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The radial distribution function g.s(r) and the direct correlation function c.g(r) are routinely
calculated numerically from the potential V,3(r) by iterating the Ornstein-Zernicke (OZ) and Percus-
Yevick (PY) / Hypernetted-Chain (HNC) equations. As the first maximum of these correlators
increases for d = 2 in comparison to d = 3 a stable solution of the set of equations is not easy to
find for long ranged potentials. We will present a suiting algorithm for solving these equations here
and compare the obtained g.(r) to MD simulations.

I. INTRODUCTION

a. Physical Motivation and State-of-the-Art In the recent years an experimental realization of a two dimensional
glass former [6] raised the question on the validity of the mode coupling theory[5, 9] for two dimensional repulsive
systems. Some research on this topic has been done[2]. As mentioned there, considerable effort has to be made to
obtain the static structure factors for this system using the classical PY/HNC approximations. In this paper we will
present a fast and yet stable numerical method to overcome this difficulty.

b. Considered System Directly motivated by the experimental system [6] we consider the following system. Two

sorts of dipolar hard spheres with radii 7 = 1.4[um], ro = 2.3[pm] and susceptibilities x; = 6.6[pATm2] and x2 =
62[pATm2] interact with a potential
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Here 043 = ro + 3. The system is described by the parameters § = ri/rg, § = X1/X2 and the packing fraction
n = pZ [z10%) + 3203,|, where p = N/V is the particle density. For n < 1 the system is driven by the average

3
dipolar interaction energy I' := Z—frB?(’Zg—);xz.

c. Static Correlators With this system in mind, we turn to the OZ equation [7] in matrix form with P =
diag(z1,22)p and H := G — 1. As usual this equation is closed with the Fourier transformation and PY / HNC
approximation. Following [3] the smooth correlator v(r) := h(r) — c¢(r) is introduced and the set of equations to be

solved is
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II. TWO DIMENSIONAL DIFFICULTY

d. Fourier Bessel Transformation The angular part in the Fourier transformation cannot be integrated analyti-
cally in two dimensions, moreover it is included in a Bessel function of Oth order: F[f(r)] = [, drrf(r)Jo(gr). Due
to this an equidistant discretisation of impulse and spatial space leads to oscillations in the correlators. These can be
avoided following [8] by choosing a discretisation of M points along the zeroes \; of Jo: 7; := \;/Q and gy, := A /R,
where the maximal radius R for the correlators has to be chosen and @ = Aps—1/R. The zeroes of Jy are exact to at

least 107 with \; &~ ZH=L ) 67r3(341z‘71) + 15#53(747121)5 [4] or can be calculated numerically [1] alternatively.
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This leads us to the Fourier-Bessel transformation
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e. Gillans Resort in 2d for Monodisperse Systems This set of equations can be solved by simple Picard iteration
with adaptive iteration steps for pure hard spheres. Nevertheless the numerics is more sensitive as in d = 3 due
to the increased first extrema of the correlators, which is a result of the different closed-packed structure in d = 2.
As expected to stability is more difficult to achieve for growing 1. Even though this simple method is quite stable
for more complex systems (...) in d = 3 it doesn’t work for systems with a small repulsive contribution (X). Gillan
proposed a resort in [3] by splitting up the correlators in a coarse and a fine part. Therefore we select basis functions
0 < P <1 of piecewise averaging in the high oscillation region
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The conjugated basis is constructed with completeness and orthogonality:
-1

r=>_| | XPF Py (6)
5\
op

As we choose only one basis set for all four components (this is reasonable because the correlators are in the same
orders of magnitude), the generalization to binary systems is done by only changing the decomposition to
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An elementary step is now y(r) — ¢(r) — C(q¢) — L'(q) — 7 .
If one directly generalizes the Gillan approach with a Newtonian iteration for the coarse coefficients, the new coarse
part is evaluated with respect to
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For a monodisperse system the Jacobian matrix can be calculated analytically analogous to [3]
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This set of equations has been solved numerically.
f. Extension to Binary Systems The Jacobian matrix can be calculated with the equation system in component
form to
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Even after using the symmetry there are 9 components left to be calculated. This results in a very high computational
overhead and the approach has to be condemned. Tersely: Calculating the inverse Jacobian matrix is numerically too
circumstantial.

g. Optimizing the Coarse Part We conclude that the difficulty in finding the static correlators for a pure repulsive
system in two dimensions is twofold: Conventional iteration schemes are not stable and/or not efficient enough.
Reason for this problem is the first peak in the correlators, which is increased in comparison to three dimensions, in
combination with the long ranged oscillations caused by the repulsive interaction.

This problem can be evaded, if the Jacobian is not evaluated analytically but numerically: our approach is to
iterate the coarse coefficients a#” by a levenberg-marquardt method [10]. In the spirit of Gillan the old iteration
scheme is kept and only the calculation of the coarse coefficients is replaced. This results in a extremely stable and
fast algorithm.

III. SUMMARY

The mathematical basis for understanding the provided code has been given. Results obtained with this code can
be found in [11].
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