
LibTomPoly User Manual

v0.04

Tom St Denis
tomstdenis@iahu.ca

May 5, 2004

This text and library are hereby placed in the public domain. This book has
been formatted for B5 [176x250] paper using the LATEX book macro package.

Open Source. Open Academia. Open Minds.

Tom St Denis,
Ontario, Canada

Contents

1 Introduction 1
1.1 What is LibTomPoly? . 1
1.2 License . 1
1.3 Terminology . 1
1.4 Building the Library . 2

2 Getting Started 3
2.1 The LibTomMath Connection . 3
2.2 The pb poly structure . 3
2.3 Return Codes . 4
2.4 Function Argument Passing . 4
2.5 Initializing Polynomials . 5

2.5.1 Default Initialization . 5
2.5.2 Initilization of Given Size 5
2.5.3 Initilization of a Copy . 5
2.5.4 Freeing a Polynomial . 6

3 Basic Operations 7
3.1 Comparison . 7
3.2 Copying and Swapping . 8
3.3 Multiplying and Dividing by x 8

4 Basic Arithmetic 9
4.1 Addition, Subtraction and Multiplication 9
4.2 Division . 9
4.3 Modular Functions . 10

iii

5 Algebraic Functions 11
5.1 Monic Reductions . 11
5.2 Extended Euclidean Algorithm 11
5.3 Greatest Common Divisor . 12
5.4 Modular Inverse . 12
5.5 Modular Exponentiation . 12
5.6 Irreducibility Testing . 12

List of Figures

1.1 Terminology . 2

2.1 Return Codes . 4

3.1 Compare Codes . 7

v

Chapter 1

Introduction

1.1 What is LibTomPoly?

LibTomPoly is a public domain open source library to provide polynomial ba-
sis arithmetic. It uses the public domain library LibTomMath (not included)
for the integer arithmetic and extends the functonality to provide polynomial
arithmetic.

Technically speaking the library allows the user to perform arithmetic on
elements from the group GF (p)[x] and to a lesser extent (this will change in
the future) over Z[x]. Essentially the math you can do with integers (including
forming rings and fields) you can do with with polynomials and now you can do
with LibTomPoly.

1.2 License

LibTomPoly is public domain. Enjoy.

1.3 Terminology

Throughout this manual and within the library there will be some terminology
that not everyone is familiar with. It is afterall weird math.

1

2 CHAPTER 1. INTRODUCTION

Term Definition

monic polynomial A polynomial where the leading coefficient is a one.

irreducible polynomial A polynomial that has no factors in a given group.
For instance, x2 + 4 is irreducible in Z[x] but not
in GF (17)[x] since x2 + 4 = (x + 8)(x + 9) (mod 17).

primitive polynomial An irreducible polynomial which generates all of
elements of a given field (e.g. GF (p)[x]/v(x))

characteristic An integer k such that k · p(x) ≡ 0

deg() Functon returns degree of polynomial, e.g. deg(x6 + x3 + 1) = 6

Figure 1.1: Terminology

1.4 Building the Library

The library is not ready for production yet but you can test out the library
manually if you want. To build the library simply type

make

Which will build “libtompoly.a”. To build a Win32 library with MSVC type

nmake -f makefile.msvc

To build against this library include “tompoly.h” and link against “libtom-
poly.a” (or tommath.lib as appropriate). To build the included demo type

make demo

Which will build “demo” in the current directory. The demo is not interac-
tive and produces results which must be manually inspected.

Chapter 2

Getting Started

2.1 The LibTomMath Connection

LibTomPoly is really just an extension of LibTomMath1. As such the library
has been designed in much the same way as far as argument passing and error
handling events are concerned. The reader is encouraged to become familiar
with LibTomMath before diving into LibTomPoly.

2.2 The pb poly structure

A polynomial can characterized by a few variables. Given the C structure as
follows

typedef struct {
int used, /* number of terms */

alloc; /* number of terms available (total) */
mp_int characteristic, /* characteristic, zero if not finite */

terms; / terms of polynomial */
} pb_poly;

1. The used member indicates how many terms of the terms array are used
to represent the polynomial.

1http://math.libtomcrypt.org

3

http://math.libtomcrypt.org

4 CHAPTER 2. GETTING STARTED

2. The alloc member indicates the size of the terms array. Also note that
even if used is less than alloc the mp ints above used in the array must
be set to a valid representation of zero.

3. The characteristic member is an mp int representing the characteristic
of the polynomial. If the desire is to have a null characteristic (e.g. Z[x])
this element must still be initialized to a valid representation of zero.

4. The terms member is a dynamically sized array of mp int values which
represent the coefficients for the terms of the polynomial. They start from
least to most significant degree. E.g. p(x) =

∑used−1
i=0 termsi · xi.

2.3 Return Codes

The library uses the return codes from LibTomMath. They are

Code Meaning

MP OKAY The function succeeded.

MP VAL The function input was invalid.

MP MEM Heap memory exhausted.

MP YES Response is yes.

MP NO Response is no.

Figure 2.1: Return Codes

2.4 Function Argument Passing

Just like LibTomMath the arguments are meant to be read left to right where
the destination is on the right. Consider the following.

pb_add(a, b, c); /* c = a + b */
pb_mul(a, b, c); /* c = a * b */

Also like LibTomMath input arguments can be specified as output argu-
ments. Consider.

pb_mul(a, b, a); /* a = a * b */
pb_gcd(a, b, b); /* b = (a, b) */

2.5. INITIALIZING POLYNOMIALS 5

However, polynomial math raises another consideration. The characteristic
of the result is taken from the right most argument passed to the function. Not
all functions will return an error code if the characteristics of the inputs do
not match so it’s important to keep this in mind. In general the results are
undefined if not all of the polynomials have identical characteristics.

2.5 Initializing Polynomials

In order to use a pb poly structure with one of the functions in this library the
structure must be initialized. There are three functions provided to initialize
pb poly structures.

2.5.1 Default Initialization

int pb_init(pb_poly *a, mp_int *characteristic);

This will initialize “a” with the given “characteristic” such that the polynomial
represented is a constant zero. The mp int characteristic must be a valid initial-
ized mp int even if a characteristic of zero is desired. By default, the polynomial
will be initialized so there are “PB TERMS” terms available. This will grow
automatically as required by the other functions.

2.5.2 Initilization of Given Size

int pb_init_size(pb_poly *a, mp_int *characteristic, int size);

This behaves similar to pb init() except it will allocate “size” terms to initialize
instead of “PB TERMS”. This is useful if you happen to know in advance how
many terms you want.

2.5.3 Initilization of a Copy

int pb_init_copy(pb_poly *a, pb_poly *b);

This will initialize “a” so it is a verbatim copy of “b”. It will copy the
characteristic and all of the terms from “b” into “a”.

6 CHAPTER 2. GETTING STARTED

2.5.4 Freeing a Polynomial

int pb_clear(pb_poly *a);

This will free all the memory required by “a” and mark it as been freed.
You can repeatedly pb clear() the same pb poly safely.

Chapter 3

Basic Operations

3.1 Comparison

Comparisions with polynomials is a bit less intuitive then with integers. Is x2+3
greater than x2 + x + 4? To create a rational form of comparison the following
comparison codes were designed.

Code Meaning

PB EQ The polynomials are exactly equal

PB DEG LT The left polynomial has a lower degree than the right.

PB DEG EQ Both have the same degree.

PB DEG GT The left polynomial has a higher degree than the right.

Figure 3.1: Compare Codes

int pb_cmp(pb_poly *a, pb_poly *b);

This will compare the polynomial “a” to the left of the polynomial “b”. It
will return one of the four codes listed above. Note that the function does not
compare the characteristics. So if a ∈ GF (17)[x] and b ∈ GF (11)[x] were both
equal to x2+3 they would compare to PB EQ. Whereas x3+4 would compare to
PB DEG LT, x1+7 would compare to PB DEG GT and x2+7 would compare
to PB DEG EQ1.

1If the polynomial a were on the left for all three cases.

7

8 CHAPTER 3. BASIC OPERATIONS

3.2 Copying and Swapping

int pb_copy(pb_poly *src, pb_poly *dest);

This will copy the polynomial from “src” to “dest” verbatim.

int pb_exch(pb_poly *a, pb_poly *b);

This will exchange the contents of “a” with “b”.

3.3 Multiplying and Dividing by x

int pb_lshd(pb_poly *a, int i);
int pb_rshd(pb_poly *a, int i);

These will multiply (or divide, respectfully) the polynomial “a” by xi. If i ≤ 0
the functions return without performing any operation. For example,

pb_lshd(a, 2); /* a(x) = a(x) * x^2 */
pb_rshd(a, 7); /* a(x) = a(x) / x^7 */

Chapter 4

Basic Arithmetic

4.1 Addition, Subtraction and Multiplication

int pb_add(pb_poly *a, pb_poly *b, pb_poly *c);
int pb_sub(pb_poly *a, pb_poly *b, pb_poly *c);
int pb_mul(pb_poly *a, pb_poly *b, pb_poly *c);

These will add (subtract or multiply, respectfully) the polynomial “a” and
polynomial “b” and store the result in polynomial “c”. The characteristic from
“c” is used to calculate the result. Note that the coefficients of “c” will always
be positive provided the characteristic of “c” is greater than zero.

Quick examples of usage.

pb_add(a, b, c); /* c = a + b */
pb_sub(b, a, c); /* c = b - a */
pb_mul(c, a, a); /* a = c * a */

4.2 Division

int pb_div(pb_poly *a, pb_poly *b, pb_poly *c, pb_poly *d);

This will divide the polynomial “a” by “b” and store the quotient in “c” and
remainder in “d”. That is

b(x) · c(x) + d(x) = a(x) (4.1)

9

10 CHAPTER 4. BASIC ARITHMETIC

The value of deg(d(x)) is always less than deg(b(x)). Either of “c” and “d”
can be set to NULL to signify their value is not desired. This is useful if you
only want the quotient or remainder but not both.

Since one of the destinations can be NULL the characteristic of the result
is taken from “b”. The function will return an error if the characteristic of “a”
differs from that of “b”.

This function is defined for polynomials in GF (p)[x] only. A routine pb zdiv()1

allows the division of polynomials in Z[x].

4.3 Modular Functions

int pb_addmod(pb_poly *a, pb_poly *b, pb_poly *c, pb_poly *d);
int pb_submod(pb_poly *a, pb_poly *b, pb_poly *c, pb_poly *d);
int pb_mulmod(pb_poly *a, pb_poly *b, pb_poly *c, pb_poly *d);

These add (subtract or multiply respectfully) the polynomial “a” and the
polynomial “b” modulo the polynomial “c” and store the result in the polyno-
mial “d”.

1To be written!

Chapter 5

Algebraic Functions

5.1 Monic Reductions

int pb_monic(pb_poly *a, pb_poly *b)

Makes “b” the monic representation of “a” by ensuring the most significant
coefficient is one. Only defined over GF (p)[x]. Note that this is not a straight
copy to “b” so you must ensure the characteristic of the two are equal before you
call the function1. Monic polynomials are related to their original polynomial
through an integer k as follows

a(x) · k−1 ≡ b(x) (5.1)

5.2 Extended Euclidean Algorithm

int pb_exteuclid(pb_poly *a, pb_poly *b,
pb_poly *U1, pb_poly *U2, pb_poly *U3);

This will compute the Euclidean algorithm and find values “U1”, “U2”, “U3”
such that

a(x) · U1(x) + b(x) · U2(x) = U3(x) (5.2)

1Note that a == b is acceptable as well.

11

12 CHAPTER 5. ALGEBRAIC FUNCTIONS

The value of “U3” is reduced to a monic polynomial. The three destination
variables are all optional and can be specified as NULL if they are not desired.

5.3 Greatest Common Divisor

int pb_gcd(pb_poly *a, pb_poly *b, pb_poly *c);

This finds the monic greatest common divisor of the two polynomials “a” and
“b” and store the result in “c”. The operation is only defined over GF (p)[x].

5.4 Modular Inverse

int pb_invmod(pb_poly *a, pb_poly *b, pb_poly *c);

This finds the modular inverse of “a” modulo “b” and stores the result in “c”.
The operation is only defined over GF (p)[x]. If the operation succeed then the
following congruency should hold true.

a(x)c(x) ≡ 1 (mod b(x)) (5.3)

5.5 Modular Exponentiation

int pb_exptmod (pb_poly * G, mp_int * X, pb_poly * P, pb_poly * Y);

This raise “G” to the power of “X” modulo “P” and stores the result in “Y”.
Or as a congruence

Y (x) ≡ G(x)X (mod P (x)) (5.4)

Where “X” can be negative2 or positive. This function is only defined over
GF (p)[x].

5.6 Irreducibility Testing

int pb_isirreduc(pb_poly *a, int *res);

Sets “res” to MP YES if “a” is irreducible (only for GF (p)[x]) otherwise sets
“res” to MP NO.

2But in that case G−1(x) must exist modulo P (x).

Index

MP MEM, 4
MP NO, 4
MP OKAY, 4
MP VAL, 4
MP YES, 4

pb add, 9
pb addmod, 10
pb clear, 6
pb cmp, 7
pb copy, 8
pb div, 9
pb exch, 8
pb exptmod, 12
pb exteuclid, 11
pb gcd, 12
pb init, 5
pb init copy, 5
pb init size, 5
pb invmod, 12
pb isirreduc, 12
pb lshd, 8
pb monic, 11
pb mulmod, 10
pb rshd, 8
pb sub, 9
pb submod, 10

13

