LibTomFloat User Manual
v(0.02

Tom St Denis
tomstdenis@iahu.ca

June 21, 2004

This text and the library are hereby placed in the public domain. This book
has been formatted for B5 [176x250] paper using the INTEX book macro package.

Open Source. Open Academia. Open Minds.

Tom St Denis,
Ontario, Canada

Contents

(1.3 Building LibTomFloatf
(1.4 Purpose of LibTomFloat|.
[1.5 How the types work|

12 Getting Started with LibTomFloat|

2.1 Building Programs|

2.3 Data Types|
[2.4 Function Organization|
2.5 Inmitializationl
2.5.1 Single Initializers| 0oL
[2.5.2 Multiple Initializers|
[2.5.3 Initialization of Copies|.

§ JODVINE| .« v v v v v e e e e e e e e e e e e e e

2.6.2 Exchange| oo

13 Basic Operations|

3.2.1 Quick Constants|
[3.3 Sign Manipulation| oo

iii

— =

[\)

[4 _Basic Algebral 15

1 gebraic Operators| 15
[AI1 Additional Interfaced 15
4.1.2 Additional Operators| 16

4.2 Comparisons| o e 16

[Advanced Algebral 17
Bl Powersl o o oo 17
p.1.1 Exponential 0 0L, 17

0.1.2 Power Operatorf. 17

5.1.0 Natural Logarithm| v, 17

5.2 Inversion and Roots| 18
9.2.1 Inverse Square Root| 18

B22 Tnversd. 18

p.2.3 Square Root| L 0oL 18

.3 ‘Irigonometry Functions|o, 18

List of Figures

Chapter 1

Introduction

1.1 What is LibTomFloat?

LibTomFloat is a library of source code that provides multiple precision floating
point arithmetic. It allows developers to manipulate floating point numbers of
variable precision. The library was written in portable ISO C source code and
depends upon the public domain LibTomMath package.

Along with providing the core mathematical operations such as addition and
subtraction LibTomFloat also provides various complicated algorithms such as
trigonometry’s sine, cosine and tangent operators as well as Calculus’s square
root, inverse square root, exponential and logarithm operators.

LibTomFloat has been written for portability and numerical stability and is
not particularly optimized for any given platform. It uses optimal algorithms for
manipulating the mantissa by using LibTomMath and uses numerically stable
series for the various trig and calculus functions.

1.2 License

LibTomFloat is public domain.

2 CHAPTER 1. INTRODUCTION

1.3 Building LibTomFloat

LibTomFloat requires version 0.30 or higher of LibTomMath to be installed
in order to build. Once LibTomMath is installed building LibTomFloat is as
simple as:

make

Which will build “libtomfloat.a” and along with “tomfloat.h” complete an
installation of LibTomFloat. You can also use the make target “install” to
automatically build and copy the files (into *NIX specific) locations.

make install

Note: LibTomFloat does not use ISO C’s native floating point types which
means that the standard math library does not have to be linked in. This also
means that LibTomFloat will work decently on platforms that do not have a
floating point unit.

1.4 Purpose of LibTomFloat

LibTomFloat is as much as an exercise in hardcore math for myself as it is a
service to any programmer who needs high precision float point data types. ISO
C provides for fairly reasonable precision floating point data types but is limited.
A proper analogy is LibTomFloat solves ISO C’s floating point problems in the
same way LibTomMath solves ISO C’s integer data type problems.

A classic example of a good use for large precision floats is long simulations
where the numbers are not perfectly stable. A 128-bit mantissa (for example)
can provide for exceptional precision.

That and knowing the value of e to 512 bits is fun.

1.5 How the types work

The floating point types are emulated with three components. The mantissa,
the exponent and the radix. The mantissa forms the digits of number being
represented. The exponent scales the number to give it a larger range. The
radix controls how many bits there are in the mantissa. The larger the radix
the more precise the types become.

1.5. HOW THE TYPES WORK 3

The representation of a number is given by the simple product m-2¢ where m
is the mantissa and e the exponent. Numbers are always normalized such that
there are radix bits per mantissa. For example, with radiz = 16 the number 2
is represented by 32768 - 27, A zero is represented by a mantissa of zero and
an exponent of one and is a special case.

The sign flag is a standard ISO C “long” which gives it the range 273! <
e < 23! which is considerably large.

Technically, LibTomFloat does not implement IEEE standard floating point
types. The exponent is not normalized and the sign flag does not count as a
bit in the radix. There is also no “implied” bit in this system. The mantissa
explicitly dictates the digits.

CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started with
LibTomFloat

2.1 Building Programs

In order to use libTomFloat you must include “tomfloat.h” and link against the
appropriate library file (typically libtomfloat.a). There is no library initializa-
tion required and the entire library is thread safe.

2.2 Return Codes

There are three possible return codes a function may return.

Code Meaning

MP_OKAY | The function succeeded.
MP_VAL The function input was invalid.
MP_MEM | Heap memory exhausted.

MP_YES Response is yes.
MP_NO Response is no.

Figure 2.1: Return Codes

The last two codes listed are not actually “return’ed” by a function. They

6 CHAPTER 2. GETTING STARTED WITH LIBTOMFLOAT

are placed in an integer (the caller must provide the address of an integer it can
store to) which the caller can access. To convert one of the three return codes
to a string use the following function.

char *mp_error_to_string(int code);

This will return a pointer to a string which describes the given error code.
It will not work for the return codes MP_YES and MP_NO.

2.3 Data Types

To better work with LibTomFloat it helps to know what makes up the primary
data type within LibTomFloat.

typedef struct {
mp_int mantissa;
long radix,
exp;
} mp_float;

The mp_float data type is what all LibTomFloat functions will operate with
and upon. The members of the structre are as follows:

1. The mantissa variable is a LibTomMath mp_int that represents the digits
of the float. Since it’s a mp_int it can accomodate any practical range of
numbers.

2. The radix variable is the precision desired for the mp_float in bits. The
higher the value the more precise (and slow) the calculations are. This
value must be larger than two and ideally shouldn’t be lower than what a
“double” provides (55-bits of mantissa).

3. The exp variable is the exponent associated with the number.

2.4 Function Organization

Many of the functions operate as their LibTomMath counterparts. That is the
source operands are on the left and the destination is on the right. For instance:

2.5. INITIALIZATION 7

mpf_add(&a, &b, &c); /* ¢c =a+ b *x/
mpf_mul(&a, &a, &c); /* ¢ = a *x a *x/
mpf_div(&a, &b, &c); /¥ c=a/ b *x/

One major difference (and similar to LibTomPoly) is that the radix of the
destination operation controls the radix of the internal computation and the
final result. For instance, if a and b have a 24-bit mantissa and ¢ has a 96-bit
mantissa then all three operations are performed with 96—bits of precision.

This is non-issue for algorithms such as addition or multiplication but more
important for the series calculations such as division, inversion, square roots,
ete.

All functions normalize the result before returning.

2.5 Initialization

2.5.1 Single Initializers

To initialize or clear a single mp_float use the following two functions.

int mpf_init(mp_float *a, long radix);
void mpf_clear(mp_float *a);

mpf_init will initialize a with the given radix to the default value of zero.
mpf_clear will free the memory used by the mp_float.

int main(void)

{

mp_float a;
int err;

/* initialize a mp_float with a 96-bit mantissa */
if ((err = mpf_init(&a, 96)) '= MP_OKAY) {

// error handle
}

/* we now have a 96-bit mp_float ready ... do work */

/* done */
mpf_clear(&a);

8 CHAPTER 2. GETTING STARTED WITH LIBTOMFLOAT
return EXIT_SUCCESS;

2.5.2 Multiple Initializers

To initialize or clear multiple mp_floats simultaneously use the following two
functions.

int mpf_init_multi(long radix, mp_float *a, ...);
void mpf_clear_multi(mp_float *a, ...);

mpf_init_multi will initialize a NULL terminated list of mp_floats with the
same given radix. mpf_clear_multi will free up a NULL terminated list of
mp_floats.

int main(void)

{

mp_float a, b;
int err;

/* initialize two mp_floats with a 96-bit mantissa */

if ((err = mpf_init_multi(96, &a, &b, NULL)) != MP_OKAY) {
// error handle
}

/* we now have two 96-bit mp_floats ready ... do work */

/* done */
mpf_clear_multi(&a, &b, NULL);

return EXIT_SUCCESS;

2.5.3 Initialization of Copies

In order to initialize an mp_float and make a copy of a source mp_float the
following function has been provided.

int mpf_init_copy(mp_float *a, mp_float *b);

2.6. DATA MOVEMENT 9

This will initialize b and make it a copy of a.

int main(void)

{

mp_float a, b;
int err;
/* initialize a mp_float with a 96-bit mantissa */

if
}
/*

/*
if

}
/*

/*

((err = mpf_init(&a, 96)) !'= MP_OKAY) {

// error handle

we now have a 96-bit mp_float ready ... do work */
now make our copy */

((err = mpf_init_copy(&a, &b)) !'= MP_OKAY) {

// error handle

now b is a copy of a */

done */

mpf_clear_multi(&a, &b, NULL);

return EXIT_SUCCESS;

2.6

Data Movement

2.6.1 Copying

In order to copy one mp_float into another mp_float the following function has
been provided.

int mpf_copy(mp_float *src, mp_float *dest);

This will copy the mp_float from src into dest. Note that the final radix of dest
will be that of src.

10

CHAPTER 2. GETTING STARTED WITH LIBTOMFLOAT

int main(void)

{

mp_

float a, b;

int err;

/%
if

¥
/%

/*
if

¥
/*

initialize two mp_floats with a 96-bit mantissa */
((err = mpf_init_multi(96, &a, &b, NULL)) != MP_OKAY) {
// error handle

we now have two 96-bit mp_floats ready ... do work */
put a into b */

((err = mpf_copy(&a, &b)) !'= MP_OKAY) {
// error handle

done */

mpf_clear_multi(&a, &b, NULL);

return EXIT_SUCCESS;

2.6.2 Exchange

To exchange the contents of two mp_float data types use this f00.

void mpf_exch(mp_float *a, mp_float *Db);

This will swap the contents of a and b.

Chapter 3

Basic Operations

3.1 Normalization

3.1.1 Simple Normalization

Normalization is not required by the user unless they fiddle with the mantissa
on their own. If that’s the case you can use this function.

int mpf_normalize(mp_float *a);

This will fix up the mantissa of a such that the leading bit is one (if the number
is non—zero).

3.1.2 Normalize to New Radix
In order to change the radix of a non—zero number you must call this function.
int mpf_normalize_to(mp_float *a, long radix);

This will change the radix of a then normalize it accordingly.

3.2 Constants

3.2.1 Quick Constants

The following are helpers for various numbers.

11

12

int
int
int
int

CHAPTER 3. BASIC OPERATIONS

mpf_const_O(mp_float *a);
mpf_const_d(mp_float *a, long d);
mpf_const_1ln_d(mp_float *a, long b);
mpf_const_sqrt_d(mp_float *a, long b);

mpf_const_0 will set a to a valid representation of zero. mpf_const_d will set
a to a valid signed representation of d. mpf_const_In_d will set a to the natural
logarithm of b. mpf_const_sqrt_d will set a to the square root of b.

The next set of constants (fig. compute the standard constants as
defined in “math.h”.

Function Name | Value
mpf_const_e e
mpf_const_12e loga (e)
mpf_const_110e logio(e)
mpf_const_le2 In(2)
mpf_const_pi ™
mpf_const_pi2 /2
mpf_const_pi4 /4
mpf_const_1pi 1/m
mpf_const_2pi 2/m
mpf_const_2rpi 2/\/m
mpf_const_r2 V2
mpf_const_1r2 1/v2

Figure 3.1: LibTomFloat Constants.

All of these functions accept a single input argument. They calculate the
constant at run—time using the precision specified in the input argument.

int main(void)

{

mp_float a;
int err;

/* initialize a mp_float with a 96-bit mantissa */
if ((err = mpf_init(&a, 96)) != MP_OKAY) {

}

// error handle

3.3. SIGN MANIPULATION 13

/* let’s find out what the square root of 2 is (approximately ;-)) */
if ((err = mpf_const_r2(&a)) '= MP_OKAY) {

// error handle
}

/* now a has sqrt(2) to 96-bits of precision */

/* done */
mpf_clear(&a);

return EXIT_SUCCESS;

3.3 Sign Manipulation
To manipulate the sign of a mp_float use the following two functions.

int mpf_abs(mp_float *a, mp_float *b);
int mpf_neg(mp_float *a, mp_float *b);

mpf_abs computes the absolute of a and stores it in b. mpf neg computes
the negative of a and stores it in b. Note that the numbers are normalized to
the radix of b before being returned.

int main(void)
mp_float a;
int err;

/* initialize a mp_float with a 96-bit mantissa */
if ((err = mpf_init(&a, 96)) '= MP_OKAY) {

// error handle
}

/* let’s find out what the square root of 2 is (approximately ;-)) */
if ((err = mpf_const_r2(&a)) '= MP_OKAY) {

// error handle
}

14

CHAPTER 3. BASIC OPERATIONS

/* now make it negative */

if ((err = mpf_neg(&a, &a)) != MP_OKAY) {
// error handle

}

/* done */
mpf _clear (&a) ;

return EXIT_SUCCESS;

Chapter 4

Basic Algebra

4.1 Algebraic Operators

The following four functions provide for basic addition, subtraction, multiplica-
tion and division of mp_float numbers.

int mpf_add(mp_float *a, mp_float *b, mp_float *c);
int mpf_sub(mp_float *a, mp_float *b, mp_float *c);
int mpf_mul(mp_float *a, mp_float *b, mp_float *c);
int mpf_div(mp_float *a, mp_float *b, mp_float *c);

These functions perform their respective operations on a and b and store the
result in c.

4.1.1 Additional Interfaces

In order to make programming easier with the library the following four func-
tions have been provided as well.

int mpf_add_d(mp_float *a, long b, mp_float *c);
int mpf_sub_d(mp_float *a, long b, mp_float *c);
int mpf_mul_d(mp_float *a, long b, mp_float *c);
int mpf_div_d(mp_float *a, long b, mp_float *c);

These work like the previous four functions except the second argument is a
“long” type. This allow operations with mixed mp_float and integer types
(specifically constants) to be performed relatively easy.

15

16 CHAPTER 4. BASIC ALGEBRA
I will put an example of all op/op_d functions here...

4.1.2 Additional Operators

The next three functions round out the simple algebraic operators.

int mpf_mul_2(mp_float *a, mp_float *b);
int mpf_div_2(mp_float *a, mp_float *b);
int mpf_sqr(mp_float *a, mp_float *b);

mpfmul_2 and mpf_div_2 multiply (or divide) a by two and store it in b.
mpf_sqr squares a and stores it in b. mpf_sqr is faster than using mpf_mul for
squaring mp_floats.

4.2 Comparisons

To compare two mp_floats the following function can be used.
int mpf_cmp(mp_float *a, mp_float *b);

This will compare a to b and return one of the LibTomMath comparison flags.
Simply put, if a is larger than b it returns MP_GT. If a is smaller than b it
returns MP_LT, otherwise it returns MP_EQ. The comparison is signed.

To quickly compare an mp_float to a “long” the following is provided.

int mpf_cmp_d(mp_float *a, long b, int *res);

Which compares a to b and stores the result in res. This function can fail
which is unlike the digit compare from LibTomMath.

Chapter 5

Advanced Algebra

5.1 Powers

5.1.1 Exponential

The following function computes exp(z) otherwise known as e®.
int mpf_exp(mp_float *a, mp_float *b);

This computes e® and stores it into b.

5.1.2 Power Operator

The following function computes the generic a® operation.
int mpf_pow(mp_float *a, mp_float *b, mp_float *c);

This computes a® and stores the result in c.

5.1.3 Natural Logarithm

The following function computes the natural logarithm.
int mpf_ln(mp_float *a, mp_float *Db);

This computes In(a) and stores the result in b.

17

18 CHAPTER 5. ADVANCED ALGEBRA

5.2 Inversion and Roots

5.2.1 Inverse Square Root

The following function computes 1/+/x.

int mpf_invsqrt(mp_float *a, mp_float *b);

This computes 1/+/a and stores the result in b.

5.2.2 Inverse

The following function computes 1/x.
int mpf_inv(mp_float *a, mp_float *b);

This computes 1/a and stores the result in b.

5.2.3 Square Root

The following function computes /z.
int mpf_sqrt(mp_float *a, mp_float *b);

This computes /a and stores the result in b.

5.3 Trigonometry Functions

The following functions compute various trigonometric functions. All inputs are
assumed to be in radians.

int mpf_cos(mp_float *a, mp_float *b);
int mpf_sin(mp_float *a, mp_float *b);
int mpf_tan(mp_float *a, mp_float *b);
int mpf_acos(mp_float *a, mp_float *Db);
int mpf_asin(mp_float *a, mp_float *b);
int mpf_atan(mp_float *a, mp_float *b);

These all compute their respective trigonometric function on a and store the
result in b. The “a” prefix stands for “arc” or more commonly known as inverse.

Index

exponent, [2]

mantissa, [2]
mp_cmp, [16]
mp_error_to_string, [6]
MP_MEM, [j
MP_NO,[§
MP_OKAY, [§
MP_VAL,
MP_YES,
mpf_abs,
mpf_acos,
mpf_add,
mpf_add_d,
mpf_asin,
mpf_atan,
mpf_clear, [7]
mpf_clear_multi,
mpf_cmp_d,
mpf_const_0,
mpf_const_d, [T1]
mpf_const_In_d, [[1]
mpf_const_sqrt_d,
mpf_copy, 9]
mpf_cos,
mpf_div,
mpf_div_2,
mpf_div_d,
mpf_exch,
mpf_exp,

mpf_init, [7]
mpf_init_copy,
mpf_init_multi,
mpf_inv,
mpf_invsqrt,
mpf_In, [17]
mpf_mul,
mpf_mul_2,
mpf_mul_d,
mpf_neg,
mpf_normalize,
mpf_normalize_to, [T1]
mpf_pow,
mpf_sin,
mpf_sqr,
mpf_sqrt,
mpf_sub, [[5]
mpf_sub_d,
mpf_tan,

