build: Add Makefile target for Coverity scanner
[netsniff-ng.git] / mausezahn.8
blobeaa2c9dd98988b9248d91c1f97ad9a45844c4382
1 .\" netsniff-ng - the packet sniffing beast
2 .\" Copyright 2013 Herbert Haas, modified by Daniel Borkmann.
3 .\" Subject to the GPL, version 2.
4 .PP
5 .TH MAUSEZAHN 8 "03 March 2013" "Linux" "netsniff-ng toolkit"
6 .SH NAME
7 mausezahn \- a fast versatile packet generator with Cisco-cli
8 .PP
9 .SH SYNOPSIS
10 .PP
11 \fBmausezahn\fR { [\fIoptions\fR] "<arg-string> | <hex-string>" }
12 .PP
13 .SH DESCRIPTION
14 .PP
15 mausezahn is a fast traffic generator which allows you to send nearly every
16 possible and impossible packet. In contrast to trafgen(8), mausezahn's packet
17 configuration is on a protocol-level instead of byte-level and mausezahn also
18 comes with a built-in Cisco-like command-line interface, making it suitable
19 as a network traffic generator box in your network lab.
20 .PP
21 Next to network labs, it can also be used as a didactical tool and for security
22 audits including penetration and DoS testing. As a traffic generator, mausezahn
23 is also able to test IP multicast or VoIP networks. Packet rates close to the
24 physical limit are reachable, depending on the hardware platform.
25 .PP
26 mausezahn supports two modes, ''direct mode'' and a multi-threaded ''interactive
27 mode''.
28 .PP
29 The ''direct mode'' allows you to create a packet directly on the command line
30 and every packet parameter is specified in the argument list when calling
31 mausezahn.
32 .PP
33 The ''interactive mode'' is an advanced multi-threaded configuration mode with
34 its own command line interface (CLI). This mode allows you to create an arbitrary
35 number of packet types and streams in parallel, each with different parameters.
36 .PP
37 The interactive mode utilizes a completely redesigned and more flexible protocol
38 framework called ''mops'' (mausezahn's own packet system). The look and feel of
39 the CLI is very close to the Cisco IOS^tm command line interface.
40 .PP
41 You can start the interactive mode by executing mausezahn with the ''\-x''
42 argument (an optional port number may follow, otherwise it is 25542). Then use
43 telnet(1) to connect to this mausezahn instance. If not otherwise specified,
44 the default login and password combination is mz:mz and the enable password is: mops.
45 This can be changed in /etc/netsniff-ng/mausezahn.conf.
46 .PP
47 The direct mode supports two specification schemes: The ''raw-layer-2'' scheme,
48 where every single byte to be sent can be specified, and ''higher-layer'' scheme,
49 where packet builder interfaces are used (using the ''\-t'' option).
50 .PP
51 To use the ''raw-layer-2'' scheme, simply specify the desired frame as a
52 hexadecimal sequence (the ''hex-string''), such as:
53 .PP
54   mausezahn eth0 "00:ab:cd:ef:00 00:00:00:00:00:01 08:00 ca:fe:ba:be"
55 .PP
56 In this example, whitespaces within the byte string are optional and separate
57 the Ethernet fields (destination and source address, type field, and a short
58 payload). The only additional options supported are ''\-a'', ''\-b'', ''\-c'',
59 and ''\-p''. The frame length must be greater than or equal to 15 bytes.
60 .PP
61 The ''higher-layer'' scheme is enabled using the ''\-t <packet-type>'' option.
62 This option activates a packet builder, and besides the ''packet-type'', an
63 optional ''arg-string'' can be specified. The ''arg-string'' contains packet-
64 specific parameters, such as TCP flags, port numbers, etc. (see example section).
65 .PP
66 .SH OPTIONS
67 .PP
68 mausezahn provides a built-in context-specific help. Append the keyword
69 ''help'' after the configuration options. The most important options
70 are:
71 .PP
72 .SS -x [<port>]
73 Start mausezahn in interactive mode with a Cisco-like CLI. Use telnet to log
74 into the local mausezahn instance. If no port has been specified, port 25542
75 is used by default.
76 .PP
77 .SS -v
78 Verbose mode. Capital \-V is even more verbose.
79 .PP
80 .SS -S
81 Simulation mode, i.e. don't put anything on the wire. This is typically combined
82 with the verbose mode.
83 .PP
84 .SS -q
85 Quiet mode where only warnings and errors are displayed.
86 .PP
87 .SS -c <count>
88 Send the packet count times (default: 1, infinite: 0).
89 .PP
90 .SS -d <delay>
91 Apply delay between transmissions. The delay value can be specified in usec
92 (default, no additional unit needed), or in msec (e.g. 100m or 100msec), or
93 in seconds (e.g. 100s or 100sec). Note: mops also supports nanosecond delay
94 resolution if you need it (see interactive mode).
95 .PP
96 .SS -p <length>
97 Pad the raw frame to specified length using zero bytes. Note that for raw
98 layer 2 frames the specified length defines the whole frame length, while for
99 higher layer packets the number of additional padding bytes are specified.
101 .SS -a <src-mac|keyword>
102 Use specified source MAC address with hexadecimal notation such as 00:00:aa:bb:cc:dd.
103 By default the interface MAC address will be used. The keywords ''rand'' and
104 ''own'' refer to a random MAC address (only unicast addresses are created)
105 and the own address, respectively. You can also use the keywords mentioned
106 below although broadcast-type source addresses are officially invalid.
108 .SS -b <dst-mac|keyword>
109 Use specified destination MAC address. By default, a broadcast is sent in raw
110 layer 2 mode or to the destination hosts or gateway interface MAC address in normal
111 (IP) mode. You can use the same keywords as mentioned above, as well as
112 ''bc'' or ''bcast'', ''cisco'', and ''stp''. Please note that for the destination
113 MAC address the ''rand'' keyword is supported but creates a random address only
114 once, even when you send multiple packets.
116 .SS -A <src-ip|range|rand>
117 Use specified source IP address, default is own interface address. Optionally, the
118 keyword ''rand'' can again be used for a random source IP address or a range
119 can be specified, such as ''192.168.1.1-192.168.1.100'' or ''10.1.0.0/16''.
120 Also, a DNS name can be specified for which mausezahn tries to determine the
121 corresponding IP address automatically.
123 .SS -B <dst-ip|range>
124 Use specified destination IP address (default is broadcast i.e. 255.255.255.255).
125 As with the source address (see above) you can also specify a range or a DNS name.
127 .SS -t <packet-type>
128 Create the specified packet type using the built-in packet builder. Currently,
129 supported packet types are: ''arp'', ''bpdu'', ''ip'', ''udp'', ''tcp'', ''rtp'',
130 and ''dns''. Currently, there is also limited support for ''icmp''. Type
131 ''\-t help'' to verify which packet builders your actual mausezahn version
132 supports. Also, for any particular packet type, for example ''tcp'' type
133 ''mausezahn \-t tcp help'' to receive a more in-depth context specific help.
135 .SS -T <packet-type>
136 Make this mausezahn instance the receiving station. Currently, only ''rtp'' is
137 an option here and provides precise jitter measurements. For this purpose, start
138 another mausezahn instance on the sending station and the local receiving station
139 will output jitter statistics. See ''mausezahn \-T rtp help'' for a detailed help.
141 .SS -Q <[CoS:]vlan> [, <[CoS:]vlan>, ...]
142 Specify 802.1Q VLAN tag and optional Class of Service. An arbitrary number of
143 VLAN tags can be specified (that is, you can simulate QinQ or even QinQinQinQ..).
144 Multiple tags must be separated via a comma or a period (e.g. "5:10,20,2:30").
145 VLAN tags are not supported for ARP and BPDU packets (in which case you could
146 specify the whole frame in hexadecimal using the raw layer 2 interface of mausezahn).
148 .SS -M <label[:cos[:ttl]][bos]> [, <label...>]
149 Specify a MPLS label or even a MPLS label stack. Optionally, for each label the
150 experimental bits (usually the Class of Service, CoS) and the Time To Live
151 (TTL) can be specified. If you are really crazy you can set and unset the
152 Bottom of Stack (BoS) bit for each label using the ''S'' (set) and ''s''
153 (unset) option. By default, the BoS is set automatically and correctly. Any other
154 setting will lead to invalid frames. Enter ''\-M help'' for detailed instructions
155 and examples.
157 .SS -P <ascii-payload>
158 Specify a cleartext payload. Alternatively, each packet type supports a
159 hexadecimal specification of the payload (see for example ''\-t udp help'').
161 .SS -f <filename>
162 Read the ASCII payload from the specified file.
164 .SS -F <filename>
165 Read the hexadecimal payload from the specified file. Actually, this file must be also
166 an ASCII text file, but must contain hexadecimal digits, e.g. "aa:bb:cc:0f:e6...".
167 You can use also spaces as separation characters.
169 .SH USAGE EXAMPLE
171 For more comprehensive examples, have a look at the two followng HOWTO sections.
173 .SS mausezahn eth0 \-c 0 \-d 2s \-t bpdu vlan=5
174 Send BPDU frames for VLAN 5 as used with Cisco's PVST+ type of STP. By default
175 mausezahn assumes that you want to become the root bridge.
177 .SS mausezahn eth0 \-c 128000 \-a rand \-p 64
178 Perform a CAM table overflow attack.
180 .SS mausezahn eth0 \-c 0 \-Q 5,100 \-t tcp "flags=syn,dp=1-1023" \-p 20 \-A rand \-B 10.100.100.0/24
181 Perform a SYN flood attack to another VLAN using VLAN hopping. This only works
182 if you are connected to the same VLAN which is configured as native VLAN on the
183 trunk. We assume that the victim VLAN is VLAN 100 and the native VLAN is VLAN 5.
184 Lets attack every host in VLAN 100 which use an IP prefix of 10.100.100.0/24, also
185 try out all ports between 1 and 1023 and use a random source IP address.
187 .SS mausezahn eth0 \-c 0 \-d 10msec \-B 230.1.1.1 \-t udp "dp=32000,dscp=46" \-P "Multicast test packet"
188 Send IP multicast packets to the multicast group 230.1.1.1 using a UDP header
189 with destination port 32000 and set the IP DSCP field to EF (46). Send one
190 frame every 10 msec.
192 .SS mausezahn eth0 \-Q 6:420 \-M 100,200,300:5 \-A 172.30.0.0/16 \-B target.anynetwork.foo \-t udp "sp=666,dp=1-65535" \-p 1000 \-c 10
193 Send UDP packets to the destination host target.anynetwork.foo using all
194 possible destination ports and send every packet with all possible source
195 addresses of the range 172.30.0.0/16; additionally use a source port of 666
196 and three MPLS labels, 100, 200, and 300, the outer (300) with QoS field 5.
197 Send the frame with a VLAN tag 420 and CoS 6; eventually pad with 1000 bytes
198 and repeat the whole thing 10 times.
200 .SS mausezahn \-t syslog sev=3 \-P "Main reactor reached critical temperature." \-A 192.168.33.42 \-B 10.1.1.9 \-c 6 \-d 10s
201 Send six forged syslog messages with severity 3 to a Syslog server 10.1.1.9; use
202 a forged source IP address 192.168.33.42 and let mausezahn decide which local
203 interface to use. Use an inter-packet delay of 10 seconds.
205 .SS mausezahn \-t tcp "flags=syn|urg|rst, sp=145, dp=145, win=0, s=0-4294967295, ds=1500, urg=666" \-a bcast \-b bcast \-A bcast \-B 10.1.1.6 \-p 5
206 Send an invalid TCP packet with only a 5 byte payload as layer-2 broadcast and
207 also use the broadcast MAC address as source address. The target should be
208 10.1.1.6 but use a broadcast source address. The source and destination port
209 shall be 145 and the window size 0. Set the TCP flags SYN, URG, and RST
210 simultaneously and sweep through the whole TCP sequence number space with an
211 increment of 1500. Finally set the urgent pointer to 666, i.e. pointing to
212 nowhere.
214 .SH INTERACTIVE MODE HOWTO
216 .SS Telnet:
218 Using the interactive mode requires starting mausezahn as a server:
220   mausezahn \-x
222 Now you can telnet(1) to that server using the default port number 25542, but also
223 an arbitrary port number can be specified:
225   mausezahn \-x 99
227 mausezahn accepts incoming telnet connections on port 99.
229   mz: Problems opening config file. Will use defaults
231 Either from another terminal or from another host try to telnet to the
232 mausezahn server:
234   caprica$ telnet galactica 99
235   Trying 192.168.0.4...
236   Connected to galactica.
237   Escape character is '^]'.
238   mausezahn <version>
240   Username: mz
241   Password: mz
243   mz> enable
244   Password: mops
245   mz#
247 It is recommended to configure your own login credentials in
248 /etc/mausezahn/mz.cfg, such as:
250   user = foo
251   password = bar
252   enable = bla
254 .SS Basics:
256 Since you reached the mausezahn prompt, lets try some common commands. You can
257 use the '?' character at any time for content-sensitive help. Note that cisco-
258 like short form of commands are accepted in interactive mode. For example, one
259 can use "sh pac" instead of "show packet"; another common example is to use
260 "config t" in place of "configure terminal". For readability, this manual will
261 continue with the full commands.
263 First try out the show command:
265   mz# show ?
267 mausezahn maintains its own ARP table and observes anomalies. There is an entry
268 for every physical interface (however this host has only one):
270   mz# show arp
271   Intf    Index     IP address     MAC address       last       Ch  UCast BCast Info
272   ----------------------------------------------------------------------------------
273   eth0    [1] D     192.168.0.1  00:09:5b:9a:15:84  23:44:41     1     1     0  0000
275 The column Ch tells us that the announced MAC address has only changed one time
276 (= when it was learned). The columns Ucast and BCast tell us how often this
277 entry was announced via unicast or broadcast respectively.
279 Let's check our interfaces:
281   mz# show interface
282   Available network interfaces:
283                  real             real                  used (fake)      used (fake)
284    device        IPv4 address     MAC address           IPv4 address     MAC address
285   ---------------------------------------------------------------------------------------
286   > eth0         192.168.0.4      00:30:05:76:2e:8d     192.168.0.4      00:30:05:76:2e:8d
287     lo           127.0.0.1        00:00:00:00:00:00     127.0.0.1        00:00:00:00:00:00
288   2 interfaces found.
289   Default interface is eth0.
291 .SS Defining packets:
293 Let's check the current packet list:
295   mz# show packet
296   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
297   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
298       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
299   1 packets defined, 0 active.
301 We notice that there is already one system-defined packet process; it has been
302 created and used only once (during startup) by mausezahn's ARP service.
303 Currently, its state is config which means that the process is sleeping.
305 .SS General packet options:
307 Now let's create our own packet process and switch into the global
308 configuration mode:
310   mz# configure terminal
311   mz(config)# packet
312   Allocated new packet PKT0002 at slot 2
313   mz(config-pkt-2)# ?
314   ...
315   name                 Assign a unique name
316   description          Assign a packet description text
317   bind                 Select the network interface
318   count                Configure the packet count value
319   delay                Configure the inter-packet delay
320   interval             Configure a greater interval
321   type                 Specify packet type
322   mac                  Configure packet's MAC addresses
323   tag                  Configure tags
324   payload              Configure a payload
325   port                 Configure packet's port numbers
326   end                  End packet configuration mode
327   ethernet             Configure frame's Ethernet, 802.2, 802.3, or SNAP settings
328   ip                   Configure packet's IP settings
329   udp                  Configure packet's UDP header parameters
330   tcp                  Configure packet's TCP header parameters
332 Here are a lot of options but normally you only need a few of them. When you
333 configure lots of different packets you might assign a reasonable name and
334 description for them:
336   mz(config-pkt-2)# name Test
337   mz(config-pkt-2)# description This is just a test
339 You can, for example, change the default settings for the source and destination MAC or IP
340 addresses using the mac and ip commands:
342   mz(config-pkt-2)# ip address destination 10.1.1.0 /24
343   mz(config-pkt-2)# ip address source random
345 In the example above, we configured a range of addresses (all hosts in the
346 network 10.1.1.0 should be addressed). Additionally we spoof our source IP
347 address. Of course, we can also add one or more VLAN and, or, MPLS tag(s):
349   mz(config-pkt-2)# tag ?
350   dot1q                Configure 802.1Q (and 802.1P) parameters
351   mpls                 Configure MPLS label stack
352   mz(config-pkt-2)# tag dot ?
353   Configure 802.1Q tags:
354   VLAN[:CoS] [VLAN[:CoS]] ...   The leftmost tag is the outer tag in the frame
355   remove <tag-nr> | all         Remove one or more tags (<tag-nr> starts with 1),
356                                 by default the first (=leftmost,outer) tag is removed,
357                                 keyword 'all' can be used instead of tag numbers.
358   cfi | nocfi [<tag-nr>]        Set or unset the CFI-bit in any tag (by default
359                                 assuming the first tag).
360   mz(config-pkt-2)# tag dot 1:7 200:5
362 .SS Configure count and delay:
364   mz(config-pkt-2)# count 1000
365   mz(config-pkt-2)# delay ?
366   delay <value> [hour | min | sec | msec | usec | nsec]
368 Specify the inter-packet delay in hours, minutes, seconds, milliseconds,
369 microseconds or nanoseconds. The default unit is milliseconds (i.e. when no
370 unit is given).
372   mz(config-pkt-2)# delay 1 msec
373   Inter-packet delay set to 0 sec and 1000000 nsec
374   mz(config-pkt-2)#
376 .SS Configuring protocol types:
378 mausezahn's interactive mode supports a growing list of protocols and only
379 relies on the MOPS architecture (and not on libnet as is the case with
380 the legacy direct mode):
382   mz(config-pkt-2)# type
383   Specify a packet type from the following list:
384   arp
385   bpdu
386   igmp
387   ip
388   lldp
389   tcp
390   udp
391   mz(config-pkt-2)# type tcp
392   mz(config-pkt-2-tcp)#
393   ....
394   seqnr                Configure the TCP sequence number
395   acknr                Configure the TCP acknowledgement number
396   hlen                 Configure the TCP header length
397   reserved             Configure the TCP reserved field
398   flags                Configure a combination of TCP flags at once
399   cwr                  Set or unset the TCP CWR flag
400   ece                  Set or unset the TCP ECE flag
401   urg                  Set or unset the TCP URG flag
402   ack                  set or unset the TCP ACK flag
403   psh                  set or unset the TCP PSH flag
404   rst                  set or unset the TCP RST flag
405   syn                  set or unset the TCP SYN flag
406   fin                  set or unset the TCP FIN flag
407   window               Configure the TCP window size
408   checksum             Configure the TCP checksum
409   urgent-pointer       Configure the TCP urgent pointer
410   options              Configure TCP options
411   end                  End TCP configuration mode
412   mz(config-pkt-2-tcp)# flags syn fin rst
413   Current setting is: --------------------RST-SYN-FIN
414   mz(config-pkt-2-tcp)# end
415   mz(config-pkt-2)# payload ascii This is a dummy payload for my first packet
416   mz(config-pkt-2)# end
418 Now configure another packet, for example let's assume we want an LLDP process:
420   mz(config)# packet
421   Allocated new packet PKT0003 at slot 3
422   mz(config-pkt-3)# type lldp
423   mz(config-pkt-3-lldp)# exit
424   mz(config)# exit
426 In the above example we only use the default LLDP settings and don't configure
427 further LLDP options or TLVs. Back in the top level of the CLI let's verify
428 what we had done:
430   mz# show packet
431   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
432   PktID  PktName            Layers  Proto    Size  State      Device   Delay      Count/CntX
433      1   sysARP_servic...   E-----  ARP        60  config     lo       100 msec       1/0 (100%)
434      2   Test               E-Q-IT            125  config     eth0    1000 usec    1000/1000 (0%)
435      3   PKT0003            E-----  LLDP       36  config     eth0      30 sec        0/0 (0%)
436   3 packets defined, 0 active.
438 The column Layers indicates which major protocols have been combined. For
439 example the packet with packet-id 2 ("Test") utilizes Ethernet (E),
440 IP (I), and TCP (T). Additionally an 802.1Q tag (Q) has been inserted. Now
441 start one of these packet processes:
443   mz# start slot 3
444   Activate [3]
445   mz# show packet
446   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
447   PktID  PktName            Layers  Proto    Size  State      Device   Delay      Count/CntX
448      1   sysARP_servic...   E-----  ARP        60  config     lo       100 msec       1/0 (100%)
449      2   Test               E-Q-IT            125  config     eth0    1000 usec    1000/1000 (0%)
450      3   PKT0003            E-----  LLDP       36  config     eth0      30 sec        0/1 (0%)
451   3 packets defined, 1 active.
453 Let's have a more detailed look at a specific packet process:
455   mz# show packet 2
456   Packet [2] Test
457   Description: This is just a test
458   State: config, Count=1000, delay=1000 usec (0 s 1000000 nsec), interval= (undefined)
459   Headers:
460    Ethernet: 00-30-05-76-2e-8d => ff-ff-ff-ff-ff-ff  [0800 after 802.1Q tag]
461    Auto-delivery is ON (that is, the actual MAC is adapted upon transmission)
462    802.1Q: 0 tag(s);  (VLAN:CoS)
463    IP:  SA=192.168.0.4 (not random) (no range)
464         DA=255.255.255.255 (no range)
465         ToS=0x00  proto=17  TTL=255  ID=0  offset=0  flags: -|-|-
466         len=49664(correct)  checksum=0x2e8d(correct)
467    TCP: 83 bytes segment size (including TCP header)
468         SP=0 (norange) (not random), DP=0 (norange) (not random)
469         SQNR=3405691582 (start 0, stop 4294967295, delta 0) -- ACKNR=0 (invalid)
470         Flags: ------------------------SYN----, reserved field is 00, urgent pointer= 0
471         Announced window size= 100
472         Offset= 0 (times 32 bit; value is valid), checksum= ffff (valid)
473         (No TCP options attached) - 0 bytes defined
474    Payload size: 43 bytes
475    Frame size: 125 bytes
476     1  ff:ff:ff:ff:ff:ff:00:30  05:76:2e:8d:81:00:e0:01  81:00:a0:c8:08:00:45:00  00:67:00:00:00:00:ff:06
477    33  fa:e4:c0:a8:00:04:ff:ff  ff:ff:00:00:00:00:ca:fe  ba:be:00:00:00:00:a0:07  00:64:f7:ab:00:00:02:04
478    65  05:ac:04:02:08:0a:19:35  90:c3:00:00:00:00:01:03  03:05:54:68:69:73:20:69  73:20:61:20:64:75:6d:6d
479    97  79:20:70:61:79:6c:6f:61  64:20:66:6f:72:20:6d:79  20:66:69:72:73:74:20:70  61:63:6b:65:74
480   mz#
482 If you want to stop one or more packet processes, use the stop command. The
483 "emergency stop" is when you use stop all:
485   mz# stop all
486   Stopping
487   [3] PKT0003
488   Stopped 1 transmission processe(s)
490 The launch command provides a shortcut for commonly used packet processes. For
491 example to behave like a STP-capable bridge we want to start an BPDU process
492 with typical parameters:
494   mz# launch bpdu
495   Allocated new packet sysBPDU at slot 5
496   mz# show packet
497   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
498   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
499       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
500       2  Test              E-Q-IT            125  config     eth0       1000 usec     1000/1000 (0%)
501       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
502       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
503       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/1 (0%)
504   5 packets defined, 1 active.
506 Now a Configuration BPDU is sent every 2 seconds, claiming to be the root
507 bridge (and usually confusing the LAN. Note that only packet 5 (i.e. the
508 last row) is active and therefore sending packets while all other packets
509 are in state config (i.e. they have been configured but they are not doing
510 anything at the moment).
512 .SS Configuring a greater interval:
514 Sometimes you may want to send a burst of packets at a greater interval:
516   mz(config)# packet 2
517   Modify packet parameters for packet Test [2]
518   mz(config-pkt-2)# interval
519   Configure a greater packet interval in days, hours, minutes, or seconds
520   Arguments: <value>  <days | hours | minutes | seconds>
521   Use a zero value to disable an interval.
522   mz(config-pkt-2)# interval 1 hour
523   mz(config-pkt-2)# count 10
524   mz(config-pkt-2)# delay 15 usec
525   Inter-packet delay set to 0 sec and 15000 nsec
527 Now this packet is sent ten times with an inter-packet delay of 15 microseconds
528 and this is repeated every hour. When you look at the packet list, an interval
529 is indicated with the additional flag 'i' when inactive or 'I' when active:
531   mz# show packet
532   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
533   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
534       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
535       2  Test              E-Q-IT            125  config-i   eth0         15 usec       10/10 (0%)
536       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
537       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
538       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/251 (0%)
539   5 packets defined, 1 active.
540   mz# start slot 2
541   Activate [2]
542   mz# show packet
543   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
544   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
545       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
546       2  Test              E-Q-IT            125  config+I   eth0         15 usec       10/0 (100%)
547       3  PKT0003           E-----  LLDP       36  config     eth0          30 sec        0/12 (0%)
548       4  PKT0004           E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
549       5  sysBPDU           ES----  BPDU       29  active     eth0           2 sec        0/256 (0%)
550   5 packets defined, 1 active.
552 Note that the flag 'I' indicates that an interval has been specified for
553 packet 2. The process is not active at the moment (only packet 5 is active
554 here) but it will become active at a regular interval. You can verify the
555 actual interval when viewing the packet details via the 'show packet 2' command.
557 .SS Load prepared configurations:
559 You can prepare packet configurations using the same commands as you would
560 type them in on the CLI and then load them to the CLI. For example, assume we
561 have prepared a file 'test.mops' containing:
563   configure terminal
564   packet
565   name IGMP_TEST
566   desc This is only a demonstration how to load a file to mops
567   type igmp
569 Then we can add this packet configuration to our packet list using the load
570 command:
572   mz# load test.mops
573   Read commands from test.mops...
574   Allocated new packet PKT0002 at slot 2
575   mz# show packet
576   Packet layer flags: E=Ethernet, S=SNAP, Q=802.1Q, M=MPLS, I/i=IP/delivery_off, U=UDP, T=TCP
577   PktID  PktName           Layers  Proto    Size  State      Device      Delay       Count/CntX
578       1  sysARP_servic...  E-----  ARP        60  config     lo          100 msec        1/0 (100%)
579       2  IGMP_TEST         E---I-  IGMP       46  config     eth0        100 msec        0/0 (0%)
580   2 packets defined, 0 active.
582 The file src/examples/mausezahn/example_lldp.conf contains another example
583 list of commands to create a bogus LLDP packet. You can load this
584 configuration from the mausezahn command line as follows:
586   mz# load /home/hh/tmp/example_lldp.conf
588 In case you copied the file in that path. Now when you enter 'show packet' you
589 will see a new packet entry in the packet list. Use the 'start slot <nr>'
590 command to activate this packet.
592 You can store your own packet creations in such a file and easily load them when
593 you need them. Every command within such configuration files is executed on the
594 command line interface as if you had typed it in -- so be careful about the
595 order and don't forget to use 'configure terminal' as first command.
597 You can even load other files from within a central config file.
599 .SH DIRECT MODE HOWTO
601 .SS How to specify hexadecimal digits:
603 Many arguments allow direct byte input. Bytes are represented as two
604 hexadecimal digits. Multiple bytes must be separated either by spaces, colons,
605 or dashes - whichever you prefer. The following byte strings are equivalent:
607   "aa:bb cc-dd-ee ff 01 02 03-04 05"
608   "aa bb cc dd ee ff:01:02:03:04 05"
610 To begin with, you may want to send an arbitrary fancy (possibly invalid)
611 frame right through your network card:
613   mausezahn ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:ff:08:00:ca:fe:ba:be
615  or equivalent but more readable:
617   mausezahn ff:ff:ff:ff:ff:ff-ff:ff:ff:ff:ff:ff-08:00-ca:fe:ba:be
619 .SS Basic operations:
621 All major command line options are listed when you execute mausezahn without
622 arguments. For practical usage, keep the following special (not so widely
623 known) options in mind:
625   \-r                    Multiplies the specified delay with a random value.
626   \-p <length>           Pad the raw frame to specified length (using random bytes).
627   \-P <ASCII Payload>    Use the specified ASCII payload.
628   \-f <filename>         Read the ASCII payload from a file.
629   \-F <filename>         Read the hexadecimal payload from a file.
630   \-S                    Simulation mode: DOES NOT put anything on the wire.
631                         This is typically combined with one of the verbose
632                         modes (\-v or V).
634 Many options require a keyword or a number but the \-t option is an exception
635 since it requires both a packet type (such as ip, udp, dns, etc) and an
636 argument string which is specific for that packet type. Here are some simple
637 examples:
639   mausezahn \-t help
640   mausezahn \-t tcp help
641   mausezahn eth3 \-t udp sp=69,dp=69,p=ca:fe:ba:be
643 Note: Don't forget that on the CLI the Linux shell (usually the Bash)
644 interprets spaces as a delimiting character. That is, if you are specifying
645 an argument that consists of multiple words with spaces in between, you MUST
646 group these within quotes. For example, instead of
648   mausezahn eth0 \-t udp sp=1,dp=80,p=00:11:22:33
650  you could either omit the spaces
652   mausezahn eth0 \-t udp sp=1,dp=80,p=00:11:22:33
654  or, for greater safety, use quotes:
656   mausezahn eth0 \-t udp "sp=1,dp=80,p=00:11:22:33"
658 In order to monitor what's going on, you can enable the verbose mode using
659 the \-v option. The opposite is the quiet mode (\-q) which will keep mausezahn
660 absolutely quiet (except for error messages and warnings.)
662 Don't confuse the payload argument p=... with the padding option \-p. The latter
663 is used outside the quotes!
665 .SS The automatic packet builder:
667 An important argument is \-t which invokes a packet builder. Currently there
668 are packet builders for ARP, BPDU, CDP, IP, partly ICMP, UDP, TCP, RTP, DNS,
669 and SYSLOG. (Additionally you can insert a VLAN tag or a MPLS label stack but
670 this works independently of the packet builder.)
672 You get context specific help for every packet builder using the help keyword,
673 such as:
675   mausezahn \-t bpdu help
676   mausezahn \-t tcp help
678 For every packet you may specify an optional payload. This can be done either
679 via hexadecimal notation using the payload (or short p) argument or directly as ASCII
680 text using the \-P option:
682   mausezahn eth0 \-t ip \-P "Hello World"                        # ASCII payload
683   mausezahn eth0 \-t ip p=68:65:6c:6c:6f:20:77:6f:72:6c:64       # hex payload
684   mausezahn eth0 \-t ip "proto=89,                           \\
685                         p=68:65:6c:6c:6f:20:77:6f:72:6c:64, \\   # same with other
686                         ttl=1"                                   # IP arguments
688 Note: The raw link access mode only accepts hexadecimal payloads (because you specify
689 everything in hexadecimal here.)
691 .SS Packet count and delay:
693 By default only one packet is sent. If you want to send more packets then
694 use the count option \-c <count>. When count is zero then mausezahn will send
695 forever. By default, mausezahn sends at maximum speed (and this is really
696 fast ;-)). If you don't want to overwhelm your network devices or have other
697 reasons to send at a slower rate then you might want to specify a delay using
698 the \-d <delay> option.
700 If you only specify a numeric value it is interpreted in microsecond units.
701 Alternatively, for easier use, you might specify units such as seconds, sec,
702 milliseconds, or msec. (You can also abbreviate this with s or m.)
703 Note: Don't use spaces between the value and the unit! Here are typical examples:
705 Send an infinite number of frames as fast as possible:
707   mausezahn \-c 0  "aa bb cc dd ...."
709 Send 100,000 frames with a 50 msec interval:
711   mausezahn \-c 100000 \-d 50msec "aa bb cc dd ...."
713 Send an unlimited number of BPDU frames in a 2 second interval:
715   mausezahn \-c 0 \-d 2s \-t bpdu conf
717 Note: mausezahn does not support fractional numbers. If you want to specify for
718 example 2.5 seconds then express this in milliseconds (2500 msec).
720 .SS Source and destination addresses:
722 As a mnemonic trick keep in mind that all packets run from "A" to "B". You can
723 always specify source and destination MAC addresses using the \-a and \-b
724 options, respectively. These options also allow keywords such as rand, own,
725 bpdu, cisco, and others.
727 Similarly, you can specify source and destination IP addresses using the \-A
728 and \-B options, respectively. These options also support FQDNs (i.e. domain
729 names) and ranges such as 192.168.0.0/24 or 10.0.0.11-10.0.3.22. Additionally,
730 the source address option supports the rand keyword (ideal for "attacks").
732 Note: When you use the packet builder for IP-based packets (e.g. UDP or TCP)
733 then mausezahn automatically cares about correct MAC and IP addresses (i.e.
734 it performs ARP, DHCP, and DNS for you). But when you specify at least a single
735 link-layer address (or any other L2 option such as a VLAN tag or MPLS header)
736 then ARP is disabled and you must care for the Ethernet destination address for
737 yourself.
739 .SS Layer-2:
741 .SS `-- Direct link access:
743 mausezahn allows you to send ANY chain of bytes directly through your Ethernet
744 interface:
746   mausezahn eth0 "ff:ff:ff:ff:ff:ff ff:ff:ff:ff:ff:ff 00:00 ca:fe:ba:be"
748 This way you can craft every packet you want but you must do it by hand. Note:
749 On Wi-Fi interfaces the header is much more complicated and automatically
750 created by the Wi-Fi driver. As an example to introduce some interesting options,
751 lets continuously send frames at max speed with random source MAC address and
752 broadcast destination address, additionally pad the frame to 1000 bytes:
754   mausezahn eth0 \-c 0 \-a rand \-b bcast \-p 1000 "08 00 aa bb cc dd"
756 The direct link access supports automatic padding using the \-p <total frame
757 length> option. This allows you to pad a raw L2 frame to the desired length.
758 You must specify the total length, and the total frame length must have at
759 least 15 bytes for technical reasons. Zero bytes are used for padding.
761 .SS `-- ARP:
763 mausezahn provides a simple interface to the ARP packet. You can specify the
764 ARP method (request|reply) and up to four arguments: sendermac, targetmac,
765 senderip, targetip, or short smac, tmac, sip, tip. By default, an ARP reply is
766 sent with your own interface addresses as source MAC and IP address, and a
767 broadcast destination MAC and IP address. Send a gratuitous ARP request (as used for
768 duplicate IP address detection):
770   mausezahn eth0 \-t arp
772 ARP cache poisoning:
774   mausezahn eth0 \-t arp "reply, senderip=192.168.0.1, targetmac=00:00:0c:01:02:03, \\
775                           targetip=172.16.1.50"
777  where by default your interface MAC address will be used as sendermac,
778 senderip denotes the spoofed IP address, targetmac and targetip identifies the
779 receiver. By default, the Ethernet source address is your interface MAC and the
780 destination address is the broadcast address. You can change this
781 using the flags \-a and \-b.
783 .SS `-- BPDU:
785 mausezahn provides a simple interface to the 802.1D BPDU frame format (used to
786 create the Spanning Tree in bridged networks). By default, standard IEEE 802.1D
787 BPDUs are sent and it is assumed that your computer wants to become the
788 root bridge (rid=bid). Optionally the 802.3 destination address can be a
789 specified MAC address, broadcast, own MAC, or Cisco's PVST+ MAC address. The
790 destination MAC can be specified using the \-b command which, besides MAC
791 addresses, accepts keywords such as bcast, own, pvst, or stp (default). PVST+
792 is supported as well. Simply specify the VLAN for which you want to send a BPDU:
794   mausezahn eth0 \-t bpdu "vlan=123, rid=2000"
796 See mausezahn \-t bpdu help for more details.
798 .SS `-- CDP:
800 mausezahn can send Cisco Discovery Protocol (CDP) messages since this protocol
801 has security relevance. Of course lots of dirty tricks are possible; for
802 example arbitrary TLVs can be created (using the hex-payload argument for
803 example p=00:0e:00:07:01:01:90) and if you want to stress the CDP database of
804 some device, mausezahn can send each CDP message with another system-id using
805 the change keyword:
807   mausezahn \-t cdp change \-c 0
809 Some routers and switches may run into deep problems ;-) See
810 mausezahn \-t cdp help for more details.
812 .SS `-- 802.1Q VLAN Tags:
814 mausezahn allows simple VLAN tagging for IP (and other higher layer) packets.
815 Simply use the option \-Q <[CoS:]VLAN>, such as \-Q 10 or \-Q 3:921. By
816 default CoS=0. For example send a TCP packet in VLAN 500 using CoS=7:
818   mausezahn eth0 \-t tcp \-Q 7:500 "dp=80, flags=rst, p=aa:aa:aa"
820 You can create as many VLAN tags as you want! This is interesting to create
821 QinQ encapsulations or VLAN hopping: Send a UDP packet with VLAN tags 100
822 (outer) and 651 (inner):
824   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great" \-Q 100,651
826 Don't know if this is useful anywhere but at least it is possible:
828   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great"  \\
829                  \-Q 6:5,7:732,5:331,5,6
831 Mix it with MPLS:
833   mausezahn eth0 \-t udp "dp=8888, sp=13442" \-P "Mausezahn is great" \-Q 100,651 \-M 314
835 When in raw Layer 2 mode you must create the VLAN tag completely by yourself.
836 For example if you want to send a frame in VLAN 5 using CoS 0 simply specify
837 81:00 as type field and for the next two bytes the CoS (PCP), DEI (CFI), and
838 VLAN ID values (all together known as TCI):
840   mausezahn eth0 \-b bc \-a rand "81:00 00:05 08:00 aa-aa-aa-aa-aa-aa-aa-aa-aa"
842 .SS `-- MPLS labels:
844 mausezahn allows you to insert one or more MPLS headers. Simply use the option
845 \-M <label:CoS:TTL:BoS> where only the label is mandatory. If you specify a
846 second number it is interpreted as the experimental bits (the CoS usually). If
847 you specify a third number it is interpreted as TTL. By default the TTL is
848 set to 255. The Bottom of Stack flag is set automatically, otherwise the frame
849 would be invalid, but if you want you can also set or unset it using the
850 S (set) and s (unset) argument. Note that the BoS must be the last argument in
851 each MPLS header definition. Here are some examples:
853 Use MPLS label 214:
855   mausezahn eth0 \-M 214 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
857 Use three labels (the 214 is now the outer):
859   mausezahn eth0 \-M 9999,51,214 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
861 Use two labels, one with CoS=5 and TTL=1, the other with CoS=7:
863   mausezahn eth0 \-M 100:5:1,500:7 \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
865 Unset the BoS flag (which will result in an invalid frame):
867   mausezahn eth0 \-M 214:s \-t tcp "dp=80" \-P "HTTP..." \-B myhost.com
869 .SS Layer 3-7:
871 IP, UDP, and TCP packets can be padded using the \-p option. Currently 0x42 is
872 used as padding byte ('the answer'). You cannot pad DNS packets (would be
873 useless anyway).
875 .SS `-- IP:
877 mausezahn allows you to send any malformed or correct IP packet. Every field
878 in the IP header can be manipulated. The IP addresses can be specified via
879 the \-A and \-B options, denoting the source and destination address,
880 respectively. You can also specify an address range or a host name (FQDN).
881 Additionally, the source address can also be random. By default the source
882 address is your interface IP address and the destination address is a
883 broadcast address. Here are some examples:
885 ASCII payload:
887   mausezahn eth0 \-t ip \-A rand \-B 192.168.1.0/24  \-P "hello world"
889 Hexadecimal payload:
891   mausezahn eth0 \-t ip \-A 10.1.0.1-10.1.255.254 \-B 255.255.255.255 p=ca:fe:ba:be
893 Will use correct source IP address:
895   mausezahn eth0 \-t ip \-B www.xyz.com
897 The Type of Service (ToS) byte can either be specified directly by two
898 hexadecimal digits, which means you can also easily set the Explicit
899 Congestion Notification (ECN) bits (LSB 1 and 2), or you may only want to
900 specify a common DSCP value (bits 3-8) using a decimal number (0..63):
902 Packet sent with DSCP = Expedited Forwarding (EF):
904   mausezahn eth0 \-t ip dscp=46,ttl=1,proto=1,p=08:00:5a:a2:de:ad:be:af
906 If you leave the checksum as zero (or unspecified) the correct checksum will
907 be automatically computed. Note that you can only use a wrong checksum when
908 you also specify at least one L2 field manually.
910 .SS `-- UDP:
912 mausezahn supports easy UDP datagram generation. Simply specify the
913 destination address (\-B option) and optionally an arbitrary source address
914 (\-A option) and as arguments you may specify the port numbers using the
915 dp (destination port) and sp (source port) arguments and a payload. You can
916 also easily specify a whole port range which will result in sending multiple
917 packets. Here are some examples:
919 Send test packets to the RTP port range:
921   mausezahn eth0 \-B 192.168.1.1 \-t udp "dp=16384-32767, \\
922                    p=A1:00:CC:00:00:AB:CD:EE:EE:DD:DD:00"
924 Send a DNS request as local broadcast (often a local router replies):
926   mausezahn eth0 \-t udp dp=53,p=c5-2f-01-00-00-01-00-00-00-00-00-00-03-77-77-\\
927                                  77-03-78-79-7a-03-63-6f-6d-00-00-01-00-01"
929 Additionally you may specify the length and checksum using the len and sum
930 arguments (will be set correctly by default). Note: several protocols have same
931 arguments such as len (length) and sum (checksum). If you specified a UDP type
932 packet (via \-t udp) and want to modify the IP length, then use the alternate
933 keyword iplen and ipsum. Also note that you must specify at least one L2 field
934 which tells mausezahn to build everything without the help of your kernel (the
935 kernel would not allow modifying the IP checksum and the IP length).
937 .SS `-- ICMP:
939 mausezahn currently only supports the following ICMP methods: PING (echo
940 request), Redirect (various types), Unreachable (various types). Additional
941 ICMP types will be supported in future. Currently you would need to tailor them
942 by yourself, e.g. using the IP packet builder (setting proto=1). Use the
943 mausezahn \-t icmp help for help on currently implemented options.
945 .SS `-- TCP:
947 mausezahn allows you to easily tailor any TCP packet. Similarly as with UDP you
948 can specify source and destination port (ranges) using the sp and dp arguments.
949 Then you can directly specify the desired flags using an "|" as delimiter if
950 you want to specify multiple flags. For example, a SYN-Flood attack against
951 host 1.1.1.1 using a random source IP address and periodically using all 1023
952 well-known ports could be created via:
954   mausezahn eth0 \-A rand \-B 1.1.1.1 \-c 0 \-t tcp "dp=1-1023, flags=syn"  \\
955                  \-P "Good morning! This is a SYN Flood Attack.             \\
956                      We apologize for any inconvenience."
958 Be careful with such SYN floods and only use them for firewall testing. Check
959 your legal position! Remember that a host with an open TCP session only accepts
960 packets with correct socket information (addresses and ports) and a valid TCP
961 sequence number (SQNR). If you want to try a DoS attack by sending a RST-flood
962 and you do NOT know the target's initial SQNR (which is normally the case) then
963 you may want to sweep through a range of sequence numbers:
965   mausezahn eth0 \-A legal.host.com \-B target.host.com \\
966                  \-t tcp "sp=80,dp=80,s=1-4294967295"
968 Fortunately, the SQNR must match the target host's acknowledgement number plus
969 the announced window size. Since the typical window size is something between
970 40000 and 65535 you are MUCH quicker when using an increment via the ds argument:
972   mausezahn eth0 \-A legal.host.com \-B target.host.com \\
973                  \-t tcp "sp=80, dp=80, s=1-4294967295, ds=40000"
975 In the latter case mausezahn will only send 107375 packets instead of
976 4294967295 (which results in a duration of approximately 1 second compared to
977 11 hours!). Of course you can tailor any TCP packet you like. As with other L4
978 protocols mausezahn builds a correct IP header but you can additionally access
979 every field in the IP packet (also in the Ethernet frame).
981 .SS `-- DNS:
983 mausezahn supports UDP-based DNS requests or responses. Typically you may want
984 to send a query or an answer. As usual, you can modify every flag in the header.
985 Here is an example of a simple query:
987   mausezahn eth0 \-B mydns-server.com \-t dns "q=www.ibm.com"
989 You can also create server-type messages:
991   mausezahn eth0 \-A spoofed.dns-server.com \-B target.host.com \\
992                  "q=www.topsecret.com, a=172.16.1.1"
994 The syntax according to the online help (\-t dns help) is:
996   query|q = <name>[:<type>]  ............. where type is per default "A"
997                                            (and class is always "IN")
998   answer|a = [<type>:<ttl>:]<rdata> ...... ttl is per default 0.
999            = [<type>:<ttl>:]<rdata>/[<type>:<ttl>:]<rdata>/...
1001 Note: If you only use the 'query' option then a query is sent. If you
1002 additionally add an 'answer' then an answer is sent. Examples:
1004   q = www.xyz.com
1005   q = www.xyz.com, a=192.168.1.10
1006   q = www.xyz.com, a=A:3600:192.168.1.10
1007   q = www.xyz.com, a=CNAME:3600:abc.com/A:3600:192.168.1.10
1009 Please try out mausezahn \-t dns help to see the many other optional command
1010 line options.
1012 .SS `-- RTP and VoIP path measurements:
1014 mausezahn can send arbitrary Real Time Protocol (RTP) packets. By default a
1015 classical G.711 codec packet of 20 ms segment size and 160 bytes is assumed. You
1016 can measure jitter, packet loss, and reordering along a path between two hosts
1017 running mausezahn. The jitter measurement is either done following the variance
1018 low-pass filtered estimation specified in RFC 3550 or using an alternative
1019 "real-time" method which is even more precise (the RFC-method is used by
1020 default). For example on Host1 you start a transmission process:
1022   mausezahn \-t rtp \-B 192.168.1.19
1024 And on Host2 (192.168.1.19) a receiving process which performs the measurement:
1026   mausezahn \-T rtp
1028 Note that the option flag with the capital "T" means that it is a server RTP
1029 process, waiting for incoming RTP packets from any mausezahn source. In case
1030 you want to restrict the measurement to a specific source or you want to
1031 perform a bidirectional measurement, you must specify a stream identifier.
1032 Here is an example for bidirectional measurements which logs the running
1033 jitter average in a file:
1035   Host1# mausezahn \-t rtp id=11:11:11:11 \-B 192.168.2.2 &
1036   Host1# mausezahn \-T rtp id=22:22:22:22 "log, path=/tmp/mz/"
1038   Host2# mausezahn \-t rtp id=22:22:22:22 \-B 192.168.1.1 &
1039   Host2# mausezahn \-T rtp id=11:11:11:11 "log, path=/tmp/mz/"
1041 In any case the measurements are printed continuously onto the screen; by
1042 default it looks like this:
1044   0.00                     0.19                      0.38                      0.57
1045   |-------------------------|-------------------------|-------------------------|
1046   #########                                                                      0.07 msec
1047   ####################                                                           0.14 msec
1048   ##                                                                             0.02 msec
1049   ###                                                                            0.02 msec
1050   #########                                                                      0.07 msec
1051   ####                                                                           0.03 msec
1052   #########                                                                      0.07 msec
1053   #############                                                                  0.10 msec
1054   ##                                                                             0.02 msec
1055   ###########################################                                    0.31 msec
1056   #########                                                                      0.07 msec
1057   ##############################################                                 0.33 msec
1058   ###############                                                                0.11 msec
1059   ##########                                                                     0.07 msec
1060   ###############                                                                0.11 msec
1061   ##########################################################                     0.42 msec
1062   #####                                                                          0.04 msec
1064 More information is shown using the txt keyword:
1066   mausezahn \-T rtp txt
1067   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1068     Jitter_RFC (low pass filtered) = 30 usec
1069     Samples jitter (min/avg/max)   = 1/186/2527 usec
1070     Delta-RX (min/avg/max)         = 2010/20167/24805 usec
1071   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1072     Jitter_RFC (low pass filtered) = 17 usec
1073     Samples jitter (min/avg/max)   = 1/53/192 usec
1074     Delta-RX (min/avg/max)         = 20001/20376/20574 usec
1075   Got 100 packets from host 192.168.0.3: 0 lost (0 absolute lost), 1 out of order
1076     Jitter_RFC (low pass filtered) = 120 usec
1077     Samples jitter (min/avg/max)   = 0/91/1683 usec
1078     Delta-RX (min/avg/max)         = 18673/20378/24822 usec
1080 See mausezahn \-t rtp help and mz \-T rtp help for more details.
1082 .SS `-- Syslog:
1084 The traditional Syslog protocol is widely used even in professional networks
1085 and is sometimes vulnerable. For example you might insert forged Syslog
1086 messages by spoofing your source address (e.g. impersonate the address of a
1087 legit network device):
1089   mausezahn \-t syslog sev=3 \-P "You have been mausezahned." \-A 10.1.1.109 \-B 192.168.7.7
1091 See mausezahn \-t syslog help for more details.
1093 .SH NOTE
1095 When multiple ranges are specified, e.g. destination port ranges and
1096 destination address ranges, then all possible combinations of ports and
1097 addresses are used for packet generation. Furthermore, this can be mixed with
1098 other ranges e.g. a TCP sequence number range. Note that combining ranges
1099 can lead to a very huge number of frames to be sent. As a rule of thumb you
1100 can assume that about 100,000 frames and more are sent in a fraction of one
1101 second, depending on your network interface.
1103 mausezahn has been designed as a fast traffic generator so you might easily
1104 overwhelm a LAN segment with myriads of packets. And because mausezahn could
1105 also support security audits it is possible to create malicious or invalid
1106 packets, SYN floods, port and address sweeps, DNS and ARP poisoning, etc.
1108 Therefore, don't use this tool when you are not aware of the possible
1109 consequences or have only a little knowledge about networks and data
1110 communication. If you abuse mausezahn for 'unallowed' attacks and get caught,
1111 or damage something of your own, then this is completely your fault. So the
1112 safest solution is to try it out in a lab environment.
1114 Also have a look at the netsniff-ng(8) note section on how you can properly
1115 setup and tune your system.
1117 .SH LEGAL
1118 mausezahn is licensed under the GNU GPL version 2.0.
1120 .SH HISTORY
1121 .B mausezahn
1122 was originally written by Herbert Haas. According to his website [1], he
1123 unfortunately passed away in 2011 thus leaving this tool unmaintained.
1124 It has been adopted and integrated into the netsniff-ng toolkit and is further
1125 being maintained and developed from there. Maintainers are Tobias Klauser
1126 <tklauser@distanz.ch> and Daniel Borkmann <dborkma@tik.ee.ethz.ch>.
1128   [1] http://www.perihel.at/
1130 .SH SEE ALSO
1131 .BR netsniff-ng (8),
1132 .BR trafgen (8),
1133 .BR ifpps (8),
1134 .BR bpfc (8),
1135 .BR flowtop (8),
1136 .BR astraceroute (8),
1137 .BR curvetun (8)
1139 .SH AUTHOR
1140 Manpage was written by Herbert Haas and modified by Daniel Borkmann.
1142 .SH COLOPHON
1143 This page is part of the Linux netsniff-ng toolkit project. A description of the project,
1144 and information about reporting bugs, can be found at http://netsniff-ng.org/.