
Strutural Properties of Binary Repulsive Systems in Two DimensionsG. Ziegenhain∗(Dated: August 28, 2007)The radial distribution funtion gαβ(r) and the diret orrelation funtion cαβ(r) are routinelyalulated numerially from the potential Vαβ(r) by iterating the Ornstein-Zernike (OZ) and Perus-Yevik (PY) / Hypernetted-Chain (HNC) equations. As the �rst maximum of these orrelatorsinreases for d = 2 in omparison to d = 3 a stable solution of the set of equations is not easy to�nd for long ranged potentials. We will present a suiting algorithm for solving these equations hereand ompare the obtained gαβ(r) to MD simulations.I. INTRODUCTIONa. Physial Motivation and State-of-the-Art In the reent years an experimental realization of a two dimensionalglass former [6℄ raised the question on the validity of the mode oupling theory[5, 9℄ for two dimensional repulsivesystems. Some researh on this topi has been done[2℄. As mentioned there, onsiderable e�ort has to be made toobtain the stati struture fators for this system using the lassial PY/HNC approximations. In this paper we willpresent a fast and yet stable numerial method to overome this di�ulty.b. Considered System Diretly motivated by the experimental system [6℄ we onsider the following system. Twosorts of dipolar hard spheres with radii r1 = 1.4[µm], r2 = 2.3[µm] and suseptibilities χ1 = 6.6[pAm2
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62[pAm2

T ] interat with a potential
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(1)Here σαβ = rα + rβ . The system is desribed by the parameters δ = r1/r2, δ
′

= χ1/χ2 and the paking fration
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], where ρ = N/V is the partile density. For η ≪ 1 the system is driven by the averagedipolar interation energy Γ := µ0
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χ2.. Stati Correlators With this system in mind, we turn to the OZ equation [7℄ in matrix form with P =

diag(x1, x2)ρ and H := G − 1. As usual this equation is losed with the Fourier transformation and PY / HNCapproximation. Following [3℄ the smooth orrelator γ(r) := h(r) − c(r) is introdued and the set of equations to besolved is
H(q) = C(q)[1− PC(q)]−1 (2)
h(r) = e−βv(r)

· eh(r)−c(r) + 1 (3)
h(r) = e−βv(r)

· [h(r) + 1 − c(r)] + 1II. TWO DIMENSIONAL DIFFICULTYd. Fourier Bessel Transformation The angular part in the Fourier transformation annot be integrated analyti-ally in two dimensions, moreover it is inluded in a Bessel funtion of 0th order: F [f(r)] =
∫

R+ drrf(r)J0(qr). Dueto this an equidistant disretisation of impulse and spatial spae leads to osillations in the orrelators. These an beavoided following [8℄ by hoosing a disretisation of M points along the zeroes λi of J0: ri := λi/Q and qm := λm/R,where the maximal radius R for the orrelators has to be hosen and Q = λM−1/R. The zeroes of J0 are exat to atleast 10−5 with λi ≈
π(4i−1)
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15π5(4i−1)5 [4℄ or an be alulated numerially [1℄ alternatively.
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2This leads us to the Fourier-Bessel transformation
Fm =
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1 (qnR)e. Gillans Resort in 2d for Monodisperse Systems This set of equations an be solved by simple Piard iterationwith adaptive iteration steps for pure hard spheres. Nevertheless the numeris is more sensitive as in d = 3 dueto the inreased �rst extrema of the orrelators, whih is a result of the di�erent losed-paked struture in d = 2.As expeted to stability is more di�ult to ahieve for growing η. Even though this simple method is quite stablefor more omplex systems (...) in d = 3 it doesn't work for systems with a small repulsive ontribution (X). Gillanproposed a resort in [3℄ by splitting up the orrelators in a oarse and a �ne part. Therefore we selet basis funtions
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0 iα < i < MThe onjugated basis is onstruted with ompleteness and orthogonality:
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i (6)As we hoose only one basis set for all four omponents (this is reasonable beause the orrelators are in the sameorders of magnitude), the generalization to binary systems is done by only hanging the deomposition to
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iAn elementary step is now γ(r) → c(r) → C(q) → Γ(q) → γ

′ .If one diretly generalizes the Gillan approah with a Newtonian iteration for the oarse oe�ients, the new oarsepart is evaluated with respet to
aµν

α = aµν
α −

ν−1
∑

β=0

1
∑

ρ,σ=0







(

∂

∂aρσ
β

[

aµν
α − a

′µν
α

]

)

−1






αβ

(

aρσ
β − a

′ρσ
β

) (8)For a monodisperse system the Jaobian matrix an be alulated analytially analogous to [3℄
Jαβ :=

∂

∂aβ

[

aα − a
′

α

]

= δαβ −

M−1
∑

i,j=0

Qα
i

∂γ
′

i

∂γj

P β
j (9)

= δαβ −

(

2

QR

)2 M−1
∑

m=0

(

−1 +
1

(−1 + ρCm)2

)

× (10)
×

M−1
∑

i,j=0

Qα
j P β

i

J0(qmrj)J0(qmri)

J2
1 (qmR)J2

1 (Qri)

(

e−βVi − 1
)



3This set of equations has been solved numerially.f. Extension to Binary Systems The Jaobian matrix an be alulated with the equation system in omponentform to
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(13)Even after using the symmetry there are 9 omponents left to be alulated. This results in a very high omputationaloverhead and the approah has to be ondemned. Tersely: Calulating the inverse Jaobian matrix is numerially tooirumstantial.g. Optimizing the Coarse Part We onlude that the di�ulty in �nding the stati orrelators for a pure repulsivesystem in two dimensions is twofold: Conventional iteration shemes are not stable and/or not e�ient enough.Reason for this problem is the �rst peak in the orrelators, whih is inreased in omparison to three dimensions, inombination with the long ranged osillations aused by the repulsive interation.This problem an be evaded, if the Jaobian is not evaluated analytially but numerially: our approah is toiterate the oarse oe�ients aµν
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