""] + 0;
mode = context[cindex, "mode"];
language = context[cindex, "language"];

First we construct a single large regex combining the possible sub-modes for the current mode
along with the terminators for the current mode.

(parse chunk args-reset-modes[1](), lang=) = 60cv

submodes=modes [language, mode, "submodes"];

if ((language, mode, "delimiters") in modes) {
delimiters = modes[language, mode, "delimiters"];
if (length(submodes)>0) submodes = submodes "|";
submodes=submodes delimiters;

} else delimiters="";

if ((language, mode, "terminators") in modes) {
terminators = modes[language, mode, "terminators"];
if (length(submodes)>0) submodes = submodes "|";
submodes=submodes terminators;

} else terminators="";

ANAANANAAANNNANANNAAAAANANAAAAAAAAAAANAANAAAAAAAAANAAAAAANAAAAAAAAAAAAAANAAAAAAANANAANANAN

If we don’t find anything to match on — probably because the language is not supported — then
we return the entire text without matching anything.

(parse chunk args-reset-modes|2]() 60B, lang=) += ABOD

if (! length(submodes)) return text;

(mode _tracker()[3]() 11598, lang=) += ABOa 60evV

(parse_chunk_args-reset-modes 60b)

We then iterate the text (until there is none left) looking for sub-modes or terminators in the regex.

(mode _tracker()[4]() 1598, lang=) += AB0d 60tV
while((cindex >= 0) && length(text)) {

13

60f

14

15

16

17

11.6 A NON-RECURSIVE MODE TRACKER 61

if (match(text, "(" submodes ")", a)) {

A bug that creeps in regularly during development is bad regexes of zero length which result in an
infinite loop (as no text is consumed), so I catch that right away with this test.

(mode _tracker()[5]() 11598, lang=) += ABOd 6Ta>
if (RLENGTH<1) {

error (sprintf ("Internal error, matched zero length submode, should be impossible - likely

regex computation error\n" \

}

"Language=%s\nmode=%s\nmatch=/s\n", language, mode, submodes));

part is

defined as the text up to the sub-mode or terminator, and this is appended to item —

which is the current text being gathered. If a mode has a delimiter, then item is reset each time
a delimiter is found.

item item

"hello, there", he said.
~ ——

item

item

6la (mode tracker()[6]() 1598, lang=) += <160f 61bVv

18

19

part = substr(text, 1, RSTART -1);
item = item part;

We must now determine what was matched. If it was a terminator, then we must restore the
previous mode.

61b (mode tracker()[7]() 1598, lang=) += ABTd 61cv

20
21
22
23
24
25
26
27
28
29
30
31

32

if (match(al[1], """ terminators "$")) {
#printf ("%2d EXIT MODE [%s] by [%s] [%s]l\n", cindex, mode, al[1], text) > "/dev/stderr"

}

context[cindex, "values", ++context[cindex, "values"]] = item;
delete context[cindex];
context[""] = --cindex;
if (cindex>=0) {
mode = context[cindex, "mode"];
language = context[cindex, "language"];
(parse_chunk_args-reset-modes [BOb)
}
item = item a[1];
text = substr(text, 1 + length(part) + length(al1]));

ANAANANAAANNNANANNAAAAANANAAAAAAAAAAANAANAAAAAAAAANAAAAAANAAAAAAAAAAAAAANAAAAAAANANAANANAN

If a delimiter was matched, then we must store the current item in the parsed values array, and
reset the item.

6lc (mode tracker()[8]() 1598, lang=) += ABTD 61dV

33
34
35
36
37
38
39
40

41

else if (match(a[1], "~" delimiters "$")) {

}

if (cindex==0) {
context[cindex, "values", ++context[cindex, "values"]] = item;
item = "";

} else {
item = item a[1];

}

text = substr(text, 1 + length(part) + length(al[1l));

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

otherwise, if a new submode is detected (all submodes have terminators), we must create a nested
parse context until we find the terminator for this mode.

61d (mode_tracker()[9]() HB9E, lang=) += ABTd 62ap>

42

else if ((language, al[l], "terminators") in modes) {

43
44
45
46
47
48
49
50
51
52

53

54
55

56

62a

57
58
59
60
61
62
63
64
65
66
67

68

62b

62c

1
2
3
4
5
6

62d

1

62 LANGUAGE MobDEs & QUOTING

#check if new_mode is defined
item = item a[1];
#printf ("%2d ENTER MODE [%s] in [%s]\n", cindex, al[1], text) > "/dev/stderr"
text = substr(text, 1 + length(part) + length(al[1l));
context[""] = ++cindex;
context[cindex, "mode"] = alll;
context [cindex, "language"] = language;
mode = a[1];
(parse_chunk_args-reset-modes 60b)
} else {
error (sprintf ("Submode ’%s’ set unknown mode in text: %s\nLanguage %s Mode %s\n", a[l], text,
language, mode));
text = substr(text, 1 + length(part) + length(al1]));
}
}

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

In the final case, we parsed to the end of the string. If the string was entire, then we should have
no nested mode context, but if the string was just a fragment we may have a mode context which
must be preserved for the next fragment. Todo: Consideration ought to be given if sub-mode strings
are split over two fragments.

(mode _tracker()[10]() 1591, lang=) += <61d
else {
context[cindex, "values", ++context[cindex, "values"]] = item text;
text = "";
item = "";
}
}

context["item"] = item;

if (length(item)) context[cindex, "values", ++context[cindex, "values"]] = item;
return text;

11.6.3.1 One happy chunk

All the mode tracker chunks are referred to here:

(mode-tracker|[1](), lang=) =

(new_mode_tracker() [E8a)
(mode_tracker() BK9f)

11.6.3.2 Tests

We can test this function like this:

(pca-test.awk(1](), lang=awk) =

(error() B38a)
(mode-tracker [62b)
(parse_chunk_args() 1)
BEGIN {
SUBSEP=".";
(mode-definitions B2b)

(test:mode-definitions M9c)
}

(pca-test.awk:summary[1](), lang=awk) =

if (e) {

11.7 EscAPING AND QUOTING 63

2 printf "Failed " e
3 for (b in a) {
. print "a[" b "] => " a[b];
5 }
6 } else {
7 print "Passed"
s }
9 split("", a);
10 e=0;
which should give this output:
62e (pca-test.awk-results[1](), lang=) =
1 alfoo.quux.quirk] =>
2 al[foo.quux.a] => fleeg
3 al[foo.bar] => baz
s+ aletc] =>
s a[name] => freddie
11.7 Escaping and Quoting
For the time being and to get around TEXyjacg inability to export a TAB character, the right arrow
— whose UTF-8 sequence is ...
| To do: complete ‘
Another special character is used, the left-arrow <~ with UTF-8 sequence 0xE2 0x86 0xA4 is used
to strip any preceding white space as a way of un-tabbing and removing indent that has been
applied — this is important for bash here documents, and the like. It’s a filthy hack.
| To do: remove the hack |
63a (mode tracker[4|() i8¢, lang=) += <I58e 63bv
39 function untab(text) {
40 gsub (" [[:space:]]*\xE2\x86\xA4","", text);
41 return text;
2 }
VA %0 2 Y 4 Y Ve e Vo Vo Vi Vi Vo VI Vo Vi Vi Vo Vi Vo Ve Vo Ve Vo Vi Vi Vo Vo Vo Vo Ve Vi Vi Vo Vi Vo Ve Vo Ve VI VI Vo Vo Vo Ve Vo Vi Vo Vi V2 Vi V2 Vo Vo Vi Vo Vi Vo Vo Vo Vo VA Vi Ve Vi Ve Vo Va Ve VA Ve VAN
Each nested mode can optionally define a set of transforms to be applied to any text that is included
from another language.
This code can perform transforms from index ¢ downwards.
63b (mode tracker|5|() fi58¢, lang=awk) += A63a b8a>

43

function transform_escape(context, text, top,
c, ¢cp, ¢cpl, s, r)
{
for(c = top; ¢ >= 0; c--) {
if ((context[c, "language"], context[c, "mode"]) in escapes) {
cpl = escapes[context[c, "language"], context[c, "mode"]];
for (cp = 1; cp <= cpl; cp ++) {
s = escapes[context[c, "language"], context[c, "mode"], cp, "s"];
r = escapes[context[c, "language"l, context[c, "mode"], cp, "r"l;
if (length(s)) {
gsub(s, r, text);
}
if ((context[c, "language"], context[c, "mode"], cp, "t") in escapes) {
quotes[src, "t"] = escapes[context[c, "language"], context[c, "mode"], cp, "t"I;

64 LANGUAGE MobDEs & QUOTING

57 }

58 }

59 }

60 }

61 return text;

62 }

63 function dump_escaper(quotes, r, cc) {
64 for(cc=1; cc<=c; cc++) {

65 printf("%2d s[¥%s] rl%sl\n", cc, quotes[cc, "s"], quotesl[cc, "r"]) > "/dev/stderr"
66 }

67

AAA
63c (test:escapes|1](), lang=sh) =

1 echo escapes test
> passtest $FANGLE -Rtest:comment-quote $TXT_SRC &>/dev/null || (echo "Comment-quote failed" && exit 1
)

@ N e o s w N e

Chapter 12
Recognizing Chunks

Fangle recognizes noweb chunks, but as we also want better INTEX integration we will recognize
any of these:

e notangle chunks matching the pattern ~<<.*?>>=

e chunks beginning with \begin{lstlistings}, possibly with \Chunk{...} on the previous
line

e an older form I have used, beginning with \begin{Chunk} [options] — also more suitable
for plain IATEX users”.

12.1 Chunk start

The variable chunking is used to signify that we are processing a code chunk and not document.
In such a state, input lines will be assigned to the current chunk; otherwise they are ignored.

We don’t handle TEXyacg files natively yet, but rather instead emit unicode character sequences
to mark up the text-export file which we do process.

These hacks detect the unicode character sequences and retro-fit in the old TEX parsing.

We convert — into a tab character.

(recognize-chunk[1](), lang=) = B5hV
#/\n/ {

gsub("\n*x$","");

gsub("\n", " ");

#}

#===

/\xE2\x86\xA6/ {
gsub ("\\xE2\\x86\\xA6", "\x09");
}

TEXyiacs back-tick handling is obscure, and a cut-n-paste back-tick from a shell window comes out
as a unicode sequence? that is fixed-up here.

(recognize-chunk|2|() 1653, lang=) += A65d 66ar>

/\xE2\x80\x98/ {

. Is there such a thing as plain INTEX?
2. that won’t export to html, except as a NULL character (literal 0x00)

65

65b

-

1

12

66a

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

66b

31
32
33
34
35
36

37

66¢

38
39

40

(recognize-chunk|2|() 1165a, lang=) += A65a 66ar>

gsub ("\\xE2\\x80\\x98", "‘");
}

In the TEXyacg output, the start of a chunk will appear like this:
5b<example-chunk “K [1] (argl, "K arg2-K “K), lang=C> =

We detect the the start of a TEXyacg chunk by detecting the = symbol which occurs near the end
of the line. We obtain the chunk name, the chunk parameters, and the chunk language.

(recognize-chunk|3]() 1653, lang=) += <165b 66bV

/\xE2\x89\xA1/ {

if (match($0, "~ *([~[J* [D<([~[J#\\[[0-91+\\1[(D (.*) [D].*, lang=([~ J*)>", line)) {
next_chunk_name=line[2];
get_texmacs_chunk_args(line[3], next_chunk_params) ;
gsub (ARG_SEPARATOR ",? 7", ";", line[3]);
params = "params=" line[3];
if ((linel41)) {

params = params ",language=" line[4]

}
get_tex_chunk_args(params, next_chunk_opts);
new_chunk(next_chunk_name, next_chunk_opts, next_chunk_params);
texmacs_chunking = 1;

} else {
warning(sprintf ("Unexpected chunk match: %s\n", $_))

}

next;

}

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

12.1.2 Istlistings

Our current scheme is to recognize the new lstlisting chunks, but these may be preceded by
a \Chunk command which in LyX is a more convenient way to pass the chunk name to the
\begin{lstlistings} command, and a more visible way to specify other lstset settings.

The arguments to the \Chunk command are a name, and then a comma-seperated list of key-value
pairs after the manner of \1stset. (In fact within the IATEX \Chunk macro (section 17.2.1) the
text name= is prefixed to the argument which is then literally passed to \1lstset).

(recognize-chunk[4]() 11654, lang=awk) += ABGaA 66cV

/~\\Chunk{/ {
if (match($0, "~\\\\Chunk{ *([~ ,}]1*),?(.*)}", line)) {
next_chunk_name = line[1];
get_tex_chunk_args(line[2], next_chunk_opts);
}
next;

}

We also make a basic attempt to parse the name out of the \1stlistings [name=chunk-name] text,
otherwise we fall back to the name found in the previous chunk command. This attempt is very
basic and doesn’t support commas or spaces or square brackets as part of the chunkname. We also
recognize \begin{Chunk} which is convenient for some users®.

(recognize-chunk|[5]() fi65al, lang=) += ABGD 67a>

/~\\begin{lstlisting}|~\\begin{Chunk}/ {
if (match($0, "}.x[[,] *name= *{? *([~], }I*)", line)) {
new_chunk(line[1]);

3. but not yet supported in the INTEX macros

66¢

41
42
43
44
45

46

67a

47
48
49
50
51
52
53
54
55

56

67b

57

67c

58
59
60
61
62
63

64

67d

65
66

67

(recognize-chunk|5|() 1165a, lang=) += A66b 67a>

} else {
new_chunk (next_chunk_name, next_chunk_opts);
}
chunking=1;
next;

12.2 Chunk Body

12.2.1 TEXyacs

A chunk body in TEXyacg ends with |________. . if it is the final chunklet of a chunk, or if there
are further chunklets it ends with |\/\/\/... which is a depiction of a jagged line of torn paper.

(recognize-chunk|6]() 11654, lang=) += <66 67bv
VAN AN P */ && texmacs_chunking {

active_chunk="";
texmacs_chunking=0;
chunking=0;

}

/= *\I\/\\/ && texmacs_chunking {
texmacs_chunking=0;
chunking=0;

active_chunk=

}

It has been observed that not every line of output when a TEXy;acq chunk is active is a line of chunk.
This may no longer be true, but we set a variable texmacs_chunk if the current line is a chunk line.

Initially we set this to zero...

(recognize-chunk|7|() 11654, lang=) += ABTa 67cV

texmacs_chunk=0;

...and then we look to see if the current line is a chunk line.

TEXyiacs lines look like this: 3 | main() { so we detect the lines by leading white space, digits,
more whiter space and a vertical bar followed by at least once space.

If we find such a line, we remove this line-header and set texmacs_chunk=1 as well as chunking=1

(recognize-chunk(8|() 11654, lang=) += ABTH 67dV
/= *[1-91[0-91% *\| / {

if (texmacs_chunking) {
chunking=1;
texmacs_chunk=1;
gsub ("~ *[1-91[0-91% *\\| ", "")
}
}

When TgXyacg chunking, lines that commence with \/ or __ are not chunk content but visual
framing, and are skipped.

(recognize-chunk|[9]() fi65al, lang=) += ABTd 68>

/= *\.\/\\/ && texmacs_chunking {
next;

}

67d

68
69

70

68a

71
72
73
74
75
76

7

68b

78
79
80

81

68c

82
83
84
85
86
87
88

89

68d

90
91

92

(recognize-chunk(9]() 1165a, lang=) += A67c 68ar>

/= *__*$/ && texmacs_chunking {
next;

}

Any other line when TEXyacs chunking is considered to be a line-wrapped line.
(recognize-chunk|[10]() 165d, lang=) += <167d 68bv

texmacs_chunking {
if (! texmacs_chunk) {
must be a texmacs continued line
chunking=1;
texmacs_chunk=1;
}
}

VA A YA YA A YAV Ve Vo Vo Vo VA VaVA VA VA Vo VA VA VA Vi VA VA VA VA VA VA VA VA VA VA VA Vo VA VA Vo Vo Vo Vo VAV Vo Va VA VA VA Vo Vo Vi Vo VAV VA VA VA VA VA VA Vo Ve VA VA VAV VAV VA VA VA VA VA VAVAN
This final chunklet seems bogus and probably stops Ly X working.

(recognize-chunk(11]() 7i65a, lang=) += AB8a 68cv

! texmacs_chunk {

texmacs_chunking=0;
chunking=0;

}

12.2.2 Noweb

We recognize notangle style chunks too:
(recognize-chunk|[12]() 765d, lang—awk) += AB8D 68dV

/o [<I<.x[>1>=/ {
if (match($0, "~[<1<(.*)[>]1>= *$", line)) {
chunking=1;
notangle_mode=1;
new_chunk(line[1]);
next;

12.3 Chunk end

Likewise, we need to recognize when a chunk ends.

12.3.1 Istlistings

The e in [e]lnd{lislisting} is surrounded by square brackets so that when this document is
processed, this chunk doesn’t terminate early when the Istlistings package recognizes it’s own end-
string!*

(recognize-chunk(13|() i65ha, lang=) += AB8d B9ar>

/~\\ [e]nd{1stlisting}|~\\[elnd{Chunk}/ {
chunking=0;
active_chunk="";

4. This doesn’t make sense as the regex is anchored with ~, which this line does not begin with!

68d

93

94

69a

95
96
97

98

69b

99

69c

100

102

103

69d

69e

(recognize-chunk(13]() 165a, lang=) += A68c 69ar>

next;

12.3.2 noweb

(recognize-chunk[14]() 165a, lang=) += <168d 69bv
/e *$/ {
chunking=0;

active_chunk="";

}

All other recognizers are only of effect if we are chunking; there’s no point in looking at lines if
they aren’t part of a chunk, so we just ignore them as efficiently as we can.

(recognize-chunk|[15]|() 1165d, lang=) += A69d 69cv

! chunking { next; }

12.4 Chunk contents

Chunk contents are any lines read while chunking is true. Some chunk contents are special in that
they refer to other chunks, and will be replaced by the contents of these chunks when the file is
generated.

We add the output record separator ORS to the line now, because we will set ORS to the empty
string when we generate the output®.

(recognize-chunk(16]() 7165ha, lang=) += AB9h

length(active_chunk) {
(process-chunk-tabs 69¢)
(process-chunk [70b)

}

If a chunk just consisted of plain text, we could handle the chunk like this:

(process-chunk-simple[1](), lang=) =

chunk_line(active_chunk, $0 ORS);

but in fact a chunk can include references to other chunks. Chunk includes are traditionally written
as <<chunk-name>> but we support other variations, some of which are more suitable for particular
editing systems.

However, we also process tabs at this point. A tab at input can be replaced by a number of spaces
defined by the tabs variable, set by the -T option. Of course this is poor tab behaviour, we should
probably have the option to use proper counted tab-stops and process this on output.

(process-chunk-tabs[1](), lang=) =

if (length(tabs)) {
gsub("\t", tabs);
}

5. So that we can partial print lines using print instead of printf. | To do: This does’t make sense

70a

S W N e

70b

©® N o o s w N e

70c

10

11

70 REcoaNi1zING CHUNKS

12.4.1 Istlistings

If \1stset{escapeinside={=<}{>}} is set, then we can use (chunk-name [?) in listings. The
sequence =< was chosen because:

1. it is a better mnemonic than <<chunk-name>> in that the = sign signifies equivalence or
substitutability.

2. and because =< is not valid in C or any language I can think of.

3. and also because Istlistings doesn’t like >> as an end delimiter for the tezxcl escape, so we
must make do with a single > which is better complemented by =< than by <<.

Unfortunately the =<...> that we use re-enters a INTEX parsing mode in which some characters
are special, e.g. # \ and so these cause trouble if used in arguments to \chunkref. At some point I
must fix the INTEX command \chunkref so that it can accept these literally, but until then, when
writing chunkref argumemts that need these characters, I must use the forms \textbackslash{}
and \#; so I also define a hacky chunk delatex to be used further on whose purpose it is to remove
these from any arguments parsed by fangle.

(delatex|1](text), lang=) =

FILTHY HACK

gsub("\\\\#", "#", ${text});
gsub("\\\\textbackslash{}", "\\", ${text});
gsub ("\\\\\\"", "~" ${text});

As each chunk line may contain more than one chunk include, we will split out chunk includes in
an iterative fashion®.

First, as long as the chunk contains a \chunkref command we take as much as we can up to the
first \chunkref command.

TEXyacs text output uses (...) which comes out as unicode sequences 0xC2 OxAB ... 0xC2 OxBB.
Modern awk will interpret [~\xC2\xBB] as a single unicode character if LANG is set correctly to the
sub-type UTF-8, e.g. LANG=en_GB.UTF-8, otherwise [~\xC2\xBB] will be treated as a two character
negated match — but this should not interfere with the function.

(process-chunk|1](), lang=) = 70cv
chunk = $0;
indent = O;
while (match(chunk, " (\xC2\xAB) ([“\xC2\xBB] *) [~\xC2\xBB]*\xC2\xBB", line) ||
match (chunk,
" ([=1<\\\\chunkref{ ([~}>1*) F O\ (. *\\) 1) >|<<([a-zA-Z_] [-a-zA-Z0-9_]*)>>)",
line)\
) A

chunklet = substr(chunk, 1, RSTART - 1);

We keep track of the indent count, by counting the number of literal characters found. We can
then preserve this indent on each output line when multi-line chunks are expanded.

We then process this first part literal text, and set the chunk which is still to be processed to be
the text after the \chunkref command, which we will process next as we continue around the loop.

(process-chunk[2]() 170D, lang=) += AT0B 7Ta>

indent += length(chunklet);
chunk_line(active_chunk, chunklet);
chunk = substr(chunk, RSTART + RLENGTH);

6. Contrary to our use of split when substituting parameters in chapter [

Tla

12
13
14
15
16
17
18
19
20
21

22

71b

23

24

Tlc

25

12.4 CHUNK CONTENTS 71

We then consider the type of chunk command we have found, whether it is the fangle style command
beginning with =< the older notangle style beginning with <<.

Fangle chunks may have parameters contained within square brackets. These will be matched in
line[3] and are considered at this stage of processing to be part of the name of the chunk to be
included.

(process-chunk[3]() 70, lang=) += <0c [71hv

if (substr(line[1], 1, 1) == "=") {
chunk name up to }
(delatex(1line[3]) 0a)
chunk_include(active_chunk, line[2] line[3], indent);

} else if (substr(line[1], 1, 1) == "<") {
chunk_include(active_chunk, line[4], indent);
} else if (line[1] == "\xC2\xAB") {
chunk_include(active_chunk, line[2], indent);
} else {
error ("Unknown chunk fragment: " line[1]);
}

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

The loop will continue until there are no more chunkref statements in the text, at which point we
process the final part of the chunk.

(process-chunk[4]() 170D, lang=) += AITTA TIev
}

chunk_line(active_chunk, chunk);

We add the newline character as a chunklet on it’s own, to make it easier to detect new lines and
thus manage indentation when processing the output.

(process-chunk[5]() 170D, lang=) += N

chunk_line(active_chunk, "\n");

We will also permit a chunk-part number to follow in square brackets, so that (chunk-name[1]
) will refer to the first part only. This can make it easy to include a C function prototype in a
header file, if the first part of the chunk is just the function prototype without the trailing semi-
colon. The header file would include the prototype with the trailing semi-colon, like this:

(chunk-name[1] [@)
This is handled in section T4.T.T

We should perhaps introduce a notion of language specific chunk options; so that perhaps we could
specify:

=<\chunkref{chunk-name [function-declaration]}

which applies a transform function-declaration to the chunk — which in this case would extract

a function prototype from a function. | To do: Do it

Chapter 13
Processing Options

At the start, first we set the default options.

73a (default-options|1](), lang=) =
1 debug=0;
2 linenos=0;
3 notangle_mode=0;
4 root="x";
5 tabs = "";

Then we use getopt the standard way, and null out ARGV afterwards in the normal AWK fashion.

73b (read-options|1](), lang=) =
1+ Optind = 1 # skip ARGV[O]
2 while(getopt (ARGC, ARGV, "R:LdT:hr")!=-1) {
3 (handle-options [73d)
+ }
s for (i=1; i<Optind; i++) { ARGV[i]=""; }

This is how we handle our options:

73¢ (handle-options[1](), lang=) =

1+ if (Optopt == "R") root = Optarg;

> else if (Optopt == "r") root="";

3 else if (Optopt == "L") linenos = 1;

1 else if (Optopt == "d") debug = 1;

s else if (Optopt == "T") tabs = indent_string(Optarg+0);
¢ else if (Optopt == "h") help();

7 else if (Optopt == "7") help();

We do all of this at the beginning of the program
73d (begin[1](), lang=) =
1 BEGIN {
2 (constants 139a)
3 (mode-definitions B2B)
4 (default-options [73a)

6 (read-options [73b)
7}

And have a simple help function

73e (help()[1](), lang=) =
1 function help() {

2 print "Usage:"

3 print " fangle [-L] -R<rootname> [source.tex ...]"

a print " fangle -r [source.tex ...]"

5 print " If the filename, source.tex is not specified then stdin is used"

6 print

7 print "-L causes the C statement: #line <lineno> \"filename\"" to be issued"
8 print "-R causes the named root to be written to stdout"

9 print "-r lists all roots in the file (even those used elsewhere)"

10 exit 1;

11}

73

Chapter 14
Generating the Output

We generate output by calling output chunk, or listing the chunk names.

75a (generate-output[1](), lang=) =

1+ if (length(root)) output_chunk(root);
2 else output_chunk_names();

We also have some other output debugging:

75b (debug-output|1](), lang=) =
if (debug) {

print "------ chunk names "
output_chunk_names() ;
print "====== chunks"

output_chunks() ;

print "++++++ debug"

for (a in chunks) {
print a "=" chunks[a];

}

© ® N o o s w N e

0 }

We do both of these at the end. We also set ORS="" because each chunklet is not necessarily a
complete line, and we already added ORS to each input line in section 12.4.

75¢ (end[1](), lang=) =

1 END {

2 (debug-output [75b)

3 ORS="";

4 (generate-output [75a)
s }

We write chunk names like this. If we seem to be running in notangle compatibility mode, then
we enclose the name like this <<name>> the same way notangle does:

75d (output_chunk_names()[1](), lang=) =

function output_chunk_names(c, prefix, suffix)
{
if (notangle_mode) {
prefix="<<";
suffix=">>";
}
for (c in chunk_names) {
print prefix c suffix "\n";

}

© @ N o o s w N e

10 F

This function would write out all chunks

75e (output chunks()[1](), lang=) =

1+ function output_chunks(a)

75

75e

2

10
11
12
13

14

76a

11
12
13

14

76b

15
16
17

18

76¢

19

20

(output_ chunks()[1](), lang=) =

{
for (a in chunk_names) {
output_chunk(a) ;
}
}

function output_chunk(chunk) {
newline = 1;
lineno_needed = linenos;

write_chunk(chunk) ;

}

14.1 Assembling the Chunks

chunk_path holds a string consisting of the names of all the chunks that resulted in this chunk
being output. It should probably also contain the source line numbers at which each inclusion also
occured.

We first initialize the mode tracker for this chunk.

(write chunk()[1](), lang=awk) = 76bv

function write_chunk(chunk_name) {
(awk-delete-array(context) B7d)
return write_chunk_r(chunk_name, context);

}

function write_chunk_r(chunk_name, context, indent, tail,
optional vars
chunk_path, chunk_args,
local vars
context_origin,
chunk_params, part, max_part, part_line, frag, max_frag, text,
chunklet, only_part, call_chunk_args, new_context)

if (debug) debug_log("write_chunk_r(" chunk_name ")");

14.1.1 Chunk Parts

As mentioned in section [7, a chunk name may contain a part specifier in square brackets, limiting
the parts that should be emitted.

(write chunk()[2|() i176a, lang=) += AlT6al IT6cv

if (match(chunk_name, "~(.*)\\[([0-91%)\\]1$", chunk_name_parts)) {
chunk_name = chunk_name_parts[1];
only_part = chunk_name_parts[2];

}

We then create a mode tracker

(write chunk()[3]|() i176a, lang=) += AIT6D I77a>

context_origin = context[""];
new_context = push_mode_tracker(context, chunks[chunk_name, "language"], "");

T7a

21

77b

22
23
24
25
26
27
28
29
30
31
32
33
34

35

36

37

TTc

7rd

1
2
3
4
5
6
7
8

9

14.1 ASSEMBLING THE CHUNKS 7

We extract into chunk_params the names of the parameters that this chunk accepts, whose values
were (optionally) passed in chunk_args.

(write _chunk()[4]() 6a, lang=) += <6 77Thv

split (chunks[chunk_name, "params"], chunk_params, " *; *");

To assemble a chunk, we write out each part.

(write _chunk()[5]() fiZ6a, lang=) += AllTa

if (! (chunk_name in chunk_names)) {
error (sprintf (_"The root module <<%s>> was not defined.\nUsed by: %s",\
chunk_name, chunk_path));

max_part = chunks[chunk_name, "part"];
for(part = 1; part <= max_part; part++) {
if (! only_part || part == only_part) {
(write-part [7d)
}
}
if (! pop_mode_tracker(context, context_origin)) {
dump_mode_tracker (context) ;
error (sprintf (_"Module %s did not close context properly.\nUsed by: %s\n", chunk_name,
chunk_path));
}
}

A part can either be a chunklet of lines, or an include of another chunk.

Chunks may also have parameters, specified in LaTeX style with braces after the chunk name —
looking like this in the document: chunkname{paraml, param2}. Arguments are passed in square
brackets: \chunkref{chunkname}[argl, arg?2].

Before we process each part, we check that the source position hasn’t changed unexpectedly, so
that we can know if we need to output a new file-line directive.

(write-part[1](), lang=) =

(check-source-jump [79d)

chunklet = chunks[chunk_name, "part", part];

if (chunks[chunk_name, "part", part, "type"] == part_type_chunk) {
(write-included-chunk [77d)

} else if (chunklet SUBSEP "line" in chunks) {
(write-chunklets [78a)

} else {
empty last chunklet

}

To write an included chunk, we must detect any optional chunk arguments in parenthesis. Then
we recurse calling write_chunk().

(write-included-chunk|1](), lang=) =

if (match(chunklet, "~(C[-\\D\\(*)\\((.*)\\)$", chunklet_parts)) {
chunklet = chunklet_parts[1];

hack
gsub(sprintf ("%c",11), "", chunklet);
gsub(sprintf ("%c",11), "", chunklet_parts[2]);

parse_chunk_args("c-like", chunklet_parts[2], call_chunk_args, "(");
for (c in call_chunk_args) {
call_chunk_args[c] = expand_chunk_args(call_chunk_args[c], chunk_params, chunk_args);
}
} else {
split("", call_chunk_args);

7rd

12
13
14
15
16
17

18

78a

78b

@ N o o »

78c

10
11
12
13
14
15
16

17

78d

18
19
20

21

(write-included-chunk|[1](), lang=) =

}

write_chunk_r(chunklet, context,
chunks [chunk_name, "part", part, "indent"] indent,
chunks [chunk_name, "part", part, "tail"],
chunk_path "\n " chunk_name,
call_chunk_args);

Before we output a chunklet of lines, we first emit the file and line number if we have one, and if
it is safe to do so.

Chunklets are generally broken up by includes, so the start of a chunklet is a good place to do this.
Then we output each line of the chunklet.

When it is not safe, such as in the middle of a multi-line macro definition, lineno_suppressed is
set to true, and in such a case we note that we want to emit the line statement when it is next safe.

(write-chunklets[1](), lang=) = 78bv

max_frag = chunks[chunklet, "line"];
for(frag = 1; frag <= max_frag; frag++) {
(write-file-line [79c)

We then extract the chunklet text and expand any arguments.
(write-chunklets|2]() 11784, lang=) += AlT8al I78cv
text = chunks[chunklet, frag];

/* check params */
text = expand_chunk_args(text, chunk_params, chunk_args);

If the text is a single newline (which we keep separate - see 6) then we increment the line number.
In the case where this is the last line of a chunk and it is not a top-level chunk we replace the
newline with an empty string — because the chunk that included this chunk will have the newline
at the end of the line that included this chunk.

We also note by newline = 1 that we have started a new line, so that indentation can be managed
with the following piece of text.

(write-chunklets[3]() 178a, lang=) += AIT8D [78dV

if (text == "\n") {
lineno++;
if (part == max_part && frag == max_frag && length(chunk_path)) {
text = "";
break;
} else {
newline = 1;

}

If this text does not represent a newline, but we see that we are the first piece of text on a newline,
then we prefix our text with the current indent.

Note 1. newline is a global output-state variable, but the indent is not.

(write-chunklets[4]() 178a, lang=) += AlT8d T9ar>

} else if (length(text) || length(tail)) {
if (newline) text = indent text;
newline = 0;

}

78d

22

79a

23
24

25

79b

26
27
28

29

79c

79d

1
2
3

4

(write-chunklets[4]() 1'78a, lang=) += AT8c¢ T9al>

VA %0 2 Y 4 Y Ve e Vo Vo Vi Vi Vo VI Vo Vi Vi Vo Vi Vo Ve Vo Ve Vo Vi Vi Vo Vo Vo Vo Ve Vi Vi Vo Vi Vo Ve Vo Ve VI VI Vo Vo Vo Ve Vo Vi Vo Vi V2 Vi V2 Vo Vo Vi Vo Vi Vo Vo Vo Vo VA Vi Ve Vi Ve Vo Va Ve VA Ve VAN
Tail will soon no longer be relevant once mode-detection is in place.

(write-chunklets|5]() 1178, lang=) += <78d I79bv

text = text tail;
mode_tracker (context, text);
print untab(transform_escape(context, text, new_context));

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

If a line ends in a backslash — suggesting continuation — then we supress outputting file-line as
it would probably break the continued lines.

(write-chunklets[6]() 1784, lang=) += AlT9a
if (linenos) {
lineno_suppressed = substr(lastline, length(lastline)) == "\\";
}
}

Of course there is no point in actually outputting the source filename and line number (file-line)
if they don’t say anything new! We only need to emit them if they aren’t what is expected, or if
we we not able to emit one when they had changed.

(write-file-line[1](), lang=) =

if (newline && lineno_needed && ! lineno_suppressed) {
filename = a_filename;
lineno = a_lineno;
print "#line " lineno " \"" filename "\"\n"
lineno_needed = 0;

We check if a new file-line is needed by checking if the source line matches what we (or a compiler)
would expect.

(check-source-jump|1](), lang=) =

if (linenos && (chunk_name SUBSEP "part" SUBSEP part SUBSEP "FILENAME" in chunks)) {
a_filename = chunks[chunk_name, "part", part, "FILENAME"];
a_lineno = chunks[chunk_name, "part", part, "LINENO"];
if (a_filename != filename || a_lineno != lineno) {
lineno_needed++;
}
}

Chapter 15
Storing Chunks

Awk has pretty limited data structures, so we will use two main hashes. Uninterrupted sequences
of a chunk will be stored in chunklets and the chunklets used in a chunk will be stored in chunks.

8la (constants|2]() 11894, lang=) += <139a

2

3

part_type_chunk=1;
SUBSEP=",";

The params mentioned are not chunk parameters for parameterized chunks, as mentioned in 10.2,
but the Istlistings style parameters used in the \Chunk command".

81b (chunk-storage-functions|1](), lang=) = glcv

1

10
11
12
13
14
15
16

17

19
20
21
22
23
24
25
26

27

29

function new_chunk(chunk_name, opts, args,
local vars

p, append)

{
HACK WHILE WE CHANGE TO () for PARAM CHUNKS
gsub("\\(\\)$", "", chunk_name);

if (! (chunk_name in chunk_names)) {
if (debug) print "New chunk " chunk_name;
chunk_names [chunk_name] ;
for (p in opts) {
chunks [chunk_name, p] = opts(p]l;
if (debug) print "chunks[" chunk_name "," p "] = " opts[p];
}
for (p in args) {
chunks [chunk_name, "params", p] = args[p];
}
if ("append" in opts) {
append=opts ["append"];
if (! (append in chunk_names)) {
warning("Chunk " chunk_name " is appended to chunk " append " which is not defined yet");
new_chunk (append) ;
}
chunk_include (append, chunk_name) ;
chunk_line(append, ORS);
}
}
active_chunk = chunk_name;
prime_chunk (chunk_name) ;

}

81lc (chunk-storage-functions|2]() H8Ib, lang=) += ABTD B2ap>

30

31

33
34
35

36

function prime_chunk(chunk_name)
{
chunks [chunk_name, "part", ++chunks[chunk_name, "part"]] = \
chunk_name SUBSEP "chunklet" SUBSEP "" ++chunks[chunk_name, "chunklet"];
chunks [chunk_name, "part", chunks[chunk_name, "part"], "FILENAME"] = FILENAME;
chunks [chunk_name, "part", chunks[chunk_name, "part"], "LINENO"] = FNR + 1;

I. The params parameter is used to hold the parameters for parameterized chunks

81

81c (chunk-storage-functions|2|() {}81b, lang=) += A81b 82al>

a7}

38

39 function chunk_line(chunk_name, line){

40 chunks [chunk_name, "chunklet", chunks[chunk_name, "chunklet"],

41 ++chunks [chunk_name, "chunklet", chunks[chunk_name, "chunklet"], "line"]] = line;

2 ¥

43
Chunk include represents a chunkref statement, and stores the requirement to include another
chunk. The parameter indent represents the quanity of literal text characters that preceded this
chunkref statement and therefore by how much additional lines of the included chunk should be
indented.

82a (chunk-storage-functions|3|() 8Ih, lang=) += <I®Tc 82bvV

44 function chunk_include(chunk_name, chunk_ref, indent, tail)

45 {

6 chunks [chunk_name, "part", ++chunks[chunk_name, "part"]] = chunk_ref;

a7 chunks [chunk_name, "part", chunks[chunk_name, "part"], "type"] = part_type_chunk;

48 chunks [chunk_name, "part", chunks[chunk_name, "part"], "indent"] = indent_string(indent);

49 chunks [chunk_name, "part", chunks[chunk_name, "part"], "tail"] = tail;

50 prime_chunk (chunk_name) ;

51}

52
The indent is calculated by indent string, which may in future convert some spaces into tab
characters. This function works by generating a printf padded format string, like %22s for an indent
of 22, and then printing an empty string using that format.

82b (chunk-storage-functions|4|() {81b, lang=) += AB2a

53
54

55

function indent_string(indent) {
return sprintf("%" indent "s", "");

}

83a

83b

10
11
12
13

14

83c¢

10

11

Chapter 16
getopt

I use Arnold Robbins public domain getopt (1993 revision). This is probably the same one that is
covered in chapter 12 of AAIJEdition 3 of GAWK: Effective AWK Programming: A User’s Guide
for GNU AwkaAl but as that is licensed under the GNU Free Documentation License, Version 1.3,
which conflicts with the GPL3, I can’t use it from there (or it’s accompanying explanations), so I
do my best to explain how it works here.

The getopt.awk header is:

(getopt.awk-header|[1](), lang=) =

getopt.awk --- do C library getopt(3) function in awk
Arnold Robbins, arnold@skeeve.com, Public Domain

Initial version: March, 1991

#
#
#
#
#
Revised: May, 1993

The provided explanation is:

(getopt.awk-notes|1](), lang=) =

External variables:

Optind -- index in ARGV of first nonoption argument
Optarg -- string value of argument to current option
Opterr -- if nonzero, print our own diagnostic

Optopt -- current option letter

Returns:

-1 at end of options

? for unrecognized option

<c> a character representing the current option

Private Data:
_opti -- index in multi-flag option, e.g., -abc

The function follows. The final two parameters, thisopt and i are local variables and not param-
eters — as indicated by the multiple spaces preceding them. Awk doesn’t care, the multiple spaces
are a convention to help us humans.

(getopt.awk-getopt()[1](), lang=) = 8da>

function getopt(argc, argv, options, thisopt, i)

if (length(options) == 0) # no options given
return -1

if (argv[Optind] == "--") { # all done
Optind++
_opti =0
return -1

} else if (argv[Optind] !~ /~-[~: \t\n\f\r\v\bl/) {
_opti = 0
return -1

83

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

83c (getopt.awk-getopt()[1](), lang=) = 84ap>
}
if (_opti == 0)
_opti = 2
thisopt = substr(argv[Optind], _opti, 1)
Optopt = thisopt
i = index(options, thisopt)
if (i ==0) {
if (Opterr)
printf("%c -- invalid option\n",
thisopt) > "/dev/stderr"
if (_opti >= length(argv[Optind])) {
Optind++
_opti = 0
} else
_opti++
return "?"
}
At this point, the option has been found and we need to know if it takes any arguments.
84a (getopt.awk-getopt()[2]() 183c, lang=) += <1B3c

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

if (substr(optiomns, i + 1, 1) == ":") {
get option argument
if (length(substr(argv[Optind], _opti + 1)) > 0)
Optarg = substr(argv[Optind], _opti + 1)
else
Optarg = argv[++0Optind]
_opti =0
} else
Optarg = ""
if (_opti == 0 || _opti >= length(argv[Optind])) {
Optind++
_opti = 0
} else
_opti++
return thisopt

A test program is built in, too

84b (getopt.awk-begin[1](), lang=) =

1

10

11

12

13

14

BEGIN {

Opterr = 1 # default is to diagnose
Optind = 1 # skip ARGV[0]
test program
if (_getopt_test) {
while ((_go_c = getopt(ARGC, ARGV, "ab:cd")) != -1)
printf("c = <Y%c>, optarg = <)s>\n",
_go_c, Optarg)
printf ("non-option arguments:\n")
for (; Optind < ARGC; Optind++)
printf ("\tARGV[%d] = <)s>\n",
Optind, ARGV[Optindl)

The entire getopt.awk is made out of these chunks in order

84c (getopt.awk|[1](), lang=) =

1

(getopt.awk-header B3a)

(getopt.awk-notes B3D)
(getopt.awk-getopt () B3c)

84c (getopt.awk(1](), lang=) =

s (getopt.awk-begin 1B4b)

Although we only want the header and function:

85a (getopt[1](), lang=) =

1 # try: locate getopt.awk for the full original file
2 # as part of your standard awk installation
s (getopt.awk-header [B3a)

s (getopt.awk-getopt() 83c)

87a

© @ N o o s w N e

11
12
13
14
15
16
17
18
19
20

21

87b

Chapter 17

Fangle LaTeX source code

17.1 fangle module

Here we define a IyyX .module file that makes it convenient to use LyX for writing such literate
programs.

This file ./fangle.module can be installed in your personal .lyx/layouts folder. You will need
to Tools Reconfigure so that LyX notices it. It adds a new format Chunk, which should precede
every listing and contain the chunk name.

(./fangle.module[1](), lang=lyx-module) =

#\DeclareLyXModule{Fangle Literate Listings}
#DescriptionBegin

Fangle literate listings allow one to write

literate programs after the fashion of noweb, but without having

to use noweave to generate the documentation. Instead the listings
package is extended in conjunction with the noweb package to implement
to code formating directly as latex.
The fangle awk script
#DescriptionEnd

H OH H OB B H

(gpl3-copyright.hashed [B7b)

Format 11
AddToPreamble
(./fangle.sty [88d)
EndPreamble

(chunkstyle [88a)

(chunkref 88c)

Because LiyX modules are not yet a language supported by fangle or Istlistings, we resort to this
fake awk chunk below in order to have each line of the GPL3 license commence with a #

(gpl3-copyright.hashed[1](), lang=awk) =

#(gpl3-copyright Ha)

17.1.1 The Chunk style

The purpose of the CHUNK style is to make it easier for IyyX users to provide the name to
1lstlistings. Normally this requires right-clicking on the listing, choosing settings, advanced,
and then typing name=chunk-name. This has the further disadvantage that the name (and other
options) are not generally visible during document editing.

87

88a

S W N e

o o

10

11

88b

12
13
14
15
16
17
18

19

88c

s W N e

o o

10

88d

1

2

88 FancLE LATEX SOURCE CODE

The chunk style is defined as a INTEX command, so that all text on the same line is passed to the
LaTeX command Chunk. This makes it easy to parse using fangle, and easy to pass these options
on to the listings package. The first word in a chunk section should be the chunk name, and will
have name= prepended to it. Any other words are accepted arguments to lstset.

We set PassThru to 1 because the user is actually entering raw latex.

(chunkstyle[1](), lang=) = v
Style Chunk
LatexType Command
LatexName Chunk
Margin First_Dynamic
LeftMargin Chunk : xxx
LabelSep XX
LabelType Static
LabelString "Chunk:"
Align Left
PassThru 1

To make the label very visible we choose a larger font coloured red.

(chunkstyle[2|() 1188a, lang=) += ABBa
LabelFont
Family Sans
Size Large
Series Bold
Shape Italic
Color red
EndFont
End

17.1.2 The chunkref style

We also define the Chunkref style which can be used to express cross references to chunks.

(chunkref[1](), lang=) =

InsetLayout Chunkref

LyxType charstyle
LatexType Command
LatexName chunkref
PassThru 1
LabelFont
Shape Italic
Color red
EndFont
End

17.2 Latex Macros

We require the listings, noweb and xargs packages. As noweb defines it’s own \code environment,
we re-define the one that LyX logical markup module expects here.
(./fangle.sty[1](), lang=tex) = 89a>

\usepackage{listings}%
\usepackage{nowebl}/,

88d

3
4

89%a

89b

89c

89d

10
11
12
13

14

89%e

15

16

(./fangle.sty[1](), lang=tex) = 89al>

\usepackage{xargs}%
\renewcommand{\code} [1]1{\texttt{#1}}%

We also define a CChunk macro, for use as: \begin{CChunk} which will need renaming to
\begin{Chunk} when I can do this without clashing with \Chunk.

(./fangle.sty|2]() 1188d, lang=) += <188d 89bv

\1lstnewenvironment{Chunk}{\relax}{\relax}/,

We also define a suitable \1stset of parameters that suit the literate programming style after the
fashion of NOWEAVE.

(./fangle.sty(3]() 188d, lang=) += ABYal BIcv

\1lstset{numbers=left, stepnumber=5, numbersep=5pt,
breaklines=false,basicstyle=\ttfamily,
numberstyle=\tiny, language=C}%

We also define a notangle-like mechanism for escaping to INTEX from the listing, and by which we
can refer to other listings. We declare the =<...> sequence to contain IATEX code, and include
another like this chunk: (chunkname [7). However, because =<...> is already defined to contain
IATEX code for this document — this is a fangle document after all — the code fragment below
effectively contains the INTEX code: }{. To avoid problems with document generation, I had to
declare an lstlistings property: escapeinside={} for this listing only; which in IyX was done
by right-clicking the listings inset, choosing settings->advanced. Therefore =< isn’t interpreted
literally here, in a listing when the escape sequence is already defined as shown... we need to
somehow escape this representation...

(./fangle.sty[4]() 1188d, lang=) += ABIb BIdV
\1lstset{escapeinside={=<}{>}}%

Although our macros will contain the @ symbol, they will be included in a \makeatletter section
by LyX; however we keep the commented out \makeatletter as a reminder. The listings package
likes to centre the titles, but noweb titles are specially formatted and must be left aligned. The
simplest way to do this turned out to be by removing the definition of \1st@maketitle. This may
interact badly if other listings want a regular title or caption. We remember the old maketitle in
case we need it.

(./fangle.sty[5]() 188d, lang=) += ABId B9ev
%\makeatletter

%somehow re-defining maketitle gives us a left-aligned title
%which is extactly what our specially formatted title needs!
\global\let\fangle@lst@maketitle\lst@maketitle,
\global\def\lst@maketitle{}%

17.2.1 The chunk command

Our chunk command accepts one argument, and calls \1tset. Although \1tset will note the name,
this is erased when the next \1stlisting starts, so we make a note of this in \1st@chunkname and
restore in in Istlistings Init hook.

(./fangle.sty[6]() 188d, lang=) += ABId 90a>
\def \Chunk#1{%

\1lstset{title={\fanglecaption},name=#1}Y,

\global\edef\lst@chunkname{\1lst@intname}7
Yh

89%e

19

90a

20

90b

21

90c

90d

22

(./fangle.sty[6]() 1188d, lang=) += A89d 90ar>

\def\1lst@chunkname{\empty}%

17.2.1.1 Chunk parameters

Fangle permits parameterized chunks, and requires the paramters to be specified as listings options.
The fangle script uses this, and although we don’t do anything with these in the INTEX code right
now, we need to stop the listings package complaining.

(./fangle.sty|7]() 188d, lang=) += <89%e 90bV
\1lst@Key{params}\relax{\def\fangle@chunk@params{#1}1}/

As it is common to define a chunk which then needs appending to another chunk, and annoying
to have to declare a single line chunk to manage the include, we support an append= option.

(./fangle.sty(8]() 188d, lang=) += A90a B0cv
\1lst@Key{append}\relax{\def\fangle@chunk@append{#1}}/

17.2.2 The noweb styled caption
We define a public macro \fanglecaption which can be set as a regular title. By means of
\protect, It expands to \fangle@caption at the appopriate time when the caption is emitted.

(./fangle.sty([9]() 188d, lang=) += A00b 90dv

\def\fanglecaption{\protect\fangle@caption}y,

22c (some-chunk 19b) =+ <122b 24d>

In this example, the current chunk is 22c¢, and therefore the third chunk on page 22.
It’s name is some-chunk.

The first chunk with this name (19b) occurs as the second chunk on page 19.

The previous chunk (22d) with the same name is the second chunk on page 22.

The next chunk (24d) is the fourth chunk on page 24.

Figure 1. Noweb Heading

The general noweb output format compactly identifies the current chunk, and references to the
first chunk, and the previous and next chunks that have the same name.

This means that we need to keep a counter for each chunk-name, that we use to count chunks of
the same name.

17.2.3 The chunk counter

It would be natural to have a counter for each chunk name, but TeX would soon run out of
counters”, so we have one counter which we save at the end of a chunk and restore at the beginning
of a chunk.

(./fangle.sty[10]() t88d, lang=) += A90d 91>

\newcounter{fangle@chunkcounter}/,

T. ...soon did run out of counters and so I had to re-write the LaTeX macros to share a counter as described here.

9la

91b

9lc

23
24
25
26
27
28
29
30
31

32

91d

33
34
35

36

9le

37
38

39

17.2 LaTtEx MACROS 91

We construct the name of this variable to store the counter to be the text 1st-chunk- prefixed
onto the chunks own name, and store it in \chunkcount.

We save the counter like this:

(save-counter|1](), lang=) =

\global\expandafter\edef\csname \chunkcount\endcsname{\arabic{fangle@chunkcounter}}y

and restore the counter like this:

(restore-counter|1](), lang=) =

\setcounter{fangle@chunkcounter}{\csname \chunkcount\endcsnamel}’

If there does not already exist a variable whose name is stored in \chunkcount, then we know we
are the first chunk with this name, and then define a counter.

Although chunks of the same name share a common counter, they must still be distinguished. We
use is the internal name of the listing, suffixed by the counter value. So the first chunk might be
something-1 and the second chunk be something-2, etc.

We also calculate the name of the previous chunk if we can (before we increment the chunk counter).
If this is the first chunk of that name, then \prevchunkname is set to \relax which the noweb
package will interpret as not existing.

(./fangle.sty[11]() 188d, lang=) += <90d 91dv

\def\fangle@caption{’

\edef\chunkcount{lst-chunk-\1st@intnamel}’

\@ifundefined{\chunkcount}{/
\expandafter\gdef\csname \chunkcount\endcsname{03}/
\setcounter{fangle@chunkcounter}{\csname \chunkcount\endcsnamel}’%
\let\prevchunkname\relax

H%
\setcounter{fangle@chunkcounter}{\csname \chunkcount\endcsnamel}’
\edef\prevchunkname{\lst@intname-\arabic{fangle@chunkcounter}}’

Yh

After incrementing the chunk counter, we then define the name of this chunk, as well as the name
of the first chunk.

(./fangle.sty[12]() 1BRd, lang=) += AOQTd BTev

\addtocounter{fangle@chunkcounter}{1}%

\global\expandafter\edef\csname \chunkcount\endcsname{\arabic{fangle@chunkcounter}}},
\edef\chunkname{\1lst@intname-\arabic{fangle@chunkcounterl}}’,
\edef\firstchunkname{\1lst@intname-11}J

We now need to calculate the name of the next chunk. We do this by temporarily skipping the
counter on by one; however there may not actually be another chunk with this name! We detect
this by also defining a label for each chunk based on the chunkname. If there is a next chunkname
then it will define a label with that name. As labels are persistent, we can at least tell the second
time IMNTEX is run. If we don’t find such a defined label then we define \nextchunkname to \relax.

(./fangle.sty[13]() t88d, lang=) += A91d 92ap>

\addtocounter{fangle@chunkcounter}{1}%
\edef\nextchunkname{\lst@intname-\arabic{fangle@chunkcounter}}’
\@ifundefined{r@label-\nextchunkname}{\let\nextchunkname\relax}{}/

The noweb package requires that we define a \sublabel for every chunk, with a unique name,
which is then used to print out it’s navigation hints.

92a

40
41
42

43

92b

44

92¢

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75

92d

76
7
78

79

92 FancLE LATEX SOURCE CODE

We also define a regular label for this chunk, as was mentioned above when we calculated
\nextchunkname. This requires INTEX to be run at least twice after new chunk sections are added
— but noweb requried that anyway.

(./fangle.sty[14]() 1B&d, lang=) += <9Te 92bv

\sublabel{\chunkname}Y
% define this label for every chunk instance, so we
% can tell when we are the last chunk of this name
\label{label-\chunkname},

We also try and add the chunk to the list of listings, but I'm afraid we don’t do very well. We want
each chunk name listing once, with all of it’s references.

(./fangle.sty[15]() 188d, lang=) += A92d 92¢cv
\addcontentsline{lol}{lstlisting}{\1st@name~ [\protect\subpageref{\chunkname}]}%

We then call the noweb output macros in the same way that noweave generates them, except that
we don’t need to call \nwstartdeflinemarkup or \nwenddeflinemarkup — and if we do, it messes
up the output somewhat.

(./fangle.sty[16]() 188d, lang=) += A92b 92dv

\nwmargintag{%
{h
\nwtagstyle{}%
\subpageref{\chunknamel}y,
Yh
Yh
%
\moddef{%
{\1st@namel}},
{h
\nwtagstyle{}\/%
\@ifundefined{fangle@chunk@params}{}{%
(\fangle@chunk@params)
Y
[\csname \chunkcount\endcsname] %
\subpageref{\firstchunknamel},
Y
\@ifundefined{fangle@chunk@append}{}{%
\ifx{}\fangle@chunk@append{x}\else
,“add"to~\fangle@chunk@appendy,
\fi%
Yh
\global\def\fangle@chunk@append{}%
\1lstset{append=x}%
Yh
%
\ifx\relax\prevchunkname\endmoddef\else\plusendmoddef\fi%
% \nwstartdeflinemarkup/
\nwprevnextdefs{\prevchunkname}{\nextchunkname},
% \nwenddeflinemarkup
Y

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

Originally this was developed as a listings aspect, in the Init hook, but it was found easier to
affect the title without using a hook — \1st@AddToHookExe{PreSet} is still required to set the
listings name to the name passed to the \Chunk command, though.

(./fangle.sty[17]() 188d, lang=) += A92d 93a>

%\1st@BeginAspect{fangle}

%\1st@Key{fangle}{true} [t]1{\1stKV@SetIf{#1}{true}}
\1st@AddToHookExe{PreSet}{\global\let\1lst@intname\lst@chunkname}
\1st@AddToHook{Init}{}/\fangle@caption}

92d (./fangle.sty[17]() 1+88d, lang=) += £92¢ 93ap>

80

81

82

%\1st@EndAspect

17.2.4 Cross references

We define the \chunkref command which makes it easy to generate visual references to different
code chunks, e.g.

Macro Appearance
\chunkref{preamble}

\chunkref [3] {preamble}
\chunkref{preamble} [argl, arg?]

Chunkref can also be used within a code chunk to include another code chunk. The third optional
parameter to chunkref is a comma sepatarated list of arguments, which will replace defined param-
eters in the chunkref.

Note 1. Darn it, if I have: =<\chunkref{new-mode-tracker}[{chunks[chunk_name,
"language"]},{mode}]> the inner braces (inside [|) cause _ to signify subscript even though
we have 1st@Replaceln

93a (./fangle.sty[18]() 188d, lang=) += <92d 94ap>
\def\chunkref@args#1,{/%
\def\arg{#1}V
\1lst@ReplaceIn\arg\lst@filenamerply
\argl
\@ifnextchar){\relax}{, \chunkref@args}
Yh

\newcommand\chunkref [2] [0]{%
\@ifnextchar ({\chunkref@i{#1}{#2}}{\chunkref@i{#1}{#2} O}/
%
\def\chunkref@i#1#2 (#3){%
\def\zero{0}%
\def\chunk{#2},
\def\chunkno{#13}7
\def\chunkargs{#3}/,
\ifx\chunkno\zero
\def\chunkname{#2-1},
\else%
\def\chunkname{#2-\chunkno}%
\fi%
\let\1lst@arg\chunk’,
\lst@ReplaceIn\chunk\lst@filenamerply
\LA{%\moddef{%
{\chunk}%
{%
\nwtagstyle{}\/%
\ifx\chunkno\zero
\else’
[\chunknol%
\fi%
\ifx\chunkargs\empty’
\else’
(\chunkref@args #3,)%
\fi%
~“\subpageref{\chunkname}
%
jA
\RA%\endmoddef%
i

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

94 FancLE LATEX SOURCE CODE

17.2.5 The end

94a (./fangle.sty[19]() 1188d, lang=) += <193a

19 %
120 %\makeatother

11
12
13
14
15
16
17
18
19
20
21

22

Chapter 18
Extracting fangle

18.1 Extracting from Lyx

To extract from LyX, you will need to configure LyX as explained in section .
And this lyx-build scrap will extract fangle for me.

(lyx-build|2]() 120a, lang=sh) += <20a

#! /bin/sh
set -x

(1lyx-build-helper [I9B)
cd $PROJECT_DIR || exit 1

/usr/local/bin/fangle -R./fangle $TEX_SRC > ./fangle
/usr/local/bin/fangle -R./fangle.module $TEX_SRC > ./fangle.module

export FANGLE=./fangle
export TMP=${TMP:-/tmp}
(test:* 99a)

With a lyx-build-helper
(lyx-build-helper|2|() 119D, lang=sh) += <T9h

PROJECT_DIR="$LYX_r"
LYX_SRC="$PROJECT_DIR/${LYX_i%.tex}.lyx"
TEX_DIR="$LYX_p"
TEX_SRC="$TEX_DIR/$LYX_i"
TXT_SRC="$TEX_SRC"

18.2 Extracting documentation

> (./gen-www][1](), lang=) =

#python -m elyxer --css lyx.css $LYX_SRC | \
diconv -c -f utf-8 -t IS0-8859-1//TRANSLIT | \
sed ’s/UTF-8"\(.\)>/IS0-8859-1"\1>/’ > www/docs/fangle.html

python -m elyxer --css lyx.css --is0885915 --html --destdirectory www/docs/fangle.e \
fangle.lyx > www/docs/fangle.e/fangle.html

(mkdir -p www/docs/fangle && cd www/docs/fangle && \
lyx -e latex ../../../fangle.lyx && \
htlatex ../../../fangle.tex "xhtml,fn-in" && \
sed -i -e ’s/<!--1\. [0-9][0-9]* *-->//g’> fangle.html

95

95¢ (./gen-www[1](), lang=) =

14 (mkdir -p www/docs/literate && cd www/docs/literate && \
15 lyx -e latex ../../../literate.lyx && \

16 htlatex ../../../literate.tex "xhtml,fn-in" && \

17 sed -i -e ’s/<!--1\. [0-9][0-9]* *-->$//g’ literate.html
18)

18.3 Extracting from the command line

First you will need the tex output, then you can extract:

96a (lyx-build-manual[1](), lang=sh) =

1 lyx -e latex fangle.lyx
2 fangle -R./fangle fangle.tex > ./fangle
3 fangle -R./fangle.module fangle.tex > ./fangle.module

Part 111

Tests

Chapter 19
Tests

99a (test:*[1](), lang=) =

1 #! /bin/bash

3 export SRC="${SRC:-./fangle.tm}"

4 export FANGLE="${FANGLE:-./fangle}"

s export TMP="${TMP:-/tmp}"

6 export TESTDIR="$TMP/$USER/fangle.tests"

7 export TXT_SRC="${TXT_SRC:-$TESTDIR/fangle.txt}"
s export AWK="${AWK:-awkl}"

9 export RUN_FANGLE="${RUN_FANGLE:-$AWK -f}"

10

11 fangle() {

12 ${AWK} -f ${FANGLE} "$e"

13}

14

15 mkdir -p "$TESTDIR"

16

17 tm -s -c "$SRC" "$TXT_SRC" -q

18

19 (test:helpers B9c)

20 run_tests() {

21 (test:run-tests [99b)

2 }

23

22 # test current fangle

25 echo Testing current fangle

26 run_tests

27

28 # extract new fangle

29 echo testing new fangle

30 fangle -R./fangle "$TXT_SRC" > "$TESTDIR/fangle"
31 export FANGLE="$TESTDIR/fangle"

32 run_tests

33

3¢ # Now check that it can extract a fangle that also passes the tests!
35 echo testing if new fangle can generate itself
36 fangle -R./fangle "$TXT_SRC" > "$TESTDIR/fangle.new"
37 passtest diff -bwu "$FANGLE" "$TESTDIR/fangle.new"
3s export FANGLE="$TESTDIR/fangle.new"

39 run_tests

99b (test:run-tests|[1](), lang=sh) =

1 # run tests

2 fangle -Rpca-test.awk $TXT_SRC | awk -f - || exit 1

s (test:cromulence KEJe)

(test:escapes [63c)
(test:test-chunk(test:example-sh) [I00a)
(test:test-chunk(test:example-makefile) [00a)

7 (test:test-chunk(test:q:1) [M00a)
(test:test-chunk(test:make:1) [I00a)
(test:test-chunk(test:make:2) [I00a)
(test:chunk-params I01d)

99

99c (test:helpers[1](), lang=)

99¢ (test:helpers|1](), lang=) =

1 passtest() {

2 if "$e"

3 then echo "Passed $TEST"
4 else echo "Failed $TEST"
5 return 1

6 fi

7}

8

o failtest() {

10 if ! "$e"

1 then echo "Passed $TEST"
12 else echo "Failed $TEST"
13 return 1

14 fi

15}

This chunk will render a named chunk and compare it to another rendered nameed chunk

100a (test:test-chunk|1](chunk), lang=sh) =
1 (test:test-chunk-result(¢hunk) hunk)result) [M0O0b)

100b (test:test-chunk-result[1](chunk, result), lang=sh) =

1 TEST="(result)" passtest diff -u --label "EXPECTED: (result)" <(fangle -R{result) $TXT_SRC) \
2 --label "ACTUAL: (chunk)" <(fangle -R{chunk) $TXT_SRC)

Chapter 20

Chunk Parameters

20.1 IyX

101a (test:lyx:chunk-params:sub[1](THING, colour), lang=) =

1 I see a ${THING},
2 a ${THING} of colour ${colour},
3 and looking closer =<\chunkref{test:lyx:chunk-params:sub:sub}(${colour})>

101b (test:lyx:chunk-params:sub:sub|1](colour), lang=) =

1+ a funny shade of ${colour}

101c (test:lyx:chunk-params:text[1](), lang=) =

1 What do you see? "=<\chunkref{test:lyx:chunk-params:subl}(joe, red)>"
2 Well, fancy!

Should generate output:

101d (test:lyx:chunk-params:result[1](), lang=) =

1 What do you see? "I see a joe,

2 a joe of colour red,

3 and looking closer a funny shade of red"
4 Well, fancy!

And this chunk will perform the test:

101e (test:chunk-params|1](), lang=) = 102b>

1 (test:test-chunk-result(test:lyx:chunk-params:text, test:lyx:chunk-params:result) MO0B) || exit 1

20.2 TEXyiacs

101f (test:chunk-params:sub[1](THING, colour), lang=) =

1 I see a (THING),
2 a (THING) of colour (colour),
s and looking closer (test:chunk-params:sub:sub(éolour) [101g)

101g (test:chunk-params:sub:sub[1](colour), lang=) =

1 a funny shade of (colour)

101h (test:chunk-params:text[1](), lang=) = 96a>

1 What do you see? "(test:chunk-params:sub(joe, red) TOIf)"

101

101h (test:chunk-params:text[1](), lang=) =

2 Well, fancy!

96ar>

N NN\ NANANNNANAANNANANNNNNNIANANAANANANANANIN INANNNANANNAANNANANNAAAANANAANNANNANNAAANNAANANANNAAAAANAANANNAAAANAAANAANAAAAANANNN

Should generate output:

102a (test:chunk-params:result[1](), lang=) =

1 What do you see? "I see a joe,

2 a joe of colour red,

3 and looking closer a funny shade of red"
4 Well, fancy!

And this chunk will perform the test:

102b(test:chunk-params|2]() I0Te, lang=) +=

> (test:test-chunk-result(test:chunk-params:text, test:chunk-params:result) T00B)

|l exit 1

<10Te

Chapter 21
Compile-log-lyx

103a (Chunk:. /compile-log-lyx[1](), lang=sh) =

1 #! /bin/sh
2 # can’t use gtkdialog -i, cos it uses the "source" command which ubuntu sh doesn’t have

4 main() {

5 errors="/tmp/compile.log.$$"

6 # if grep ’~[~ I*:\(In \|[0-9][0-9]*: [~ 1*:\)’ > $errors

7 if grep ’~[~ J*(\([0-9][0-9]%\)) *: *\(error\|warning\)’ > $errors

8 then

B sed -i -e ’s/~ [~ I1x[/\\INCI/ANNT*=\) (N([0-91[0-91%\)) *: */\1:\2]\2]|/’ $errors
10 COMPILE_DIALOG=’

11 <vbox>

12 <text>

13 <label>Compiler errors:</label>

14 </text>

15 <tree exported_column="0">

16 <variable>LINE</variable>

17 <height>400</height><width>800</width>

18 <label>File | Line | Message</label>

19 <action>’". $SELF ; "’lyxgoto $LINE</action>

20 <input>’"cat $errors"’</input>

21 </tree>

22 <hbox>

23 <button><label>Build</label>

24 <action>lyxclient -c "LYXCMD:build-program" &</action>
25 </button>

26 <button ok></button>

27 </hbox>

8 </vbox>

29

30 export COMPILE_DIALOG

a1 (gtkdialog --program=COMPILE_DIALOG ; rm $errors) &
32 else

33 rm $errors

34 fi

E

a7 lyxgoto() {

38 file="${LINE%:*}"

39 line="${LINE##x*:}"

40 extraline=‘cat $file | head -n $line | tac | sed ’/~\\\\begin{lstlisting}/q’ | wc -1¢
a1 extraline=‘expr $extraline - 1°

12 lyxclient -c "LYXCMD:command-sequence server-goto-file-row $file $line ; char-forward ; repeat
$extraline paragraph-down ; paragraph-up-select"

3}

44

4s SELF="$0"

46 if test -z "$COMPILE_DIALOG"
47 then main "$@"
s fi

103

