
Stru
tural Properties of Binary Repulsive Systems in Two DimensionsG. Ziegenhain∗(Dated: August 28, 2007)The radial distribution fun
tion gαβ(r) and the dire
t 
orrelation fun
tion cαβ(r) are routinely
al
ulated numeri
ally from the potential Vαβ(r) by iterating the Ornstein-Zerni
ke (OZ) and Per
us-Yevi
k (PY) / Hypernetted-Chain (HNC) equations. As the �rst maximum of these 
orrelatorsin
reases for d = 2 in 
omparison to d = 3 a stable solution of the set of equations is not easy to�nd for long ranged potentials. We will present a suiting algorithm for solving these equations hereand 
ompare the obtained gαβ(r) to MD simulations.I. INTRODUCTIONa. Physi
al Motivation and State-of-the-Art In the re
ent years an experimental realization of a two dimensionalglass former [6℄ raised the question on the validity of the mode 
oupling theory[5, 9℄ for two dimensional repulsivesystems. Some resear
h on this topi
 has been done[2℄. As mentioned there, 
onsiderable e�ort has to be made toobtain the stati
 stru
ture fa
tors for this system using the 
lassi
al PY/HNC approximations. In this paper we willpresent a fast and yet stable numeri
al method to over
ome this di�
ulty.b. Considered System Dire
tly motivated by the experimental system [6℄ we 
onsider the following system. Twosorts of dipolar hard spheres with radii r1 = 1.4[µm], r2 = 2.3[µm] and sus
eptibilities χ1 = 6.6[pAm2

T ] and χ2 =

62[pAm2

T ] intera
t with a potential
Vαβ(r) :=

{
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(1)Here σαβ = rα + rβ . The system is des
ribed by the parameters δ = r1/r2, δ
′

= χ1/χ2 and the pa
king fra
tion
η := ρπ
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], where ρ = N/V is the parti
le density. For η ≪ 1 the system is driven by the averagedipolar intera
tion energy Γ := µ0

4π
B2 (ρπ)

3
2

kbT
χ2.
. Stati
 Correlators With this system in mind, we turn to the OZ equation [7℄ in matrix form with P =

diag(x1, x2)ρ and H := G − 1. As usual this equation is 
losed with the Fourier transformation and PY / HNCapproximation. Following [3℄ the smooth 
orrelator γ(r) := h(r) − c(r) is introdu
ed and the set of equations to besolved is
H(q) = C(q)[1− PC(q)]−1 (2)
h(r) = e−βv(r)

· eh(r)−c(r) + 1 (3)
h(r) = e−βv(r)

· [h(r) + 1 − c(r)] + 1II. TWO DIMENSIONAL DIFFICULTYd. Fourier Bessel Transformation The angular part in the Fourier transformation 
annot be integrated analyti-
ally in two dimensions, moreover it is in
luded in a Bessel fun
tion of 0th order: F [f(r)] =
∫

R+ drrf(r)J0(qr). Dueto this an equidistant dis
retisation of impulse and spatial spa
e leads to os
illations in the 
orrelators. These 
an beavoided following [8℄ by 
hoosing a dis
retisation of M points along the zeroes λi of J0: ri := λi/Q and qm := λm/R,where the maximal radius R for the 
orrelators has to be 
hosen and Q = λM−1/R. The zeroes of J0 are exa
t to atleast 10−5 with λi ≈
π(4i−1)

4 + 1
2π(4i−1) −

31
6π3(4i−1) + 3779

15π5(4i−1)5 [4℄ or 
an be 
al
ulated numeri
ally [1℄ alternatively.
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2This leads us to the Fourier-Bessel transformation
Fm =

4π

Q2

M−1
∑
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1 (Qrj)

(4)
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1

πR2

M−1
∑

n=0

Fn

J0(qnri)

J2
1 (qnR)e. Gillans Resort in 2d for Monodisperse Systems This set of equations 
an be solved by simple Pi
ard iterationwith adaptive iteration steps for pure hard spheres. Nevertheless the numeri
s is more sensitive as in d = 3 dueto the in
reased �rst extrema of the 
orrelators, whi
h is a result of the di�erent 
losed-pa
ked stru
ture in d = 2.As expe
ted to stability is more di�
ult to a
hieve for growing η. Even though this simple method is quite stablefor more 
omplex systems (...) in d = 3 it doesn't work for systems with a small repulsive 
ontribution (X). Gillanproposed a resort in [3℄ by splitting up the 
orrelators in a 
oarse and a �ne part. Therefore we sele
t basis fun
tions

0 ≤ Pα
i ≤ 1 of pie
ewise averaging in the high os
illation region
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0 iα < i < MThe 
onjugated basis is 
onstru
ted with 
ompleteness and orthogonality:
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i (6)As we 
hoose only one basis set for all four 
omponents (this is reasonable be
ause the 
orrelators are in the sameorders of magnitude), the generalization to binary systems is done by only 
hanging the de
omposition to
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∑
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γiQ
α
i (7)

∆γi = γi −

ν−1
∑

α=0

aαPα
iAn elementary step is now γ(r) → c(r) → C(q) → Γ(q) → γ

′ .If one dire
tly generalizes the Gillan approa
h with a Newtonian iteration for the 
oarse 
oe�
ients, the new 
oarsepart is evaluated with respe
t to
aµν

α = aµν
α −
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) (8)For a monodisperse system the Ja
obian matrix 
an be 
al
ulated analyti
ally analogous to [3℄
Jαβ :=
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∂aβ

[
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′

α

]
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= δαβ −
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3This set of equations has been solved numeri
ally.f. Extension to Binary Systems The Ja
obian matrix 
an be 
al
ulated with the equation system in 
omponentform to
Jµν,ρσ

αβ =
∂

∂aρσ
β

[
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] (11)
= δαβδµρδνσ −
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(13)Even after using the symmetry there are 9 
omponents left to be 
al
ulated. This results in a very high 
omputationaloverhead and the approa
h has to be 
ondemned. Tersely: Cal
ulating the inverse Ja
obian matrix is numeri
ally too
ir
umstantial.g. Optimizing the Coarse Part We 
on
lude that the di�
ulty in �nding the stati
 
orrelators for a pure repulsivesystem in two dimensions is twofold: Conventional iteration s
hemes are not stable and/or not e�
ient enough.Reason for this problem is the �rst peak in the 
orrelators, whi
h is in
reased in 
omparison to three dimensions, in
ombination with the long ranged os
illations 
aused by the repulsive intera
tion.This problem 
an be evaded, if the Ja
obian is not evaluated analyti
ally but numeri
ally: our approa
h is toiterate the 
oarse 
oe�
ients aµν
α by a levenberg-marquardt method [10℄. In the spirit of Gillan the old iterations
heme is kept and only the 
al
ulation of the 
oarse 
oe�
ients is repla
ed. This results in a extremely stable andfast algorithm. III. SUMMARYThe mathemati
al basis for understanding the provided 
ode has been given. Results obtained with this 
ode 
anbe found in [11℄.[1℄ GNU S
ienti�
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