MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / fs / jffs2.org / nodelist.h
blobcea0c139018495d4d92c83d9fea9678c703a9ddb
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@redhat.com>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: nodelist.h,v 1.119 2004/05/26 12:28:12 gleixner Exp $
14 #ifndef __JFFS2_NODELIST_H__
15 #define __JFFS2_NODELIST_H__
17 #include <linux/config.h>
18 #include <linux/fs.h>
19 #include <linux/types.h>
20 #include <linux/jffs2.h>
21 #include <linux/jffs2_fs_sb.h>
22 #include <linux/jffs2_fs_i.h>
24 #ifdef __ECOS
25 #include "os-ecos.h"
26 #else
27 #include <linux/mtd/compatmac.h> /* For min/max in older kernels */
28 #include "os-linux.h"
29 #endif
31 #ifndef CONFIG_JFFS2_FS_DEBUG
32 #define CONFIG_JFFS2_FS_DEBUG 1
33 #endif
35 #if CONFIG_JFFS2_FS_DEBUG > 0
36 #define D1(x) x
37 #else
38 #define D1(x)
39 #endif
41 #if CONFIG_JFFS2_FS_DEBUG > 1
42 #define D2(x) x
43 #else
44 #define D2(x)
45 #endif
47 #define JFFS2_NATIVE_ENDIAN
49 /* Note we handle mode bits conversion from JFFS2 (i.e. Linux) to/from
50 whatever OS we're actually running on here too. */
52 #if defined(JFFS2_NATIVE_ENDIAN)
53 #define cpu_to_je16(x) ((jint16_t){x})
54 #define cpu_to_je32(x) ((jint32_t){x})
55 #define cpu_to_jemode(x) ((jmode_t){os_to_jffs2_mode(x)})
57 #define je16_to_cpu(x) ((x).v16)
58 #define je32_to_cpu(x) ((x).v32)
59 #define jemode_to_cpu(x) (jffs2_to_os_mode((x).m))
60 #elif defined(JFFS2_BIG_ENDIAN)
61 #define cpu_to_je16(x) ((jint16_t){cpu_to_be16(x)})
62 #define cpu_to_je32(x) ((jint32_t){cpu_to_be32(x)})
63 #define cpu_to_jemode(x) ((jmode_t){cpu_to_be32(os_to_jffs2_mode(x))})
65 #define je16_to_cpu(x) (be16_to_cpu(x.v16))
66 #define je32_to_cpu(x) (be32_to_cpu(x.v32))
67 #define jemode_to_cpu(x) (be32_to_cpu(jffs2_to_os_mode((x).m)))
68 #elif defined(JFFS2_LITTLE_ENDIAN)
69 #define cpu_to_je16(x) ((jint16_t){cpu_to_le16(x)})
70 #define cpu_to_je32(x) ((jint32_t){cpu_to_le32(x)})
71 #define cpu_to_jemode(x) ((jmode_t){cpu_to_le32(os_to_jffs2_mode(x))})
73 #define je16_to_cpu(x) (le16_to_cpu(x.v16))
74 #define je32_to_cpu(x) (le32_to_cpu(x.v32))
75 #define jemode_to_cpu(x) (le32_to_cpu(jffs2_to_os_mode((x).m)))
76 #else
77 #error wibble
78 #endif
81 This is all we need to keep in-core for each raw node during normal
82 operation. As and when we do read_inode on a particular inode, we can
83 scan the nodes which are listed for it and build up a proper map of
84 which nodes are currently valid. JFFSv1 always used to keep that whole
85 map in core for each inode.
87 struct jffs2_raw_node_ref
89 struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref
90 for this inode. If this is the last, it points to the inode_cache
91 for this inode instead. The inode_cache will have NULL in the first
92 word so you know when you've got there :) */
93 struct jffs2_raw_node_ref *next_phys;
94 uint32_t flash_offset;
95 uint32_t __totlen; /* This may die; use ref_totlen(c, jeb, ) below */
98 /* flash_offset & 3 always has to be zero, because nodes are
99 always aligned at 4 bytes. So we have a couple of extra bits
100 to play with, which indicate the node's status; see below: */
101 #define REF_UNCHECKED 0 /* We haven't yet checked the CRC or built its inode */
102 #define REF_OBSOLETE 1 /* Obsolete, can be completely ignored */
103 #define REF_PRISTINE 2 /* Completely clean. GC without looking */
104 #define REF_NORMAL 3 /* Possibly overlapped. Read the page and write again on GC */
105 #define ref_flags(ref) ((ref)->flash_offset & 3)
106 #define ref_offset(ref) ((ref)->flash_offset & ~3)
107 #define ref_obsolete(ref) (((ref)->flash_offset & 3) == REF_OBSOLETE)
108 #define mark_ref_normal(ref) do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0)
111 Used for keeping track of deletion nodes &c, which can only be marked
112 as obsolete when the node which they mark as deleted has actually been
113 removed from the flash.
115 struct jffs2_raw_node_ref_list {
116 struct jffs2_raw_node_ref *rew;
117 struct jffs2_raw_node_ref_list *next;
120 /* For each inode in the filesystem, we need to keep a record of
121 nlink, because it would be a PITA to scan the whole directory tree
122 at read_inode() time to calculate it, and to keep sufficient information
123 in the raw_node_ref (basically both parent and child inode number for
124 dirent nodes) would take more space than this does. We also keep
125 a pointer to the first physical node which is part of this inode, too.
127 struct jffs2_inode_cache {
128 struct jffs2_full_dirent *scan_dents; /* Used during scan to hold
129 temporary lists of dirents, and later must be set to
130 NULL to mark the end of the raw_node_ref->next_in_ino
131 chain. */
132 struct jffs2_inode_cache *next;
133 struct jffs2_raw_node_ref *nodes;
134 uint32_t ino;
135 int nlink;
136 int state;
139 /* Inode states for 'state' above. We need the 'GC' state to prevent
140 someone from doing a read_inode() while we're moving a 'REF_PRISTINE'
141 node without going through all the iget() nonsense */
142 #define INO_STATE_UNCHECKED 0 /* CRC checks not yet done */
143 #define INO_STATE_CHECKING 1 /* CRC checks in progress */
144 #define INO_STATE_PRESENT 2 /* In core */
145 #define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */
146 #define INO_STATE_GC 4 /* GCing a 'pristine' node */
147 #define INO_STATE_READING 5 /* In read_inode() */
149 #define INOCACHE_HASHSIZE 128
151 struct jffs2_scan_info {
152 struct jffs2_full_dirent *dents;
153 struct jffs2_tmp_dnode_info *tmpnodes;
154 /* Latest i_size info */
155 uint32_t version;
156 uint32_t isize;
159 Larger representation of a raw node, kept in-core only when the
160 struct inode for this particular ino is instantiated.
163 struct jffs2_full_dnode
165 struct jffs2_raw_node_ref *raw;
166 uint32_t ofs; /* Don't really need this, but optimisation */
167 uint32_t size;
168 uint32_t frags; /* Number of fragments which currently refer
169 to this node. When this reaches zero,
170 the node is obsolete.
175 Even larger representation of a raw node, kept in-core only while
176 we're actually building up the original map of which nodes go where,
177 in read_inode()
179 struct jffs2_tmp_dnode_info
181 struct jffs2_tmp_dnode_info *next;
182 struct jffs2_full_dnode *fn;
183 uint32_t version;
186 struct jffs2_full_dirent
188 struct jffs2_raw_node_ref *raw;
189 struct jffs2_full_dirent *next;
190 uint32_t version;
191 uint32_t ino; /* == zero for unlink */
192 unsigned int nhash;
193 unsigned char type;
194 unsigned char name[0];
197 Fragments - used to build a map of which raw node to obtain
198 data from for each part of the ino
200 struct jffs2_node_frag
202 struct rb_node rb;
203 struct jffs2_full_dnode *node; /* NULL for holes */
204 uint32_t size;
205 uint32_t ofs; /* Don't really need this, but optimisation */
208 struct jffs2_eraseblock
210 struct list_head list;
211 int bad_count;
212 uint32_t offset; /* of this block in the MTD */
214 uint32_t unchecked_size;
215 uint32_t used_size;
216 uint32_t dirty_size;
217 uint32_t wasted_size;
218 uint32_t free_size; /* Note that sector_size - free_size
219 is the address of the first free space */
220 struct jffs2_raw_node_ref *first_node;
221 struct jffs2_raw_node_ref *last_node;
223 struct jffs2_raw_node_ref *gc_node; /* Next node to be garbage collected */
225 /* For deletia. When a dirent node in this eraseblock is
226 deleted by a node elsewhere, that other node can only
227 be marked as obsolete when this block is actually erased.
228 So we keep a list of the nodes to mark as obsolete when
229 the erase is completed.
231 // MAYBE struct jffs2_raw_node_ref_list *deletia;
234 #define ACCT_SANITY_CHECK(c, jeb) do { \
235 struct jffs2_eraseblock *___j = jeb; \
236 if ((___j) && ___j->used_size + ___j->dirty_size + ___j->free_size + ___j->wasted_size + ___j->unchecked_size != c->sector_size) { \
237 printk(KERN_NOTICE "Eeep. Space accounting for block at 0x%08x is screwed\n", ___j->offset); \
238 printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + wasted %08x + unchecked %08x != total %08x\n", \
239 ___j->free_size, ___j->dirty_size, ___j->used_size, ___j->wasted_size, ___j->unchecked_size, c->sector_size); \
240 BUG(); \
242 if (c->used_size + c->dirty_size + c->free_size + c->erasing_size + c->bad_size + c->wasted_size + c->unchecked_size != c->flash_size) { \
243 printk(KERN_NOTICE "Eeep. Space accounting superblock info is screwed\n"); \
244 printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + erasing %08x + bad %08x + wasted %08x + unchecked %08x != total %08x\n", \
245 c->free_size, c->dirty_size, c->used_size, c->erasing_size, c->bad_size, c->wasted_size, c->unchecked_size, c->flash_size); \
246 BUG(); \
248 } while(0)
250 static inline void paranoia_failed_dump(struct jffs2_eraseblock *jeb)
252 struct jffs2_raw_node_ref *ref;
253 int i=0;
255 printk(KERN_NOTICE);
256 for (ref = jeb->first_node; ref; ref = ref->next_phys) {
257 printk("%08x->", ref_offset(ref));
258 if (++i == 8) {
259 i = 0;
260 printk("\n" KERN_NOTICE);
263 printk("\n");
267 #define ACCT_PARANOIA_CHECK(jeb) do { \
268 uint32_t my_used_size = 0; \
269 uint32_t my_unchecked_size = 0; \
270 struct jffs2_raw_node_ref *ref2 = jeb->first_node; \
271 while (ref2) { \
272 if (unlikely(ref2->flash_offset < jeb->offset || \
273 ref2->flash_offset > jeb->offset + c->sector_size)) { \
274 printk(KERN_NOTICE "Node %08x shouldn't be in block at %08x!\n", \
275 ref_offset(ref2), jeb->offset); \
276 paranoia_failed_dump(jeb); \
277 BUG(); \
279 if (ref_flags(ref2) == REF_UNCHECKED) \
280 my_unchecked_size += ref_totlen(c, jeb, ref2); \
281 else if (!ref_obsolete(ref2)) \
282 my_used_size += ref_totlen(c, jeb, ref2); \
283 if (unlikely((!ref2->next_phys) != (ref2 == jeb->last_node))) { \
284 printk("ref for node at %p (phys %08x) has next_phys->%p (%08x), last_node->%p (phys %08x)\n", \
285 ref2, ref_offset(ref2), ref2->next_phys, ref_offset(ref2->next_phys), \
286 jeb->last_node, ref_offset(jeb->last_node)); \
287 paranoia_failed_dump(jeb); \
288 BUG(); \
290 ref2 = ref2->next_phys; \
292 if (my_used_size != jeb->used_size) { \
293 printk(KERN_NOTICE "Calculated used size %08x != stored used size %08x\n", my_used_size, jeb->used_size); \
294 BUG(); \
296 if (my_unchecked_size != jeb->unchecked_size) { \
297 printk(KERN_NOTICE "Calculated unchecked size %08x != stored unchecked size %08x\n", my_unchecked_size, jeb->unchecked_size); \
298 BUG(); \
300 } while(0)
302 /* Calculate totlen from surrounding nodes or eraseblock */
303 static inline uint32_t __ref_totlen(struct jffs2_sb_info *c,
304 struct jffs2_eraseblock *jeb,
305 struct jffs2_raw_node_ref *ref)
307 uint32_t ref_end;
309 if (ref->next_phys)
310 ref_end = ref_offset(ref->next_phys);
311 else {
312 if (!jeb)
313 jeb = &c->blocks[ref->flash_offset / c->sector_size];
315 /* Last node in block. Use free_space */
316 BUG_ON(ref != jeb->last_node);
317 ref_end = jeb->offset + c->sector_size - jeb->free_size;
319 return ref_end - ref_offset(ref);
322 static inline uint32_t ref_totlen(struct jffs2_sb_info *c,
323 struct jffs2_eraseblock *jeb,
324 struct jffs2_raw_node_ref *ref)
326 uint32_t ret;
328 D1(if (jeb && jeb != &c->blocks[ref->flash_offset / c->sector_size]) {
329 printk(KERN_CRIT "ref_totlen called with wrong block -- at 0x%08x instead of 0x%08x; ref 0x%08x\n",
330 jeb->offset, c->blocks[ref->flash_offset / c->sector_size].offset, ref_offset(ref));
331 BUG();
334 #if 1
335 ret = ref->__totlen;
336 #else
337 /* This doesn't actually work yet */
338 ret = __ref_totlen(c, jeb, ref);
339 if (ret != ref->__totlen) {
340 printk(KERN_CRIT "Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n",
341 ref, ref_offset(ref), ref_offset(ref)+ref->__totlen,
342 ret, ref->__totlen);
343 if (!jeb)
344 jeb = &c->blocks[ref->flash_offset / c->sector_size];
345 paranoia_failed_dump(jeb);
346 BUG();
348 #endif
349 return ret;
353 #define ALLOC_NORMAL 0 /* Normal allocation */
354 #define ALLOC_DELETION 1 /* Deletion node. Best to allow it */
355 #define ALLOC_GC 2 /* Space requested for GC. Give it or die */
356 #define ALLOC_NORETRY 3 /* For jffs2_write_dnode: On failure, return -EAGAIN instead of retrying */
358 /* How much dirty space before it goes on the very_dirty_list */
359 #define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2))
361 /* check if dirty space is more than 255 Byte */
362 #define ISDIRTY(size) ((size) > sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
364 #define PAD(x) (((x)+3)&~3)
366 static inline struct jffs2_inode_cache *jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref *raw)
368 while(raw->next_in_ino) {
369 raw = raw->next_in_ino;
372 return ((struct jffs2_inode_cache *)raw);
375 static inline struct jffs2_node_frag *frag_first(struct rb_root *root)
377 struct rb_node *node = root->rb_node;
379 if (!node)
380 return NULL;
381 while(node->rb_left)
382 node = node->rb_left;
383 return rb_entry(node, struct jffs2_node_frag, rb);
385 #define rb_parent(rb) ((rb)->rb_parent)
386 #define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb)
387 #define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb)
388 #define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb)
389 #define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb)
390 #define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb)
391 #define frag_erase(frag, list) rb_erase(&frag->rb, list);
393 /* nodelist.c */
394 D1(void jffs2_print_frag_list(struct jffs2_inode_info *f));
395 void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list);
396 int jffs2_get_inode_nodes(struct jffs2_sb_info *c, ino_t ino, struct jffs2_inode_info *f,
397 struct jffs2_tmp_dnode_info **tnp, struct jffs2_full_dirent **fdp,
398 uint32_t *highest_version, uint32_t *latest_mctime,
399 uint32_t *mctime_ver);
400 void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state);
401 struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino);
402 void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new);
403 void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old);
404 void jffs2_free_ino_caches(struct jffs2_sb_info *c);
405 void jffs2_free_raw_node_refs(struct jffs2_sb_info *c);
406 struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset);
407 void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete);
408 void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base);
409 struct rb_node *rb_next(struct rb_node *);
410 struct rb_node *rb_prev(struct rb_node *);
411 void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root);
413 /* nodemgmt.c */
414 int jffs2_thread_should_wake(struct jffs2_sb_info *c);
415 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio);
416 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len);
417 int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new);
418 void jffs2_complete_reservation(struct jffs2_sb_info *c);
419 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw);
420 void jffs2_dump_block_lists(struct jffs2_sb_info *c);
422 /* write.c */
423 int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri);
425 struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const unsigned char *data, uint32_t datalen, uint32_t flash_ofs, int alloc_mode);
426 struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_dirent *rd, const unsigned char *name, uint32_t namelen, uint32_t flash_ofs, int alloc_mode);
427 int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
428 struct jffs2_raw_inode *ri, unsigned char *buf,
429 uint32_t offset, uint32_t writelen, uint32_t *retlen);
430 int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const char *name, int namelen);
431 int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name, int namelen, struct jffs2_inode_info *dead_f);
432 int jffs2_do_link (struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino, uint8_t type, const char *name, int namelen);
435 /* readinode.c */
436 void jffs2_truncate_fraglist (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size);
437 int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn);
438 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
439 uint32_t ino, struct jffs2_raw_inode *latest_node);
440 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic);
441 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
443 /* malloc.c */
444 int jffs2_create_slab_caches(void);
445 void jffs2_destroy_slab_caches(void);
447 struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize);
448 void jffs2_free_full_dirent(struct jffs2_full_dirent *);
449 struct jffs2_full_dnode *jffs2_alloc_full_dnode(void);
450 void jffs2_free_full_dnode(struct jffs2_full_dnode *);
451 struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void);
452 void jffs2_free_raw_dirent(struct jffs2_raw_dirent *);
453 struct jffs2_raw_inode *jffs2_alloc_raw_inode(void);
454 void jffs2_free_raw_inode(struct jffs2_raw_inode *);
455 struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void);
456 void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *);
457 struct jffs2_raw_node_ref *jffs2_alloc_raw_node_ref(void);
458 void jffs2_free_raw_node_ref(struct jffs2_raw_node_ref *);
459 struct jffs2_node_frag *jffs2_alloc_node_frag(void);
460 void jffs2_free_node_frag(struct jffs2_node_frag *);
461 struct jffs2_inode_cache *jffs2_alloc_inode_cache(void);
462 void jffs2_free_inode_cache(struct jffs2_inode_cache *);
464 /* gc.c */
465 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c);
467 /* read.c */
468 int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
469 struct jffs2_full_dnode *fd, unsigned char *buf,
470 int ofs, int len);
471 int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
472 unsigned char *buf, uint32_t offset, uint32_t len);
473 char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
475 /* scan.c */
476 int jffs2_scan_medium(struct jffs2_sb_info *c);
477 void jffs2_rotate_lists(struct jffs2_sb_info *c);
479 /* build.c */
480 int jffs2_do_mount_fs(struct jffs2_sb_info *c);
482 /* erase.c */
483 void jffs2_erase_block(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
484 void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count);
486 #ifdef CONFIG_JFFS2_FS_NAND
487 /* wbuf.c */
488 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino);
489 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c);
490 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
491 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
492 #endif
494 #endif /* __JFFS2_NODELIST_H__ */