
Department of Electronics
Computer Architectures

Homework Two

Abstract

The second homework assignment for the second year, Computer
Architectures module from the Department of Electronics at the

University of York.

Y3839090

May 8, 2017

Homework Two Y3839090

Contents

1 Paged Segmentation 1

2 Caching 2
2.1 direct-mapped cache . 2

2.1.1 sizes . 2
2.1.2 hits and misses . 2

2.2 fully-associative cache . 3
2.2.1 sizes . 3
2.2.2 hits and misses . 4

2.3 set-associative cache with 2 blocks per set with a a not-last-used replace-
ment policy . 4
2.3.1 sizes . 4
2.3.2 hits and misses . 4

2.4 set-associative cache with 8 blocks per set with a least-recently-used re-
placement . 5
2.4.1 sizes . 5
2.4.2 hits and misses . 6

3 Hazards 7
3.1 RAW Data Hazards Running On Arch D 7
3.2 Eliminating hazards without forwarding 7
3.3 Eliminating data hazards with forwarding 9
3.4 Branch prediction . 9

3.4.1 Without any form of speculative execution 9
3.4.2 With speculative execution using static prediction – predict not taken 9
3.4.3 With speculative execution using static prediction – predict taken 10
3.4.4 With speculative execution using static prediction – direction-based

prediction . 10

i

Homework Two Y3839090

List of Figures

1 A Flowchart of the algorithm for paged segmentation, assuming the pres-
ence of separate translation look aside buffers (TLBs) for pages and segments. 1

List of Tables

1 block placement in a direct-mapped cache 3
2 block placement in a set-associative cache with 2 blocks per set with a

not-last-used replacement policy . 5
3 block placement in a set-associative cache with 8 blocks per set with a

least-recently-used replacement policy . 6

ii

Homework Two Y3839090

1 Paged Segmentation

Figure 1: A Flowchart of the algorithm for paged segmentation, assuming the presence
of separate translation look aside buffers (TLBs) for pages and segments.

1

Homework Two Y3839090

2 Caching

addresssize = 32b

blockssize = 64words = 2048b

wordsize = 32b

cachesize = 16kB = 131072b

numblocks = cachesize/blocksize = 64

2.1 direct-mapped cache

2.1.1 sizes

Offset : size(offset) = (blocksizeB/wordsizeB) + wordsizeB = (256/32) + 4 = 12b

Index : size(index) = log2(cachesize/blocksize)− 1 = log2(16kB/256B)− 1 = 8b

Tag : size(tag) = addresssize− size(offset)− size(index) = 32− 12− 8 = 12b

2.1.2 hits and misses

I used excel to automate finding the cache block placement for each of the blocks in the
three arrays. From these I was then able to manually work out the total hits and misses.
Memory location are expressed in decimal because excel cannot deal with Hexadecimal
values.

2

Homework Two Y3839090

Table 1: block placement in a direct-mapped cache

A Block Offset Total
0 64 128 192 Hits Misses

majority hit/miss m m m m 0 256
phys addr (byte) 2711684608 2711684864 2711685120 2711685376
phys block (block) 10592518 10592519 10592520 10592521
cache block (block) 6 7 8 9

B Block Index Total
0 64 128 192 Hits Misses

majority hit/miss m m m m 0 256
phys addr 2711750144 2711750400 2711750656 2711750912
phys block 10592774 10592775 10592776 10592777
cache block 6 7 8 9

C Block Index Total
0 64 128 192 Hits Misses

majority hit/miss h h h h 252 4
phys addr 3165496832 3165497088 3165497344 3165497600
phys block 12365222 12365223 12365224 12365225
cache block 38 39 40 41

Array A and B map to the same location in the cache and so there is always a cache miss
when trying to access one of them. This leads to A and B both having 256 cache misses
and 0 cache hits.

Array C is mapped to an area in cache that is not occupied by Array A or B and so is
cached effectively. It has 4 cache misses and 252 cache hits.

In total this is 516 cache misses and 252 cache hits.

2.2 fully-associative cache

2.2.1 sizes

Offset : The same as direct mapped cache = 12b

Index : Fully associative cache dose not have an index 0b

Tag : size(tag) = addresssize− size(offset) = 32− 12 = 20b

3

Homework Two Y3839090

2.2.2 hits and misses

With a fully-associative cache blocks can be placed anywhere, this means we avoid the
overwriting problems we saw with the direct mapped cache.

Each array is 256, 32 bit, words. Giving a total size of exactly 8Kb. The cache is much
larger than this (16kB) and so can easily fit all three arrays in cache at once. (We only
need to be able to store 3 blocks, the current block of each array, to be able to effectively
cache the arrays)

This means that there will only ever be cache misses when a new block of an array needs
to be loaded. Since each Array takes up 4 blocks, each array will have 4 cache misses and
252 cache hits

In total this is 12 cache misses and 756 cache hits. Which is a big improvement over the
direct mapped cache.

2.3 set-associative cache with 2 blocks per set with a a not-last-used replace-
ment policy

2.3.1 sizes

Offset : The same as direct mapped cache = 12b

Index : size(index) = log2(numsets)− 1 = log2(blocksize/2)− 1 = 4

Tag : size(tag) = addresssize− size(offset)− size(index) = 32− 12− 4 = 16b

Sets : numSets = numblocks/blocksPerSet = 64/2 = 32sets

2.3.2 hits and misses

Again I used excel to help automate the process as mush as possible, by generating the
cache block location for the array’s physical block locations.

4

Homework Two Y3839090

Table 2: block placement in a set-associative cache with 2 blocks per set with a not-last-
used replacement policy

A Block Offset Total
0 64 128 192 Miss Hit

majority hit/miss m m m m 256 0
phys addr (byte) 2711684608 2711684864 2711685120 2711685376
phys block (block) 10592518 10592519 10592520 10592521
cache Set (set) 6 7 8 9
cache Set block (block) 0/1 0/1 0/1 0

B Block Indexes Total
0 64 128 192 Miss Hit

majority hit/miss h h h h 256 0
phys addr (byte) 2711750144 2711750400 2711750656 2711750912
phys block (block) 10592774 10592775 10592776 10592777
cache Set (set) 6 7 8 9
cache Set block (block) 0/1 0/1 0/1 1

C Block Indexes Total
0 64 128 192 Miss Hit

majority hit/miss m m m m 256 0
phys addr (byte) 3165496832 3165497088 3165497344 3165497600
phys block (block) 12365222 12365223 12365224 12365225
cache Set (set) 6 7 8 9
cache Set block (block) 0/1 0/1 0/1 0

Although surprising at first this cache does not manage to effectively cache any of the
arrays. Because all three of the arrays map top the same cache set, they end up over
writing each other due to the cache replacement policy. E.g. If a block of A block 0 of
the set, then B goes in position 1. When C is placed into the set it is full so the cache
replacement policy is used, and so A is replaced with C. Then we try to access A which
is not in the array so there is a miss and B gets overwritten with A. And so on ...

In total there are 768 cache misses and 0 cache hits.

2.4 set-associative cache with 8 blocks per set with a least-recently-used re-
placement

2.4.1 sizes

Offset : The same as direct mapped cache = 12b

5

Homework Two Y3839090

Index : size(index) = log2(numsets)− 1 = log2(blocksize/8)− 1 = 2

Tag : size(tag) = addresssize− size(offset)− size(index) = 32− 12− 2 = 18b

Sets : numSets = numblocks/blocksPerSet = 64/8 = 8sets

2.4.2 hits and misses

Table 3: block placement in a set-associative cache with 8 blocks per set with a least-
recently-used replacement policy

A Block Offset Total
0 64 128 192 Misses Hits

majority hit/miss m m m m 4 252
phys addr (byte) 2711684608 2711684864 2711685120 2711685376
phys block (block) 10592518 10592519 10592520 10592521
cache Set (set) 6 7 0 1
cache Set block (block) 0 0 0 0

B Block Index Total
0 64 128 192 Misses Hits

majority hit/miss m m m m 4 252
phys addr (byte) 2711750144 2711750400 2711750656 2711750912
phys block (block) 10592774 10592775 10592776 10592777
cache Set (set) 6 7 0 1
cache Set block (block) 1 1 1 1

C Block Index Total
0 64 128 192 Misses Hits

majority hit/miss m m m m 4 252
phys addr (byte) 3165496832 3165497088 3165497344 3165497600
phys block (block) 12365222 12365223 12365224 12365225
cache Set (set) 6 7 0 1
cache Set block (block) 2 2 2 2

Here A, B and C map to the same set, but there are 8 blocks per set so the current block
of all three can be kept in memory at the same time with out overwriting each other.
This means that all three Arrays can be effectively cached and should only have cache
misses when the next block of the array needs loading.

In total there are 12 cache misses and 756 cache hits.

6

Homework Two Y3839090

3 Hazards

Multiplication Algorithm - Original
1 l o ad i r2 , 16
2 o r i r30 , r0 , 4
3 l oadr r3 , r30
4 xo r i r29 , r0 , 65535
5 loado r4 , r30 , 3
6 move r7 , r0
7 andi r5 , r29 , 16
8 L3 : andi r6 , r4 , 1
9 br r6 , =0, +2 (L4)

10 add r7 , r3 , r7
11 L4 : shr r4 , r4 , 1
12 shl r3 , r3 , 1
13 dec r5 , r5
14 br r5 , !=0 , −6 (L3)
15 s t o r i r7 , 0

3.1 RAW Data Hazards Running On Arch D

This is a five stage pipeline so any accesses to data or branches that depend on data,
that was assigned less than five instructions ago are data/control hazards that need to
be considered.

1. Data line 03 attempts to use the value in r30 which is assigned in line 02

2. Data line 05 attempts to use the value in r30 which is assigned in line 02

3. Data line 07 attempts to use the value in r29 which is assigned in line 04

4. Data line 08 attempts to use the value in r4 which is assigned in line 05

5. Control line 09 attempts to use the value in r6 which is assigned in line 08

6. Control line 14 attempts to use the value in r5 which is assigned in line 03

3.2 Eliminating hazards without forwarding

By moving the instruction that depend only on r0 to be the very first instruction we can
reduce the time spent in stall substantially. The ori that assigns a value to r30 is move
to the very top as it is the first register that another instruction depends on. next comes
the xori that assigns a value to r29 as it is the next register than another value depends
on. The instruction that loads a value into r2 is an odd one because the value in r2 is

7

Homework Two Y3839090

never used within the multiplication algorithm. This means we can essentially use it as a
nop instruction, placing it before the instruction that depends on the value of r30.

Multiplication Algorithm - Eliminated Some Data Hazards Without Forwarding Or Nops
1 o r i r30 , r0 , 4
2 xo r i r29 , r0 , 65535
3 move r7 , r0
4 l o ad i r2 , 16
5 loado r4 , r30 , 3
6 l oadr r3 , r30
7 andi r5 , r29 , 16
8 L3 : andi r6 , r4 , 1
9 br r6 , =0, +2 (L4)

10 add r7 , r3 , r7
11 L4 : shr r4 , r4 , 1
12 shl r3 , r3 , 1
13 dec r5 , r5
14 br r5 , !=0 , −6 (L3)
15 s t o r i r7 , 0

Adding a nop before the two load instruction that depend on r30 eliminates that data
hazard, along with the data hazard with the addi the depends on r29.

Multiplication Algorithm - Eliminated Some Data Hazards Without Forwarding, With
Nops

1 o r i r30 , r0 , 4
2 xo r i r29 , r0 , 65535
3 move r7 , r0
4 l o ad i r2 , 16
5 nop
6 loado r4 , r30 , 3
7 l oadr r3 , r30
8 andi r5 , r29 , 16
9 nop

10 nop
11 L3 : andi r6 , r4 , 1
12 br r6 , =0, +2 (L4)
13 add r7 , r3 , r7
14 L4 : shr r4 , r4 , 1
15 shl r3 , r3 , 1
16 dec r5 , r5
17 br r5 , !=0 , −6 (L3)
18 s t o r i r7 , 0

8

Homework Two Y3839090

3.3 Eliminating data hazards with forwarding

The data hazard on line 05 which attempts to use the value in r30 which is assigned in
line 02, can be solved by using the F2 path. Which connects the Register Write stage to
the Execute stage.

The data hazard on line 07 which attempts to use the value in r29 which is assigned in
line 04, can be solved by using the F1 forwarding stage. Which connects the Memory
Access stage to the Execute stage.

The data hazard on line 08 which attempts to use the value in r4 which is assigned in
line 05, can be solved by using the F2 path. Which connects the Register Write stage to
the Execute stage.

3.4 Branch prediction

It takes 9 clock cycles to get from line 01 up to and including line 09

It will also take 5 clock cycles for line 15’s instruction to propagate all the way threw the
pipeline.

3.4.1 Without any form of speculative execution

If B1 is taken then it takes 4+3 = 7 clock cycles to get to B2 otherwise it takes 5+3 = 8
clock cycles to get to B2.

The assessment states that the B1 branch is taken 50% which means that 8 times it will
take 7 clock cycles and 8 times it will take 8 clock cycles. Giving a total of 8×7+8×8 =
56 + 64 = 120 clock cycles.

If B2 is taken then it takes 1+ 3 = 4 clock cycles to get to B1 again otherwise it takes 3
clock cycles to get to line 15.

The assessment states that the B2 branch is taken 15
16

times. This gives a total of 15 ×
4 + 1× 3 = 64 clock cycles.

Combining all four of these clock cycle counts gives us the number 0of clock cycles the
program will take to execute. This gives a total of 9+120+63+5 = 197 clock cycles.

3.4.2 With speculative execution using static prediction – predict not taken

If B1 is taken then it takes 4 + 3 = 7 clock cycles (the same as no prediction, because
we predicted wrong!), otherwise, if B1 is not taken, it takes 5 clock cycles (Less than no
prediction because we predicted right!).

9

Homework Two Y3839090

This gives a total of 8× 7 + 8× 5 = 56 + 40 = 96 clock cycles.

If B2 is taken then it takes 1+ 3 = 4 clock cycles to get to B1 again otherwise it takes 1
clock cycles to get to line 15.

This gives a total of 15× 4 + 1× 1 = 61 clock cycles.

Combining all four of these clock cycle counts gives us the number 0of clock cycles the
program will take to execute. This gives a total of 9+96+61+5 = 171 clock cycles.

3.4.3 With speculative execution using static prediction – predict taken

If B1 is taken then it takes 4 clock cycles (Less than no prediction because we predicted
right!), otherwise, if B1 is not taken, it takes 5 + 3 = 8 clock cycles(the same as no
prediction, because we predicted wrong!).

This gives a total of 8× 4 + 8× 8 = 32 + 64 = 96 clock cycles.

If B2 is taken then it takes 1 clock cycles to get to B1 again otherwise it takes 3 clock
cycles to get to line 15.

This gives a total of 15× 1 + 1× 3 = 18 clock cycles.

Combining all four of these clock cycle counts gives us the number 0of clock cycles the
program will take to execute. This gives a total of 9+96+18+5 = 128 clock cycles.

3.4.4 With speculative execution using static prediction – direction-based prediction

Coincidently(which either means I’ve messed up or you’ve designed it this way) direction-
based speculation gives the same result as predict taken. Because B1 branch has the same
clock cycle cost in both predict taken and predict not taken modes.

B1 has a positive jump so we are using the predict not taken method on it.

If B1 is taken then it takes 4 + 3 = 7 clock cycles (the same as no prediction, because
we predicted wrong!), otherwise, if B1 is not taken, it takes 5 clock cycles (Less than no
prediction because we predicted right!).

This gives a total of 8× 7 + 8× 5 = 56 + 40 = 96 clock cycles.

B2 has a negative jump so we are using the predict taken method on it.

If B2 is taken then it takes 1 clock cycles to get to B1 again otherwise it takes 3 clock
cycles to get to line 15.

This gives a total of 15× 1 + 1× 3 = 18 clock cycles.

Combining all four of these clock cycle counts gives us the number 0of clock cycles the
program will take to execute. This gives a total of 9+96+18+5 = 128 clock cycles.

10

	Paged Segmentation
	Caching
	direct-mapped cache
	sizes
	hits and misses

	fully-associative cache
	sizes
	hits and misses

	set-associative cache with 2 blocks per set with a a not-last-used replacement policy
	sizes
	hits and misses

	set-associative cache with 8 blocks per set with a least-recently-used replacement
	sizes
	hits and misses

	Hazards
	RAW Data Hazards Running On Arch D
	Eliminating hazards without forwarding
	Eliminating data hazards with forwarding
	Branch prediction
	Without any form of speculative execution
	With speculative execution using static prediction – predict not taken
	With speculative execution using static prediction – predict taken
	With speculative execution using static prediction – direction-based prediction

