isl_*alloc*: return NULL if ctx argument is NULL
[isl.git] / isl_ast_codegen.c
blobea69a896ad0d68d9264ef34f23c0d38ab9b79ab5
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <limits.h>
11 #include <isl/aff.h>
12 #include <isl/set.h>
13 #include <isl/ilp.h>
14 #include <isl/union_map.h>
15 #include <isl_sort.h>
16 #include <isl_tarjan.h>
17 #include <isl_ast_private.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_build_private.h>
20 #include <isl_ast_graft_private.h>
22 /* Add the constraint to the list that "user" points to, if it is not
23 * a div constraint.
25 static int collect_constraint(__isl_take isl_constraint *constraint,
26 void *user)
28 isl_constraint_list **list = user;
30 if (isl_constraint_is_div_constraint(constraint))
31 isl_constraint_free(constraint);
32 else
33 *list = isl_constraint_list_add(*list, constraint);
35 return 0;
38 /* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
41 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
42 __isl_take isl_basic_set *bset)
44 int n;
45 isl_ctx *ctx;
46 isl_constraint_list *list;
48 if (!bset)
49 return NULL;
51 ctx = isl_basic_set_get_ctx(bset);
53 n = isl_basic_set_n_constraint(bset);
54 list = isl_constraint_list_alloc(ctx, n);
55 if (isl_basic_set_foreach_constraint(bset,
56 &collect_constraint, &list) < 0)
57 list = isl_constraint_list_free(list);
59 isl_basic_set_free(bset);
60 return list;
63 /* Data used in generate_domain.
65 * "build" is the input build.
66 * "list" collects the results.
68 struct isl_generate_domain_data {
69 isl_ast_build *build;
71 isl_ast_graft_list *list;
74 static __isl_give isl_ast_graft_list *generate_next_level(
75 __isl_take isl_union_map *executed,
76 __isl_take isl_ast_build *build);
77 static __isl_give isl_ast_graft_list *generate_code(
78 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
79 int internal);
81 /* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
87 * In particular, if executed has the form
89 * S -> D
91 * then we continue generating code on
93 * [S -> D] -> D
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
100 static int generate_non_single_valued(__isl_take isl_map *executed,
101 struct isl_generate_domain_data *data)
103 isl_map *identity;
104 isl_ast_build *build;
105 isl_ast_graft_list *list;
107 build = isl_ast_build_copy(data->build);
109 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
110 executed = isl_map_domain_product(executed, identity);
111 build = isl_ast_build_set_single_valued(build, 1);
113 list = generate_code(isl_union_map_from_map(executed), build, 1);
115 data->list = isl_ast_graft_list_concat(data->list, list);
117 return 0;
120 /* Call the at_each_domain callback, if requested by the user,
121 * after recording the current inverse schedule in the build.
123 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
124 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
126 if (!graft || !build)
127 return isl_ast_graft_free(graft);
128 if (!build->at_each_domain)
129 return graft;
131 build = isl_ast_build_copy(build);
132 build = isl_ast_build_set_executed(build,
133 isl_union_map_from_map(isl_map_copy(executed)));
134 if (!build)
135 return isl_ast_graft_free(graft);
137 graft->node = build->at_each_domain(graft->node,
138 build, build->at_each_domain_user);
139 isl_ast_build_free(build);
141 if (!graft->node)
142 graft = isl_ast_graft_free(graft);
144 return graft;
147 /* Generate an AST for a single domain based on
148 * the inverse schedule "executed".
150 * If there is more than one domain element associated to the current
151 * schedule "time", then we need to continue the generation process
152 * in generate_non_single_valued.
153 * Note that the inverse schedule being single-valued may depend
154 * on constraints that are only available in the original context
155 * domain specified by the user. We therefore first introduce
156 * the constraints from data->build->domain.
157 * On the other hand, we only perform the test after having taken the gist
158 * of the domain as the resulting map is the one from which the call
159 * expression is constructed. Using this map to construct the call
160 * expression usually yields simpler results.
161 * Because we perform the single-valuedness test on the gisted map,
162 * we may in rare cases fail to recognize that the inverse schedule
163 * is single-valued. This becomes problematic if this happens
164 * from the recursive call through generate_non_single_valued
165 * as we would then end up in an infinite recursion.
166 * We therefore check if we are inside a call to generate_non_single_valued
167 * and revert to the ungisted map if the gisted map turns out not to be
168 * single-valued.
170 * Otherwise, we generate a call expression for the single executed
171 * domain element and put a guard around it based on the (simplified)
172 * domain of "executed".
174 * If the user has set an at_each_domain callback, it is called
175 * on the constructed call expression node.
177 static int generate_domain(__isl_take isl_map *executed, void *user)
179 struct isl_generate_domain_data *data = user;
180 isl_ast_graft *graft;
181 isl_ast_graft_list *list;
182 isl_set *guard;
183 isl_map *map;
184 int sv;
186 executed = isl_map_intersect_domain(executed,
187 isl_set_copy(data->build->domain));
189 executed = isl_map_coalesce(executed);
190 map = isl_map_copy(executed);
191 map = isl_ast_build_compute_gist_map_domain(data->build, map);
192 sv = isl_map_is_single_valued(map);
193 if (sv < 0)
194 goto error;
195 if (!sv) {
196 isl_map_free(map);
197 if (data->build->single_valued)
198 map = isl_map_copy(executed);
199 else
200 return generate_non_single_valued(executed, data);
202 guard = isl_map_domain(isl_map_copy(map));
203 guard = isl_set_coalesce(guard);
204 guard = isl_ast_build_compute_gist(data->build, guard);
205 graft = isl_ast_graft_alloc_domain(map, data->build);
206 graft = at_each_domain(graft, executed, data->build);
208 isl_map_free(executed);
209 graft = isl_ast_graft_add_guard(graft, guard, data->build);
211 list = isl_ast_graft_list_from_ast_graft(graft);
212 data->list = isl_ast_graft_list_concat(data->list, list);
214 return 0;
215 error:
216 isl_map_free(map);
217 isl_map_free(executed);
218 return -1;
221 /* Call build->create_leaf to a create "leaf" node in the AST,
222 * encapsulate the result in an isl_ast_graft and return the result
223 * as a 1-element list.
225 * Note that the node returned by the user may be an entire tree.
227 * Before we pass control to the user, we first clear some information
228 * from the build that is (presumbably) only meaningful
229 * for the current code generation.
230 * This includes the create_leaf callback itself, so we make a copy
231 * of the build first.
233 static __isl_give isl_ast_graft_list *call_create_leaf(
234 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
236 isl_ast_node *node;
237 isl_ast_graft *graft;
238 isl_ast_build *user_build;
240 user_build = isl_ast_build_copy(build);
241 user_build = isl_ast_build_set_executed(user_build, executed);
242 user_build = isl_ast_build_clear_local_info(user_build);
243 if (!user_build)
244 node = NULL;
245 else
246 node = build->create_leaf(user_build, build->create_leaf_user);
247 graft = isl_ast_graft_alloc(node, build);
248 isl_ast_build_free(build);
249 return isl_ast_graft_list_from_ast_graft(graft);
252 /* Generate an AST after having handled the complete schedule
253 * of this call to the code generator.
255 * If the user has specified a create_leaf callback, control
256 * is passed to the user in call_create_leaf.
258 * Otherwise, we generate one or more calls for each individual
259 * domain in generate_domain.
261 static __isl_give isl_ast_graft_list *generate_inner_level(
262 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
264 isl_ctx *ctx;
265 struct isl_generate_domain_data data = { build };
267 if (!build || !executed)
268 goto error;
270 if (build->create_leaf)
271 return call_create_leaf(executed, build);
273 ctx = isl_union_map_get_ctx(executed);
274 data.list = isl_ast_graft_list_alloc(ctx, 0);
275 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
276 data.list = isl_ast_graft_list_free(data.list);
278 if (0)
279 error: data.list = NULL;
280 isl_ast_build_free(build);
281 isl_union_map_free(executed);
282 return data.list;
285 /* Call the before_each_for callback, if requested by the user.
287 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
288 __isl_keep isl_ast_build *build)
290 isl_id *id;
292 if (!node || !build)
293 return isl_ast_node_free(node);
294 if (!build->before_each_for)
295 return node;
296 id = build->before_each_for(build, build->before_each_for_user);
297 node = isl_ast_node_set_annotation(node, id);
298 return node;
301 /* Call the after_each_for callback, if requested by the user.
303 static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
304 __isl_keep isl_ast_build *build)
306 if (!graft || !build)
307 return isl_ast_graft_free(graft);
308 if (!build->after_each_for)
309 return graft;
310 graft->node = build->after_each_for(graft->node, build,
311 build->after_each_for_user);
312 if (!graft->node)
313 return isl_ast_graft_free(graft);
314 return graft;
317 /* Plug in all the know values of the current and outer dimensions
318 * in the domain of "executed". In principle, we only need to plug
319 * in the known value of the current dimension since the values of
320 * outer dimensions have been plugged in already.
321 * However, it turns out to be easier to just plug in all known values.
323 static __isl_give isl_union_map *plug_in_values(
324 __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
326 return isl_ast_build_substitute_values_union_map_domain(build,
327 executed);
330 /* Check if the constraint "c" is a lower bound on dimension "pos",
331 * an upper bound, or independent of dimension "pos".
333 static int constraint_type(isl_constraint *c, int pos)
335 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
336 return 1;
337 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
338 return 2;
339 return 0;
342 /* Compare the types of the constraints "a" and "b",
343 * resulting in constraints that are independent of "depth"
344 * to be sorted before the lower bounds on "depth", which in
345 * turn are sorted before the upper bounds on "depth".
347 static int cmp_constraint(__isl_keep isl_constraint *a,
348 __isl_keep isl_constraint *b, void *user)
350 int *depth = user;
351 int t1 = constraint_type(a, *depth);
352 int t2 = constraint_type(b, *depth);
354 return t1 - t2;
357 /* Extract a lower bound on dimension "pos" from constraint "c".
359 * If the constraint is of the form
361 * a x + f(...) >= 0
363 * then we essentially return
365 * l = ceil(-f(...)/a)
367 * However, if the current dimension is strided, then we need to make
368 * sure that the lower bound we construct is of the form
370 * f + s a
372 * with f the offset and s the stride.
373 * We therefore compute
375 * f + s * ceil((l - f)/s)
377 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
378 int pos, __isl_keep isl_ast_build *build)
380 isl_aff *aff;
382 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
383 aff = isl_aff_ceil(aff);
385 if (isl_ast_build_has_stride(build, pos)) {
386 isl_aff *offset;
387 isl_int stride;
389 isl_int_init(stride);
391 offset = isl_ast_build_get_offset(build, pos);
392 isl_ast_build_get_stride(build, pos, &stride);
394 aff = isl_aff_sub(aff, isl_aff_copy(offset));
395 aff = isl_aff_scale_down(aff, stride);
396 aff = isl_aff_ceil(aff);
397 aff = isl_aff_scale(aff, stride);
398 aff = isl_aff_add(aff, offset);
400 isl_int_clear(stride);
403 aff = isl_ast_build_compute_gist_aff(build, aff);
405 return aff;
408 /* Return the exact lower bound (or upper bound if "upper" is set)
409 * of "domain" as a piecewise affine expression.
411 * If we are computing a lower bound (of a strided dimension), then
412 * we need to make sure it is of the form
414 * f + s a
416 * where f is the offset and s is the stride.
417 * We therefore need to include the stride constraint before computing
418 * the minimum.
420 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
421 __isl_keep isl_ast_build *build, int upper)
423 isl_set *stride;
424 isl_map *it_map;
425 isl_pw_aff *pa;
426 isl_pw_multi_aff *pma;
428 domain = isl_set_copy(domain);
429 if (!upper) {
430 stride = isl_ast_build_get_stride_constraint(build);
431 domain = isl_set_intersect(domain, stride);
433 it_map = isl_ast_build_map_to_iterator(build, domain);
434 if (upper)
435 pma = isl_map_lexmax_pw_multi_aff(it_map);
436 else
437 pma = isl_map_lexmin_pw_multi_aff(it_map);
438 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
439 isl_pw_multi_aff_free(pma);
440 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
441 pa = isl_pw_aff_coalesce(pa);
443 return pa;
446 /* Extract a lower bound on dimension "pos" from each constraint
447 * in "constraints" and return the list of lower bounds.
448 * If "constraints" has zero elements, then we extract a lower bound
449 * from "domain" instead.
451 static __isl_give isl_pw_aff_list *lower_bounds(
452 __isl_keep isl_constraint_list *constraints, int pos,
453 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
455 isl_ctx *ctx;
456 isl_pw_aff_list *list;
457 int i, n;
459 if (!build)
460 return NULL;
462 n = isl_constraint_list_n_constraint(constraints);
463 if (n == 0) {
464 isl_pw_aff *pa;
465 pa = exact_bound(domain, build, 0);
466 return isl_pw_aff_list_from_pw_aff(pa);
469 ctx = isl_ast_build_get_ctx(build);
470 list = isl_pw_aff_list_alloc(ctx,n);
472 for (i = 0; i < n; ++i) {
473 isl_aff *aff;
474 isl_constraint *c;
476 c = isl_constraint_list_get_constraint(constraints, i);
477 aff = lower_bound(c, pos, build);
478 isl_constraint_free(c);
479 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
482 return list;
485 /* Extract an upper bound on dimension "pos" from each constraint
486 * in "constraints" and return the list of upper bounds.
487 * If "constraints" has zero elements, then we extract an upper bound
488 * from "domain" instead.
490 static __isl_give isl_pw_aff_list *upper_bounds(
491 __isl_keep isl_constraint_list *constraints, int pos,
492 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
494 isl_ctx *ctx;
495 isl_pw_aff_list *list;
496 int i, n;
498 n = isl_constraint_list_n_constraint(constraints);
499 if (n == 0) {
500 isl_pw_aff *pa;
501 pa = exact_bound(domain, build, 1);
502 return isl_pw_aff_list_from_pw_aff(pa);
505 ctx = isl_ast_build_get_ctx(build);
506 list = isl_pw_aff_list_alloc(ctx,n);
508 for (i = 0; i < n; ++i) {
509 isl_aff *aff;
510 isl_constraint *c;
512 c = isl_constraint_list_get_constraint(constraints, i);
513 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
514 isl_constraint_free(c);
515 aff = isl_aff_floor(aff);
516 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
519 return list;
522 /* Return an isl_ast_expr that performs the reduction of type "type"
523 * on AST expressions corresponding to the elements in "list".
525 * The list is assumed to contain at least one element.
526 * If the list contains exactly one element, then the returned isl_ast_expr
527 * simply computes that affine expression.
529 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
530 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
532 int i, n;
533 isl_ctx *ctx;
534 isl_ast_expr *expr;
536 if (!list)
537 return NULL;
539 n = isl_pw_aff_list_n_pw_aff(list);
541 if (n == 1)
542 return isl_ast_build_expr_from_pw_aff_internal(build,
543 isl_pw_aff_list_get_pw_aff(list, 0));
545 ctx = isl_pw_aff_list_get_ctx(list);
546 expr = isl_ast_expr_alloc_op(ctx, type, n);
547 if (!expr)
548 return NULL;
550 for (i = 0; i < n; ++i) {
551 isl_ast_expr *expr_i;
553 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
554 isl_pw_aff_list_get_pw_aff(list, i));
555 if (!expr_i)
556 return isl_ast_expr_free(expr);
557 expr->u.op.args[i] = expr_i;
560 return expr;
563 /* Add a guard to "graft" based on "bound" in the case of a degenerate
564 * level (including the special case of an eliminated level).
566 * We eliminate the current dimension, simplify the result in the current
567 * build and add the result as guards to the graft.
569 * Note that we cannot simply drop the constraints on the current dimension
570 * even in the eliminated case, because the single affine expression may
571 * not be explicitly available in "bounds". Moreover, the single affine
572 * expression may only be defined on a subset of the build domain,
573 * so we do in some cases need to insert a guard even in the eliminated case.
575 static __isl_give isl_ast_graft *add_degenerate_guard(
576 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
577 __isl_keep isl_ast_build *build)
579 int depth;
580 isl_set *dom;
582 depth = isl_ast_build_get_depth(build);
584 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
585 if (isl_ast_build_has_stride(build, depth)) {
586 isl_set *stride;
588 stride = isl_ast_build_get_stride_constraint(build);
589 dom = isl_set_intersect(dom, stride);
591 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
592 dom = isl_ast_build_compute_gist(build, dom);
594 graft = isl_ast_graft_add_guard(graft, dom, build);
596 return graft;
599 /* Update "graft" based on "bounds" for the eliminated case.
601 * In the eliminated case, no for node is created, so we only need
602 * to check if "bounds" imply any guards that need to be inserted.
604 static __isl_give isl_ast_graft *refine_eliminated(
605 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
606 __isl_keep isl_ast_build *build)
608 return add_degenerate_guard(graft, bounds, build);
611 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
613 * "build" is the build in which graft->node was created
614 * "sub_build" contains information about the current level itself,
615 * including the single value attained.
617 * We first set the initialization part of the for loop to the single
618 * value attained by the current dimension.
619 * The increment and condition are not strictly needed as the are known
620 * to be "1" and "iterator <= value" respectively.
621 * Then we set the size of the iterator and
622 * check if "bounds" imply any guards that need to be inserted.
624 static __isl_give isl_ast_graft *refine_degenerate(
625 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
626 __isl_keep isl_ast_build *build,
627 __isl_keep isl_ast_build *sub_build)
629 isl_pw_aff *value;
631 if (!graft || !sub_build)
632 return isl_ast_graft_free(graft);
634 value = isl_pw_aff_copy(sub_build->value);
636 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
637 value);
638 if (!graft->node->u.f.init)
639 return isl_ast_graft_free(graft);
641 graft = add_degenerate_guard(graft, bounds, build);
643 return graft;
646 /* Return the intersection of constraints in "list" as a set.
648 static __isl_give isl_set *intersect_constraints(
649 __isl_keep isl_constraint_list *list)
651 int i, n;
652 isl_basic_set *bset;
654 n = isl_constraint_list_n_constraint(list);
655 if (n < 1)
656 isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
657 "expecting at least one constraint", return NULL);
659 bset = isl_basic_set_from_constraint(
660 isl_constraint_list_get_constraint(list, 0));
661 for (i = 1; i < n; ++i) {
662 isl_basic_set *bset_i;
664 bset_i = isl_basic_set_from_constraint(
665 isl_constraint_list_get_constraint(list, i));
666 bset = isl_basic_set_intersect(bset, bset_i);
669 return isl_set_from_basic_set(bset);
672 /* Compute the constraints on the outer dimensions enforced by
673 * graft->node and add those constraints to graft->enforced,
674 * in case the upper bound is expressed as a set "upper".
676 * In particular, if l(...) is a lower bound in "lower", and
678 * -a i + f(...) >= 0 or a i <= f(...)
680 * is an upper bound ocnstraint on the current dimension i,
681 * then the for loop enforces the constraint
683 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
685 * We therefore simply take each lower bound in turn, plug it into
686 * the upper bounds and compute the intersection over all lower bounds.
688 * If a lower bound is a rational expression, then
689 * isl_basic_set_preimage_multi_aff will force this rational
690 * expression to have only integer values. However, the loop
691 * itself does not enforce this integrality constraint. We therefore
692 * use the ceil of the lower bounds instead of the lower bounds themselves.
693 * Other constraints will make sure that the for loop is only executed
694 * when each of the lower bounds attains an integral value.
695 * In particular, potentially rational values only occur in
696 * lower_bound if the offset is a (seemingly) rational expression,
697 * but then outer conditions will make sure that this rational expression
698 * only attains integer values.
700 static __isl_give isl_ast_graft *set_enforced_from_set(
701 __isl_take isl_ast_graft *graft,
702 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
704 isl_space *space;
705 isl_basic_set *enforced;
706 isl_pw_multi_aff *pma;
707 int i, n;
709 if (!graft || !lower)
710 return isl_ast_graft_free(graft);
712 space = isl_set_get_space(upper);
713 enforced = isl_basic_set_universe(isl_space_copy(space));
715 space = isl_space_map_from_set(space);
716 pma = isl_pw_multi_aff_identity(space);
718 n = isl_pw_aff_list_n_pw_aff(lower);
719 for (i = 0; i < n; ++i) {
720 isl_pw_aff *pa;
721 isl_set *enforced_i;
722 isl_basic_set *hull;
723 isl_pw_multi_aff *pma_i;
725 pa = isl_pw_aff_list_get_pw_aff(lower, i);
726 pa = isl_pw_aff_ceil(pa);
727 pma_i = isl_pw_multi_aff_copy(pma);
728 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
729 enforced_i = isl_set_copy(upper);
730 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
731 hull = isl_set_simple_hull(enforced_i);
732 enforced = isl_basic_set_intersect(enforced, hull);
735 isl_pw_multi_aff_free(pma);
737 graft = isl_ast_graft_enforce(graft, enforced);
739 return graft;
742 /* Compute the constraints on the outer dimensions enforced by
743 * graft->node and add those constraints to graft->enforced,
744 * in case the upper bound is expressed as
745 * a list of affine expressions "upper".
747 * The enforced condition is that each lower bound expression is less
748 * than or equal to each upper bound expression.
750 static __isl_give isl_ast_graft *set_enforced_from_list(
751 __isl_take isl_ast_graft *graft,
752 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
754 isl_set *cond;
755 isl_basic_set *enforced;
757 lower = isl_pw_aff_list_copy(lower);
758 upper = isl_pw_aff_list_copy(upper);
759 cond = isl_pw_aff_list_le_set(lower, upper);
760 enforced = isl_set_simple_hull(cond);
761 graft = isl_ast_graft_enforce(graft, enforced);
763 return graft;
766 /* Does "aff" have a negative constant term?
768 static int aff_constant_is_negative(__isl_take isl_set *set,
769 __isl_take isl_aff *aff, void *user)
771 int *neg = user;
772 isl_int v;
774 isl_int_init(v);
775 isl_aff_get_constant(aff, &v);
776 *neg = isl_int_is_neg(v);
777 isl_int_clear(v);
778 isl_set_free(set);
779 isl_aff_free(aff);
781 return *neg ? 0 : -1;
784 /* Does "pa" have a negative constant term over its entire domain?
786 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
788 int r;
789 int *neg = user;
791 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
792 isl_pw_aff_free(pa);
794 return *neg ? 0 : -1;
797 /* Does each element in "list" have a negative constant term?
799 * The callback terminates the iteration as soon an element has been
800 * found that does not have a negative constant term.
802 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
804 int neg = 1;
806 if (isl_pw_aff_list_foreach(list,
807 &pw_aff_constant_is_negative, &neg) < 0 && neg)
808 return -1;
810 return neg;
813 /* Add 1 to each of the elements in "list", where each of these elements
814 * is defined over the internal schedule space of "build".
816 static __isl_give isl_pw_aff_list *list_add_one(
817 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
819 int i, n;
820 isl_space *space;
821 isl_aff *aff;
822 isl_pw_aff *one;
824 space = isl_ast_build_get_space(build, 1);
825 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
826 aff = isl_aff_add_constant_si(aff, 1);
827 one = isl_pw_aff_from_aff(aff);
829 n = isl_pw_aff_list_n_pw_aff(list);
830 for (i = 0; i < n; ++i) {
831 isl_pw_aff *pa;
832 pa = isl_pw_aff_list_get_pw_aff(list, i);
833 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
834 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
837 isl_pw_aff_free(one);
839 return list;
842 /* Set the condition part of the for node graft->node in case
843 * the upper bound is represented as a list of piecewise affine expressions.
845 * In particular, set the condition to
847 * iterator <= min(list of upper bounds)
849 * If each of the upper bounds has a negative constant term, then
850 * set the condition to
852 * iterator < min(list of (upper bound + 1)s)
855 static __isl_give isl_ast_graft *set_for_cond_from_list(
856 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
857 __isl_keep isl_ast_build *build)
859 int neg;
860 isl_ast_expr *bound, *iterator, *cond;
861 enum isl_ast_op_type type = isl_ast_op_le;
863 if (!graft || !list)
864 return isl_ast_graft_free(graft);
866 neg = list_constant_is_negative(list);
867 if (neg < 0)
868 return isl_ast_graft_free(graft);
869 list = isl_pw_aff_list_copy(list);
870 if (neg) {
871 list = list_add_one(list, build);
872 type = isl_ast_op_lt;
875 bound = reduce_list(isl_ast_op_min, list, build);
876 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
877 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
878 graft->node->u.f.cond = cond;
880 isl_pw_aff_list_free(list);
881 if (!graft->node->u.f.cond)
882 return isl_ast_graft_free(graft);
883 return graft;
886 /* Set the condition part of the for node graft->node in case
887 * the upper bound is represented as a set.
889 static __isl_give isl_ast_graft *set_for_cond_from_set(
890 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
891 __isl_keep isl_ast_build *build)
893 isl_ast_expr *cond;
895 if (!graft)
896 return NULL;
898 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
899 graft->node->u.f.cond = cond;
900 if (!graft->node->u.f.cond)
901 return isl_ast_graft_free(graft);
902 return graft;
905 /* Construct an isl_ast_expr for the increment (i.e., stride) of
906 * the current dimension.
908 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
910 int depth;
911 isl_int v;
912 isl_ctx *ctx;
913 isl_ast_expr *inc;
915 if (!build)
916 return NULL;
917 ctx = isl_ast_build_get_ctx(build);
918 depth = isl_ast_build_get_depth(build);
920 if (!isl_ast_build_has_stride(build, depth))
921 return isl_ast_expr_alloc_int_si(ctx, 1);
923 isl_int_init(v);
924 isl_ast_build_get_stride(build, depth, &v);
925 inc = isl_ast_expr_alloc_int(ctx, v);
926 isl_int_clear(v);
928 return inc;
931 /* Should we express the loop condition as
933 * iterator <= min(list of upper bounds)
935 * or as a conjunction of constraints?
937 * The first is constructed from a list of upper bounds.
938 * The second is constructed from a set.
940 * If there are no upper bounds in "constraints", then this could mean
941 * that "domain" simply doesn't have an upper bound or that we didn't
942 * pick any upper bound. In the first case, we want to generate the
943 * loop condition as a(n empty) conjunction of constraints
944 * In the second case, we will compute
945 * a single upper bound from "domain" and so we use the list form.
947 * If there are upper bounds in "constraints",
948 * then we use the list form iff the atomic_upper_bound option is set.
950 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
951 __isl_keep isl_set *domain, int depth)
953 if (n_upper > 0)
954 return isl_options_get_ast_build_atomic_upper_bound(ctx);
955 else
956 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
959 /* Fill in the expressions of the for node in graft->node.
961 * In particular,
962 * - set the initialization part of the loop to the maximum of the lower bounds
963 * - set the size of the iterator based on the values attained by the iterator
964 * - extract the increment from the stride of the current dimension
965 * - construct the for condition either based on a list of upper bounds
966 * or on a set of upper bound constraints.
968 static __isl_give isl_ast_graft *set_for_node_expressions(
969 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
970 int use_list, __isl_keep isl_pw_aff_list *upper_list,
971 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
973 isl_ast_node *node;
975 if (!graft)
976 return NULL;
978 build = isl_ast_build_copy(build);
979 build = isl_ast_build_set_enforced(build,
980 isl_ast_graft_get_enforced(graft));
982 node = graft->node;
983 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
984 node->u.f.inc = for_inc(build);
986 if (use_list)
987 graft = set_for_cond_from_list(graft, upper_list, build);
988 else
989 graft = set_for_cond_from_set(graft, upper_set, build);
991 isl_ast_build_free(build);
993 if (!node->u.f.iterator || !node->u.f.init ||
994 !node->u.f.cond || !node->u.f.inc)
995 return isl_ast_graft_free(graft);
997 return graft;
1000 /* Update "graft" based on "bounds" and "domain" for the generic,
1001 * non-degenerate, case.
1003 * "c_lower" and "c_upper" contain the lower and upper bounds
1004 * that the loop node should express.
1005 * "domain" is the subset of the intersection of the constraints
1006 * for which some code is executed.
1008 * There may be zero lower bounds or zero upper bounds in "constraints"
1009 * in case the list of constraints was created
1010 * based on the atomic option or based on separation with explicit bounds.
1011 * In that case, we use "domain" to derive lower and/or upper bounds.
1013 * We first compute a list of one or more lower bounds.
1015 * Then we decide if we want to express the condition as
1017 * iterator <= min(list of upper bounds)
1019 * or as a conjunction of constraints.
1021 * The set of enforced constraints is then computed either based on
1022 * a list of upper bounds or on a set of upper bound constraints.
1023 * We do not compute any enforced constraints if we were forced
1024 * to compute a lower or upper bound using exact_bound. The domains
1025 * of the resulting expressions may imply some bounds on outer dimensions
1026 * that we do not want to appear in the enforced constraints since
1027 * they are not actually enforced by the corresponding code.
1029 * Finally, we fill in the expressions of the for node.
1031 static __isl_give isl_ast_graft *refine_generic_bounds(
1032 __isl_take isl_ast_graft *graft,
1033 __isl_take isl_constraint_list *c_lower,
1034 __isl_take isl_constraint_list *c_upper,
1035 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1037 int depth;
1038 isl_ctx *ctx;
1039 isl_pw_aff_list *lower;
1040 int use_list;
1041 isl_set *upper_set = NULL;
1042 isl_pw_aff_list *upper_list = NULL;
1043 int n_lower, n_upper;
1045 if (!graft || !c_lower || !c_upper || !build)
1046 goto error;
1048 depth = isl_ast_build_get_depth(build);
1049 ctx = isl_ast_graft_get_ctx(graft);
1051 n_lower = isl_constraint_list_n_constraint(c_lower);
1052 n_upper = isl_constraint_list_n_constraint(c_upper);
1054 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1056 lower = lower_bounds(c_lower, depth, domain, build);
1058 if (use_list)
1059 upper_list = upper_bounds(c_upper, depth, domain, build);
1060 else if (n_upper > 0)
1061 upper_set = intersect_constraints(c_upper);
1062 else
1063 upper_set = isl_set_universe(isl_set_get_space(domain));
1065 if (n_lower == 0 || n_upper == 0)
1067 else if (use_list)
1068 graft = set_enforced_from_list(graft, lower, upper_list);
1069 else
1070 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1072 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1073 upper_set, build);
1075 isl_pw_aff_list_free(lower);
1076 isl_pw_aff_list_free(upper_list);
1077 isl_set_free(upper_set);
1078 isl_constraint_list_free(c_lower);
1079 isl_constraint_list_free(c_upper);
1081 return graft;
1082 error:
1083 isl_constraint_list_free(c_lower);
1084 isl_constraint_list_free(c_upper);
1085 return isl_ast_graft_free(graft);
1088 /* Internal data structure used inside count_constraints to keep
1089 * track of the number of constraints that are independent of dimension "pos",
1090 * the lower bounds in "pos" and the upper bounds in "pos".
1092 struct isl_ast_count_constraints_data {
1093 int pos;
1095 int n_indep;
1096 int n_lower;
1097 int n_upper;
1100 /* Increment data->n_indep, data->lower or data->upper depending
1101 * on whether "c" is independenct of dimensions data->pos,
1102 * a lower bound or an upper bound.
1104 static int count_constraints(__isl_take isl_constraint *c, void *user)
1106 struct isl_ast_count_constraints_data *data = user;
1108 if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
1109 data->n_lower++;
1110 else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
1111 data->n_upper++;
1112 else
1113 data->n_indep++;
1115 isl_constraint_free(c);
1117 return 0;
1120 /* Update "graft" based on "bounds" and "domain" for the generic,
1121 * non-degenerate, case.
1123 * "list" respresent the list of bounds that need to be encoded by
1124 * the for loop (or a guard around the for loop).
1125 * "domain" is the subset of the intersection of the constraints
1126 * for which some code is executed.
1127 * "build" is the build in which graft->node was created.
1129 * We separate lower bounds, upper bounds and constraints that
1130 * are independent of the loop iterator.
1132 * The actual for loop bounds are generated in refine_generic_bounds.
1133 * If there are any constraints that are independent of the loop iterator,
1134 * we need to put a guard around the for loop (which may get hoisted up
1135 * to higher levels) and we call refine_generic_bounds in a build
1136 * where this guard is enforced.
1138 static __isl_give isl_ast_graft *refine_generic_split(
1139 __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1140 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1142 isl_ast_build *for_build;
1143 isl_set *guard;
1144 struct isl_ast_count_constraints_data data;
1145 isl_constraint_list *lower;
1146 isl_constraint_list *upper;
1148 if (!list)
1149 return isl_ast_graft_free(graft);
1151 data.pos = isl_ast_build_get_depth(build);
1153 list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
1154 if (!list)
1155 return isl_ast_graft_free(graft);
1157 data.n_indep = data.n_lower = data.n_upper = 0;
1158 if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
1159 isl_constraint_list_free(list);
1160 return isl_ast_graft_free(graft);
1163 lower = isl_constraint_list_copy(list);
1164 lower = isl_constraint_list_drop(lower, 0, data.n_indep);
1165 upper = isl_constraint_list_copy(lower);
1166 lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
1167 upper = isl_constraint_list_drop(upper, 0, data.n_lower);
1169 if (data.n_indep == 0) {
1170 isl_constraint_list_free(list);
1171 return refine_generic_bounds(graft, lower, upper,
1172 domain, build);
1175 list = isl_constraint_list_drop(list, data.n_indep,
1176 data.n_lower + data.n_upper);
1177 guard = intersect_constraints(list);
1178 isl_constraint_list_free(list);
1180 for_build = isl_ast_build_copy(build);
1181 for_build = isl_ast_build_restrict_pending(for_build,
1182 isl_set_copy(guard));
1183 graft = refine_generic_bounds(graft, lower, upper, domain, for_build);
1184 isl_ast_build_free(for_build);
1186 graft = isl_ast_graft_add_guard(graft, guard, build);
1188 return graft;
1191 /* Add the guard implied by the current stride constraint (if any),
1192 * but not (necessarily) enforced by the generated AST to "graft".
1194 static __isl_give isl_ast_graft *add_stride_guard(
1195 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
1197 int depth;
1198 isl_set *dom;
1200 depth = isl_ast_build_get_depth(build);
1201 if (!isl_ast_build_has_stride(build, depth))
1202 return graft;
1204 dom = isl_ast_build_get_stride_constraint(build);
1205 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
1206 dom = isl_ast_build_compute_gist(build, dom);
1208 graft = isl_ast_graft_add_guard(graft, dom, build);
1210 return graft;
1213 /* Update "graft" based on "bounds" and "domain" for the generic,
1214 * non-degenerate, case.
1216 * "bounds" respresent the bounds that need to be encoded by
1217 * the for loop (or a guard around the for loop).
1218 * "domain" is the subset of "bounds" for which some code is executed.
1219 * "build" is the build in which graft->node was created.
1221 * We break up "bounds" into a list of constraints and continue with
1222 * refine_generic_split.
1224 static __isl_give isl_ast_graft *refine_generic(
1225 __isl_take isl_ast_graft *graft,
1226 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1227 __isl_keep isl_ast_build *build)
1229 isl_constraint_list *list;
1231 if (!build || !graft)
1232 return isl_ast_graft_free(graft);
1234 bounds = isl_basic_set_copy(bounds);
1235 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1236 list = isl_constraint_list_from_basic_set(bounds);
1238 graft = refine_generic_split(graft, list, domain, build);
1239 graft = add_stride_guard(graft, build);
1241 return graft;
1244 /* Create a for node for the current level.
1246 * Mark the for node degenerate if "degenerate" is set.
1248 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1249 int degenerate)
1251 int depth;
1252 isl_id *id;
1253 isl_ast_node *node;
1255 if (!build)
1256 return NULL;
1258 depth = isl_ast_build_get_depth(build);
1259 id = isl_ast_build_get_iterator_id(build, depth);
1260 node = isl_ast_node_alloc_for(id);
1261 if (degenerate)
1262 node = isl_ast_node_for_mark_degenerate(node);
1264 return node;
1267 /* Create an AST node for the current dimension based on
1268 * the schedule domain "bounds" and return the node encapsulated
1269 * in an isl_ast_graft.
1271 * "executed" is the current inverse schedule, taking into account
1272 * the bounds in "bounds"
1273 * "domain" is the domain of "executed", with inner dimensions projected out.
1274 * It may be a strict subset of "bounds" in case "bounds" was created
1275 * based on the atomic option or based on separation with explicit bounds.
1277 * "domain" may satisfy additional equalities that result
1278 * from intersecting "executed" with "bounds" in add_node.
1279 * It may also satisfy some global constraints that were dropped out because
1280 * we performed separation with explicit bounds.
1281 * The very first step is then to copy these constraints to "bounds".
1283 * Since we may be calling before_each_for and after_each_for
1284 * callbacks, we record the current inverse schedule in the build.
1286 * We consider three builds,
1287 * "build" is the one in which the current level is created,
1288 * "body_build" is the build in which the next level is created,
1289 * "sub_build" is essentially the same as "body_build", except that
1290 * the depth has not been increased yet.
1292 * "build" already contains information (in strides and offsets)
1293 * about the strides at the current level, but this information is not
1294 * reflected in the build->domain.
1295 * We first add this information and the "bounds" to the sub_build->domain.
1296 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1297 * only a single value and whether this single value can be represented using
1298 * a single affine expression.
1299 * In the first case, the current level is considered "degenerate".
1300 * In the second, sub-case, the current level is considered "eliminated".
1301 * Eliminated level don't need to be reflected in the AST since we can
1302 * simply plug in the affine expression. For degenerate, but non-eliminated,
1303 * levels, we do introduce a for node, but mark is as degenerate so that
1304 * it can be printed as an assignment of the single value to the loop
1305 * "iterator".
1307 * If the current level is eliminated, we explicitly plug in the value
1308 * for the current level found by isl_ast_build_set_loop_bounds in the
1309 * inverse schedule. This ensures that if we are working on a slice
1310 * of the domain based on information available in the inverse schedule
1311 * and the build domain, that then this information is also reflected
1312 * in the inverse schedule. This operation also eliminates the current
1313 * dimension from the inverse schedule making sure no inner dimensions depend
1314 * on the current dimension. Otherwise, we create a for node, marking
1315 * it degenerate if appropriate. The initial for node is still incomplete
1316 * and will be completed in either refine_degenerate or refine_generic.
1318 * We then generate a sequence of grafts for the next level,
1319 * create a surrounding graft for the current level and insert
1320 * the for node we created (if the current level is not eliminated).
1322 * Finally, we set the bounds of the for loop and insert guards
1323 * (either in the AST or in the graft) in one of
1324 * refine_eliminated, refine_degenerate or refine_generic.
1326 static __isl_give isl_ast_graft *create_node_scaled(
1327 __isl_take isl_union_map *executed,
1328 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1329 __isl_take isl_ast_build *build)
1331 int depth;
1332 int degenerate, eliminated;
1333 isl_basic_set *hull;
1334 isl_ast_node *node = NULL;
1335 isl_ast_graft *graft;
1336 isl_ast_graft_list *children;
1337 isl_ast_build *sub_build;
1338 isl_ast_build *body_build;
1340 domain = isl_ast_build_eliminate_divs(build, domain);
1341 domain = isl_set_detect_equalities(domain);
1342 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1343 bounds = isl_basic_set_intersect(bounds, hull);
1344 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1346 depth = isl_ast_build_get_depth(build);
1347 sub_build = isl_ast_build_copy(build);
1348 sub_build = isl_ast_build_include_stride(sub_build);
1349 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1350 isl_basic_set_copy(bounds));
1351 degenerate = isl_ast_build_has_value(sub_build);
1352 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1353 if (degenerate < 0 || eliminated < 0)
1354 executed = isl_union_map_free(executed);
1355 if (eliminated)
1356 executed = plug_in_values(executed, sub_build);
1357 else
1358 node = create_for(build, degenerate);
1360 body_build = isl_ast_build_copy(sub_build);
1361 body_build = isl_ast_build_increase_depth(body_build);
1362 if (!eliminated)
1363 node = before_each_for(node, body_build);
1364 children = generate_next_level(executed,
1365 isl_ast_build_copy(body_build));
1367 graft = isl_ast_graft_alloc_level(children, build, sub_build);
1368 if (!eliminated)
1369 graft = isl_ast_graft_insert_for(graft, node);
1370 if (eliminated)
1371 graft = refine_eliminated(graft, bounds, build);
1372 else if (degenerate)
1373 graft = refine_degenerate(graft, bounds, build, sub_build);
1374 else
1375 graft = refine_generic(graft, bounds, domain, build);
1376 if (!eliminated)
1377 graft = after_each_for(graft, body_build);
1379 isl_ast_build_free(body_build);
1380 isl_ast_build_free(sub_build);
1381 isl_ast_build_free(build);
1382 isl_basic_set_free(bounds);
1383 isl_set_free(domain);
1385 return graft;
1388 /* Internal data structure for checking if all constraints involving
1389 * the input dimension "depth" are such that the other coefficients
1390 * are multiples of "m", reducing "m" if they are not.
1391 * If "m" is reduced all the way down to "1", then the check has failed
1392 * and we break out of the iteration.
1393 * "d" is an initialized isl_int that can be used internally.
1395 struct isl_check_scaled_data {
1396 int depth;
1397 isl_int m, d;
1400 /* If constraint "c" involves the input dimension data->depth,
1401 * then make sure that all the other coefficients are multiples of data->m,
1402 * reducing data->m if needed.
1403 * Break out of the iteration if data->m has become equal to "1".
1405 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1407 struct isl_check_scaled_data *data = user;
1408 int i, j, n;
1409 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1410 isl_dim_div };
1412 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1413 isl_constraint_free(c);
1414 return 0;
1417 for (i = 0; i < 4; ++i) {
1418 n = isl_constraint_dim(c, t[i]);
1419 for (j = 0; j < n; ++j) {
1420 if (t[i] == isl_dim_in && j == data->depth)
1421 continue;
1422 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1423 continue;
1424 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1425 isl_int_gcd(data->m, data->m, data->d);
1426 if (isl_int_is_one(data->m))
1427 break;
1429 if (j < n)
1430 break;
1433 isl_constraint_free(c);
1435 return i < 4 ? -1 : 0;
1438 /* For each constraint of "bmap" that involves the input dimension data->depth,
1439 * make sure that all the other coefficients are multiples of data->m,
1440 * reducing data->m if needed.
1441 * Break out of the iteration if data->m has become equal to "1".
1443 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1445 int r;
1447 r = isl_basic_map_foreach_constraint(bmap,
1448 &constraint_check_scaled, user);
1449 isl_basic_map_free(bmap);
1451 return r;
1454 /* For each constraint of "map" that involves the input dimension data->depth,
1455 * make sure that all the other coefficients are multiples of data->m,
1456 * reducing data->m if needed.
1457 * Break out of the iteration if data->m has become equal to "1".
1459 static int map_check_scaled(__isl_take isl_map *map, void *user)
1461 int r;
1463 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1464 isl_map_free(map);
1466 return r;
1469 /* Create an AST node for the current dimension based on
1470 * the schedule domain "bounds" and return the node encapsulated
1471 * in an isl_ast_graft.
1473 * "executed" is the current inverse schedule, taking into account
1474 * the bounds in "bounds"
1475 * "domain" is the domain of "executed", with inner dimensions projected out.
1478 * Before moving on to the actual AST node construction in create_node_scaled,
1479 * we first check if the current dimension is strided and if we can scale
1480 * down this stride. Note that we only do this if the ast_build_scale_strides
1481 * option is set.
1483 * In particular, let the current dimension take on values
1485 * f + s a
1487 * with a an integer. We check if we can find an integer m that (obviouly)
1488 * divides both f and s.
1490 * If so, we check if the current dimension only appears in constraints
1491 * where the coefficients of the other variables are multiples of m.
1492 * We perform this extra check to avoid the risk of introducing
1493 * divisions by scaling down the current dimension.
1495 * If so, we scale the current dimension down by a factor of m.
1496 * That is, we plug in
1498 * i = m i' (1)
1500 * Note that in principle we could always scale down strided loops
1501 * by plugging in
1503 * i = f + s i'
1505 * but this may result in i' taking on larger values than the original i,
1506 * due to the shift by "f".
1507 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1509 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1510 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1511 __isl_take isl_ast_build *build)
1513 struct isl_check_scaled_data data;
1514 isl_ctx *ctx;
1515 isl_aff *offset;
1517 ctx = isl_ast_build_get_ctx(build);
1518 if (!isl_options_get_ast_build_scale_strides(ctx))
1519 return create_node_scaled(executed, bounds, domain, build);
1521 data.depth = isl_ast_build_get_depth(build);
1522 if (!isl_ast_build_has_stride(build, data.depth))
1523 return create_node_scaled(executed, bounds, domain, build);
1525 isl_int_init(data.m);
1526 isl_int_init(data.d);
1528 offset = isl_ast_build_get_offset(build, data.depth);
1529 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1530 offset = isl_aff_free(offset);
1531 offset = isl_aff_scale_down(offset, data.m);
1532 if (isl_aff_get_denominator(offset, &data.d) < 0)
1533 executed = isl_union_map_free(executed);
1535 if (executed && isl_int_is_divisible_by(data.m, data.d))
1536 isl_int_divexact(data.m, data.m, data.d);
1537 else
1538 isl_int_set_si(data.m, 1);
1540 if (!isl_int_is_one(data.m)) {
1541 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1542 &data) < 0 &&
1543 !isl_int_is_one(data.m))
1544 executed = isl_union_map_free(executed);
1547 if (!isl_int_is_one(data.m)) {
1548 isl_space *space;
1549 isl_multi_aff *ma;
1550 isl_aff *aff;
1551 isl_map *map;
1552 isl_union_map *umap;
1554 space = isl_ast_build_get_space(build, 1);
1555 space = isl_space_map_from_set(space);
1556 ma = isl_multi_aff_identity(space);
1557 aff = isl_multi_aff_get_aff(ma, data.depth);
1558 aff = isl_aff_scale(aff, data.m);
1559 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1561 bounds = isl_basic_set_preimage_multi_aff(bounds,
1562 isl_multi_aff_copy(ma));
1563 domain = isl_set_preimage_multi_aff(domain,
1564 isl_multi_aff_copy(ma));
1565 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1566 umap = isl_union_map_from_map(map);
1567 executed = isl_union_map_apply_domain(executed,
1568 isl_union_map_copy(umap));
1569 build = isl_ast_build_scale_down(build, data.m, umap);
1571 isl_aff_free(offset);
1573 isl_int_clear(data.d);
1574 isl_int_clear(data.m);
1576 return create_node_scaled(executed, bounds, domain, build);
1579 /* Add the basic set to the list that "user" points to.
1581 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1583 isl_basic_set_list **list = user;
1585 *list = isl_basic_set_list_add(*list, bset);
1587 return 0;
1590 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1592 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1593 __isl_take isl_set *set)
1595 int n;
1596 isl_ctx *ctx;
1597 isl_basic_set_list *list;
1599 if (!set)
1600 return NULL;
1602 ctx = isl_set_get_ctx(set);
1604 n = isl_set_n_basic_set(set);
1605 list = isl_basic_set_list_alloc(ctx, n);
1606 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1607 list = isl_basic_set_list_free(list);
1609 isl_set_free(set);
1610 return list;
1613 /* Generate code for the schedule domain "bounds"
1614 * and add the result to "list".
1616 * We mainly detect strides and additional equalities here
1617 * and then pass over control to create_node.
1619 * "bounds" reflects the bounds on the current dimension and possibly
1620 * some extra conditions on outer dimensions.
1621 * It does not, however, include any divs involving the current dimension,
1622 * so it does not capture any stride constraints.
1623 * We therefore need to compute that part of the schedule domain that
1624 * intersects with "bounds" and derive the strides from the result.
1626 static __isl_give isl_ast_graft_list *add_node(
1627 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1628 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1630 isl_ast_graft *graft;
1631 isl_set *domain = NULL;
1632 isl_union_set *uset;
1633 int empty;
1635 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1636 executed = isl_union_map_intersect_domain(executed, uset);
1637 empty = isl_union_map_is_empty(executed);
1638 if (empty < 0)
1639 goto error;
1640 if (empty)
1641 goto done;
1643 uset = isl_union_map_domain(isl_union_map_copy(executed));
1644 domain = isl_set_from_union_set(uset);
1645 domain = isl_ast_build_compute_gist(build, domain);
1646 empty = isl_set_is_empty(domain);
1647 if (empty < 0)
1648 goto error;
1649 if (empty)
1650 goto done;
1652 domain = isl_ast_build_eliminate_inner(build, domain);
1653 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1655 graft = create_node(executed, bounds, domain,
1656 isl_ast_build_copy(build));
1657 list = isl_ast_graft_list_add(list, graft);
1658 isl_ast_build_free(build);
1659 return list;
1660 error:
1661 list = isl_ast_graft_list_free(list);
1662 done:
1663 isl_set_free(domain);
1664 isl_basic_set_free(bounds);
1665 isl_union_map_free(executed);
1666 isl_ast_build_free(build);
1667 return list;
1670 /* Does any element of i follow or coincide with any element of j
1671 * at the current depth for equal values of the outer dimensions?
1673 static int domain_follows_at_depth(__isl_keep isl_basic_set *i,
1674 __isl_keep isl_basic_set *j, void *user)
1676 int depth = *(int *) user;
1677 isl_basic_map *test;
1678 int empty;
1679 int l;
1681 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1682 isl_basic_set_copy(j));
1683 for (l = 0; l < depth; ++l)
1684 test = isl_basic_map_equate(test, isl_dim_in, l,
1685 isl_dim_out, l);
1686 test = isl_basic_map_order_ge(test, isl_dim_in, depth,
1687 isl_dim_out, depth);
1688 empty = isl_basic_map_is_empty(test);
1689 isl_basic_map_free(test);
1691 return empty < 0 ? -1 : !empty;
1694 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1695 __isl_keep isl_basic_set_list *domain_list,
1696 __isl_keep isl_union_map *executed,
1697 __isl_keep isl_ast_build *build);
1699 /* Internal data structure for add_nodes.
1701 * "executed" and "build" are extra arguments to be passed to add_node.
1702 * "list" collects the results.
1704 struct isl_add_nodes_data {
1705 isl_union_map *executed;
1706 isl_ast_build *build;
1708 isl_ast_graft_list *list;
1711 /* Generate code for the schedule domains in "scc"
1712 * and add the results to "list".
1714 * The domains in "scc" form a strongly connected component in the ordering.
1715 * If the number of domains in "scc" is larger than 1, then this means
1716 * that we cannot determine a valid ordering for the domains in the component.
1717 * This should be fairly rare because the individual domains
1718 * have been made disjoint first.
1719 * The problem is that the domains may be integrally disjoint but not
1720 * rationally disjoint. For example, we may have domains
1722 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1724 * These two domains have an empty intersection, but their rational
1725 * relaxations do intersect. It is impossible to order these domains
1726 * in the second dimension because the first should be ordered before
1727 * the second for outer dimension equal to 0, while it should be ordered
1728 * after for outer dimension equal to 1.
1730 * This may happen in particular in case of unrolling since the domain
1731 * of each slice is replaced by its simple hull.
1733 * We collect the basic sets in the component, call isl_set_make_disjoint
1734 * and try again. Note that we rely here on isl_set_make_disjoint also
1735 * making the basic sets rationally disjoint. If the basic sets
1736 * are rationally disjoint, then the ordering problem does not occur.
1737 * To see this, there can only be a problem if there are points
1738 * (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
1739 * a < c and b > d. This means that either the interval spanned
1740 * by a en b lies inside that spanned by c and or the other way around.
1741 * In either case, there is a point inside both intervals with the
1742 * convex combination in terms of a and b and in terms of c and d.
1743 * Taking the same combination of i and j gives a point in the intersection.
1745 static int add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1747 struct isl_add_nodes_data *data = user;
1748 int i, n;
1749 isl_basic_set *bset;
1750 isl_set *set;
1752 n = isl_basic_set_list_n_basic_set(scc);
1753 bset = isl_basic_set_list_get_basic_set(scc, 0);
1754 if (n == 1) {
1755 isl_basic_set_list_free(scc);
1756 data->list = add_node(data->list,
1757 isl_union_map_copy(data->executed), bset,
1758 isl_ast_build_copy(data->build));
1759 return data->list ? 0 : -1;
1762 set = isl_set_from_basic_set(bset);
1763 for (i = 1; i < n; ++i) {
1764 bset = isl_basic_set_list_get_basic_set(scc, i);
1765 set = isl_set_union(set, isl_set_from_basic_set(bset));
1768 set = isl_set_make_disjoint(set);
1769 if (isl_set_n_basic_set(set) == n)
1770 isl_die(isl_basic_set_list_get_ctx(scc), isl_error_internal,
1771 "unable to separate loop parts",
1772 set = isl_set_free(set));
1773 isl_basic_set_list_free(scc);
1774 scc = isl_basic_set_list_from_set(set);
1775 data->list = isl_ast_graft_list_concat(data->list,
1776 generate_sorted_domains(scc, data->executed, data->build));
1777 isl_basic_set_list_free(scc);
1779 return data->list ? 0 : -1;
1782 /* Sort the domains in "domain_list" according to the execution order
1783 * at the current depth (for equal values of the outer dimensions),
1784 * generate code for each of them, collecting the results in a list.
1785 * If no code is generated (because the intersection of the inverse schedule
1786 * with the domains turns out to be empty), then an empty list is returned.
1788 * The caller is responsible for ensuring that the basic sets in "domain_list"
1789 * are pair-wise disjoint. It can, however, in principle happen that
1790 * two basic sets should be ordered one way for one value of the outer
1791 * dimensions and the other way for some other value of the outer dimensions.
1792 * We therefore play safe and look for strongly connected components.
1793 * The function add_nodes takes care of handling non-trivial components.
1795 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1796 __isl_keep isl_basic_set_list *domain_list,
1797 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1799 isl_ctx *ctx;
1800 struct isl_add_nodes_data data;
1801 int depth;
1802 int n;
1804 if (!domain_list)
1805 return NULL;
1807 ctx = isl_basic_set_list_get_ctx(domain_list);
1808 n = isl_basic_set_list_n_basic_set(domain_list);
1809 data.list = isl_ast_graft_list_alloc(ctx, n);
1810 if (n == 0)
1811 return data.list;
1812 if (n == 1)
1813 return add_node(data.list, isl_union_map_copy(executed),
1814 isl_basic_set_list_get_basic_set(domain_list, 0),
1815 isl_ast_build_copy(build));
1817 depth = isl_ast_build_get_depth(build);
1818 data.executed = executed;
1819 data.build = build;
1820 if (isl_basic_set_list_foreach_scc(domain_list,
1821 &domain_follows_at_depth, &depth,
1822 &add_nodes, &data) < 0)
1823 data.list = isl_ast_graft_list_free(data.list);
1825 return data.list;
1828 /* Do i and j share any values for the outer dimensions?
1830 static int shared_outer(__isl_keep isl_basic_set *i,
1831 __isl_keep isl_basic_set *j, void *user)
1833 int depth = *(int *) user;
1834 isl_basic_map *test;
1835 int empty;
1836 int l;
1838 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1839 isl_basic_set_copy(j));
1840 for (l = 0; l < depth; ++l)
1841 test = isl_basic_map_equate(test, isl_dim_in, l,
1842 isl_dim_out, l);
1843 empty = isl_basic_map_is_empty(test);
1844 isl_basic_map_free(test);
1846 return empty < 0 ? -1 : !empty;
1849 /* Internal data structure for generate_sorted_domains_wrap.
1851 * "n" is the total number of basic sets
1852 * "executed" and "build" are extra arguments to be passed
1853 * to generate_sorted_domains.
1855 * "single" is set to 1 by generate_sorted_domains_wrap if there
1856 * is only a single component.
1857 * "list" collects the results.
1859 struct isl_ast_generate_parallel_domains_data {
1860 int n;
1861 isl_union_map *executed;
1862 isl_ast_build *build;
1864 int single;
1865 isl_ast_graft_list *list;
1868 /* Call generate_sorted_domains on "scc", fuse the result into a list
1869 * with either zero or one graft and collect the these single element
1870 * lists into data->list.
1872 * If there is only one component, i.e., if the number of basic sets
1873 * in the current component is equal to the total number of basic sets,
1874 * then data->single is set to 1 and the result of generate_sorted_domains
1875 * is not fused.
1877 static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
1878 void *user)
1880 struct isl_ast_generate_parallel_domains_data *data = user;
1881 isl_ast_graft_list *list;
1883 list = generate_sorted_domains(scc, data->executed, data->build);
1884 data->single = isl_basic_set_list_n_basic_set(scc) == data->n;
1885 if (!data->single)
1886 list = isl_ast_graft_list_fuse(list, data->build);
1887 if (!data->list)
1888 data->list = list;
1889 else
1890 data->list = isl_ast_graft_list_concat(data->list, list);
1892 isl_basic_set_list_free(scc);
1893 if (!data->list)
1894 return -1;
1896 return 0;
1899 /* Look for any (weakly connected) components in the "domain_list"
1900 * of domains that share some values of the outer dimensions.
1901 * That is, domains in different components do not share any values
1902 * of the outer dimensions. This means that these components
1903 * can be freely reordered.
1904 * Within each of the components, we sort the domains according
1905 * to the execution order at the current depth.
1907 * If there is more than one component, then generate_sorted_domains_wrap
1908 * fuses the result of each call to generate_sorted_domains
1909 * into a list with either zero or one graft and collects these (at most)
1910 * single element lists into a bigger list. This means that the elements of the
1911 * final list can be freely reordered. In particular, we sort them
1912 * according to an arbitrary but fixed ordering to ease merging of
1913 * graft lists from different components.
1915 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1916 __isl_keep isl_basic_set_list *domain_list,
1917 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1919 int depth;
1920 struct isl_ast_generate_parallel_domains_data data;
1922 if (!domain_list)
1923 return NULL;
1925 data.n = isl_basic_set_list_n_basic_set(domain_list);
1926 if (data.n <= 1)
1927 return generate_sorted_domains(domain_list, executed, build);
1929 depth = isl_ast_build_get_depth(build);
1930 data.list = NULL;
1931 data.executed = executed;
1932 data.build = build;
1933 data.single = 0;
1934 if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
1935 &generate_sorted_domains_wrap,
1936 &data) < 0)
1937 data.list = isl_ast_graft_list_free(data.list);
1939 if (!data.single)
1940 data.list = isl_ast_graft_list_sort_guard(data.list);
1942 return data.list;
1945 /* Internal data for separate_domain.
1947 * "explicit" is set if we only want to use explicit bounds.
1949 * "domain" collects the separated domains.
1951 struct isl_separate_domain_data {
1952 isl_ast_build *build;
1953 int explicit;
1954 isl_set *domain;
1957 /* Extract implicit bounds on the current dimension for the executed "map".
1959 * The domain of "map" may involve inner dimensions, so we
1960 * need to eliminate them.
1962 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
1963 __isl_keep isl_ast_build *build)
1965 isl_set *domain;
1967 domain = isl_map_domain(map);
1968 domain = isl_ast_build_eliminate(build, domain);
1970 return domain;
1973 /* Extract explicit bounds on the current dimension for the executed "map".
1975 * Rather than eliminating the inner dimensions as in implicit_bounds,
1976 * we simply drop any constraints involving those inner dimensions.
1977 * The idea is that most bounds that are implied by constraints on the
1978 * inner dimensions will be enforced by for loops and not by explicit guards.
1979 * There is then no need to separate along those bounds.
1981 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
1982 __isl_keep isl_ast_build *build)
1984 isl_set *domain;
1985 int depth, dim;
1987 dim = isl_map_dim(map, isl_dim_out);
1988 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
1990 domain = isl_map_domain(map);
1991 depth = isl_ast_build_get_depth(build);
1992 dim = isl_set_dim(domain, isl_dim_set);
1993 domain = isl_set_detect_equalities(domain);
1994 domain = isl_set_drop_constraints_involving_dims(domain,
1995 isl_dim_set, depth + 1, dim - (depth + 1));
1996 domain = isl_set_remove_divs_involving_dims(domain,
1997 isl_dim_set, depth, 1);
1998 domain = isl_set_remove_unknown_divs(domain);
2000 return domain;
2003 /* Split data->domain into pieces that intersect with the range of "map"
2004 * and pieces that do not intersect with the range of "map"
2005 * and then add that part of the range of "map" that does not intersect
2006 * with data->domain.
2008 static int separate_domain(__isl_take isl_map *map, void *user)
2010 struct isl_separate_domain_data *data = user;
2011 isl_set *domain;
2012 isl_set *d1, *d2;
2014 if (data->explicit)
2015 domain = explicit_bounds(map, data->build);
2016 else
2017 domain = implicit_bounds(map, data->build);
2019 domain = isl_set_coalesce(domain);
2020 domain = isl_set_make_disjoint(domain);
2021 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2022 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2023 data->domain = isl_set_intersect(data->domain, domain);
2024 data->domain = isl_set_union(data->domain, d1);
2025 data->domain = isl_set_union(data->domain, d2);
2027 return 0;
2030 /* Separate the schedule domains of "executed".
2032 * That is, break up the domain of "executed" into basic sets,
2033 * such that for each basic set S, every element in S is associated with
2034 * the same domain spaces.
2036 * "space" is the (single) domain space of "executed".
2038 static __isl_give isl_set *separate_schedule_domains(
2039 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2040 __isl_keep isl_ast_build *build)
2042 struct isl_separate_domain_data data = { build };
2043 isl_ctx *ctx;
2045 ctx = isl_ast_build_get_ctx(build);
2046 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2047 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2048 data.domain = isl_set_empty(space);
2049 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2050 data.domain = isl_set_free(data.domain);
2052 isl_union_map_free(executed);
2053 return data.domain;
2056 /* Temporary data used during the search for a lower bound for unrolling.
2058 * "domain" is the original set for which to find a lower bound
2059 * "depth" is the dimension for which to find a lower boudn
2061 * "lower" is the best lower bound found so far. It is NULL if we have not
2062 * found any yet.
2063 * "n" is the corresponding size. If lower is NULL, then the value of n
2064 * is undefined.
2066 * "tmp" is a temporary initialized isl_int.
2068 struct isl_find_unroll_data {
2069 isl_set *domain;
2070 int depth;
2072 isl_aff *lower;
2073 int *n;
2074 isl_int tmp;
2077 /* Check if we can use "c" as a lower bound and if it is better than
2078 * any previously found lower bound.
2080 * If "c" does not involve the dimension at the current depth,
2081 * then we cannot use it.
2082 * Otherwise, let "c" be of the form
2084 * i >= f(j)/a
2086 * We compute the maximal value of
2088 * -ceil(f(j)/a)) + i + 1
2090 * over the domain. If there is such a value "n", then we know
2092 * -ceil(f(j)/a)) + i + 1 <= n
2094 * or
2096 * i < ceil(f(j)/a)) + n
2098 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2099 * We just need to check if we have found any lower bound before and
2100 * if the new lower bound is better (smaller n) than the previously found
2101 * lower bounds.
2103 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2104 __isl_keep isl_constraint *c)
2106 isl_aff *aff, *lower;
2107 enum isl_lp_result res;
2109 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2110 return 0;
2112 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2113 lower = isl_aff_ceil(lower);
2114 aff = isl_aff_copy(lower);
2115 aff = isl_aff_neg(aff);
2116 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2117 aff = isl_aff_add_constant_si(aff, 1);
2118 res = isl_set_max(data->domain, aff, &data->tmp);
2119 isl_aff_free(aff);
2121 if (res == isl_lp_error)
2122 goto error;
2123 if (res == isl_lp_unbounded) {
2124 isl_aff_free(lower);
2125 return 0;
2128 if (isl_int_cmp_si(data->tmp, INT_MAX) <= 0 &&
2129 (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0)) {
2130 isl_aff_free(data->lower);
2131 data->lower = lower;
2132 *data->n = isl_int_get_si(data->tmp);
2133 } else
2134 isl_aff_free(lower);
2136 return 1;
2137 error:
2138 isl_aff_free(lower);
2139 return -1;
2142 /* Check if we can use "c" as a lower bound and if it is better than
2143 * any previously found lower bound.
2145 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2147 struct isl_find_unroll_data *data;
2148 int r;
2150 data = (struct isl_find_unroll_data *) user;
2151 r = update_unrolling_lower_bound(data, c);
2152 isl_constraint_free(c);
2154 return r;
2157 /* Look for a lower bound l(i) on the dimension at "depth"
2158 * and a size n such that "domain" is a subset of
2160 * { [i] : l(i) <= i_d < l(i) + n }
2162 * where d is "depth" and l(i) depends only on earlier dimensions.
2163 * Furthermore, try and find a lower bound such that n is as small as possible.
2164 * In particular, "n" needs to be finite.
2166 * Inner dimensions have been eliminated from "domain" by the caller.
2168 * We first construct a collection of lower bounds on the input set
2169 * by computing its simple hull. We then iterate through them,
2170 * discarding those that we cannot use (either because they do not
2171 * involve the dimension at "depth" or because they have no corresponding
2172 * upper bound, meaning that "n" would be unbounded) and pick out the
2173 * best from the remaining ones.
2175 * If we cannot find a suitable lower bound, then we consider that
2176 * to be an error.
2178 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2179 int depth, int *n)
2181 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2182 isl_basic_set *hull;
2184 isl_int_init(data.tmp);
2185 hull = isl_set_simple_hull(isl_set_copy(domain));
2187 if (isl_basic_set_foreach_constraint(hull,
2188 &constraint_find_unroll, &data) < 0)
2189 goto error;
2191 isl_basic_set_free(hull);
2192 isl_int_clear(data.tmp);
2194 if (!data.lower)
2195 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2196 "cannot find lower bound for unrolling", return NULL);
2198 return data.lower;
2199 error:
2200 isl_basic_set_free(hull);
2201 isl_int_clear(data.tmp);
2202 return isl_aff_free(data.lower);
2205 /* Return the constraint
2207 * i_"depth" = aff + offset
2209 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2210 int offset)
2212 aff = isl_aff_copy(aff);
2213 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2214 aff = isl_aff_add_constant_si(aff, offset);
2215 return isl_equality_from_aff(aff);
2218 /* Return a list of basic sets, one for each value of the current dimension
2219 * in "domain".
2220 * The divs that involve the current dimension have not been projected out
2221 * from this domain.
2223 * Since we are going to be iterating over the individual values,
2224 * we first check if there are any strides on the current dimension.
2225 * If there is, we rewrite the current dimension i as
2227 * i = stride i' + offset
2229 * and then iterate over individual values of i' instead.
2231 * We then look for a lower bound on i' and a size such that the domain
2232 * is a subset of
2234 * { [j,i'] : l(j) <= i' < l(j) + n }
2236 * and then take slices of the domain at values of i'
2237 * between l(j) and l(j) + n - 1.
2239 * We compute the unshifted simple hull of each slice to ensure that
2240 * we have a single basic set per offset. The slicing constraint
2241 * may get simplified away before the unshifted simple hull is taken
2242 * and may therefore in some rare cases disappear from the result.
2243 * We therefore explicitly add the constraint back after computing
2244 * the unshifted simple hull to ensure that the basic sets
2245 * remain disjoint. The constraints that are dropped by taking the hull
2246 * will be taken into account at the next level, as in the case of the
2247 * atomic option.
2249 * Finally, we map i' back to i and add each basic set to the list.
2251 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2252 __isl_keep isl_ast_build *build)
2254 int i, n;
2255 int depth;
2256 isl_ctx *ctx;
2257 isl_aff *lower;
2258 isl_basic_set_list *list;
2259 isl_multi_aff *expansion;
2260 isl_basic_map *bmap;
2262 if (!domain)
2263 return NULL;
2265 ctx = isl_set_get_ctx(domain);
2266 depth = isl_ast_build_get_depth(build);
2267 build = isl_ast_build_copy(build);
2268 domain = isl_ast_build_eliminate_inner(build, domain);
2269 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2270 expansion = isl_ast_build_get_stride_expansion(build);
2272 domain = isl_set_preimage_multi_aff(domain,
2273 isl_multi_aff_copy(expansion));
2274 domain = isl_ast_build_eliminate_divs(build, domain);
2276 isl_ast_build_free(build);
2278 list = isl_basic_set_list_alloc(ctx, 0);
2280 lower = find_unroll_lower_bound(domain, depth, &n);
2281 if (!lower)
2282 list = isl_basic_set_list_free(list);
2284 bmap = isl_basic_map_from_multi_aff(expansion);
2286 for (i = 0; list && i < n; ++i) {
2287 isl_set *set;
2288 isl_basic_set *bset;
2289 isl_constraint *slice;
2291 slice = at_offset(depth, lower, i);
2292 set = isl_set_copy(domain);
2293 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2294 bset = isl_set_unshifted_simple_hull(set);
2295 bset = isl_basic_set_add_constraint(bset, slice);
2296 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2297 list = isl_basic_set_list_add(list, bset);
2300 isl_aff_free(lower);
2301 isl_set_free(domain);
2302 isl_basic_map_free(bmap);
2304 return list;
2307 /* Data structure for storing the results and the intermediate objects
2308 * of compute_domains.
2310 * "list" is the main result of the function and contains a list
2311 * of disjoint basic sets for which code should be generated.
2313 * "executed" and "build" are inputs to compute_domains.
2314 * "schedule_domain" is the domain of "executed".
2316 * "option" constains the domains at the current depth that should by
2317 * atomic, separated or unrolled. These domains are as specified by
2318 * the user, except that inner dimensions have been eliminated and
2319 * that they have been made pair-wise disjoint.
2321 * "sep_class" contains the user-specified split into separation classes
2322 * specialized to the current depth.
2323 * "done" contains the union of the separation domains that have already
2324 * been handled.
2325 * "atomic" contains the domain that has effectively been made atomic.
2326 * This domain may be larger than the intersection of option[atomic]
2327 * and the schedule domain.
2329 struct isl_codegen_domains {
2330 isl_basic_set_list *list;
2332 isl_union_map *executed;
2333 isl_ast_build *build;
2334 isl_set *schedule_domain;
2336 isl_set *option[3];
2338 isl_map *sep_class;
2339 isl_set *done;
2340 isl_set *atomic;
2343 /* Add domains to domains->list for each individual value of the current
2344 * dimension, for that part of the schedule domain that lies in the
2345 * intersection of the option domain and the class domain.
2347 * "domain" is the intersection of the class domain and the schedule domain.
2348 * The divs that involve the current dimension have not been projected out
2349 * from this domain.
2351 * We first break up the unroll option domain into individual pieces
2352 * and then handle each of them separately. The unroll option domain
2353 * has been made disjoint in compute_domains_init_options,
2355 * Note that we actively want to combine different pieces of the
2356 * schedule domain that have the same value at the current dimension.
2357 * We therefore need to break up the unroll option domain before
2358 * intersecting with class and schedule domain, hoping that the
2359 * unroll option domain specified by the user is relatively simple.
2361 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2362 __isl_keep isl_set *domain)
2364 isl_set *unroll_domain;
2365 isl_basic_set_list *unroll_list;
2366 int i, n;
2367 int empty;
2369 empty = isl_set_is_empty(domains->option[unroll]);
2370 if (empty < 0)
2371 return -1;
2372 if (empty)
2373 return 0;
2375 unroll_domain = isl_set_copy(domains->option[unroll]);
2376 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2378 n = isl_basic_set_list_n_basic_set(unroll_list);
2379 for (i = 0; i < n; ++i) {
2380 isl_basic_set *bset;
2381 isl_basic_set_list *list;
2383 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2384 unroll_domain = isl_set_from_basic_set(bset);
2385 unroll_domain = isl_set_intersect(unroll_domain,
2386 isl_set_copy(domain));
2388 empty = isl_set_is_empty(unroll_domain);
2389 if (empty >= 0 && empty) {
2390 isl_set_free(unroll_domain);
2391 continue;
2394 list = do_unroll(unroll_domain, domains->build);
2395 domains->list = isl_basic_set_list_concat(domains->list, list);
2398 isl_basic_set_list_free(unroll_list);
2400 return 0;
2403 /* Construct a single basic set that includes the intersection of
2404 * the schedule domain, the atomic option domain and the class domain.
2405 * Add the resulting basic set to domains->list and save a copy
2406 * in domains->atomic for use in compute_partial_domains.
2408 * We construct a single domain rather than trying to combine
2409 * the schedule domains of individual domains because we are working
2410 * within a single component so that non-overlapping schedule domains
2411 * should already have been separated.
2412 * Note, though, that this does not take into account the class domain.
2413 * So, it is possible for a class domain to carve out a piece of the
2414 * schedule domain with independent pieces and then we would only
2415 * generate a single domain for them. If this proves to be problematic
2416 * for some users, then this function will have to be adjusted.
2418 * "domain" is the intersection of the schedule domain and the class domain,
2419 * with inner dimensions projected out.
2421 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2422 __isl_keep isl_set *domain)
2424 isl_basic_set *bset;
2425 isl_set *atomic_domain;
2426 int empty;
2428 atomic_domain = isl_set_copy(domains->option[atomic]);
2429 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2430 empty = isl_set_is_empty(atomic_domain);
2431 if (empty < 0 || empty) {
2432 domains->atomic = atomic_domain;
2433 return empty < 0 ? -1 : 0;
2436 atomic_domain = isl_set_coalesce(atomic_domain);
2437 bset = isl_set_unshifted_simple_hull(atomic_domain);
2438 domains->atomic = isl_set_from_basic_set(isl_basic_set_copy(bset));
2439 domains->list = isl_basic_set_list_add(domains->list, bset);
2441 return 0;
2444 /* Split up the schedule domain into uniform basic sets,
2445 * in the sense that each element in a basic set is associated to
2446 * elements of the same domains, and add the result to domains->list.
2447 * Do this for that part of the schedule domain that lies in the
2448 * intersection of "class_domain" and the separate option domain.
2450 * "class_domain" may or may not include the constraints
2451 * of the schedule domain, but this does not make a difference
2452 * since we are going to intersect it with the domain of the inverse schedule.
2453 * If it includes schedule domain constraints, then they may involve
2454 * inner dimensions, but we will eliminate them in separation_domain.
2456 static int compute_separate_domain(struct isl_codegen_domains *domains,
2457 __isl_keep isl_set *class_domain)
2459 isl_space *space;
2460 isl_set *domain;
2461 isl_union_map *executed;
2462 isl_basic_set_list *list;
2463 int empty;
2465 domain = isl_set_copy(domains->option[separate]);
2466 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2467 executed = isl_union_map_copy(domains->executed);
2468 executed = isl_union_map_intersect_domain(executed,
2469 isl_union_set_from_set(domain));
2470 empty = isl_union_map_is_empty(executed);
2471 if (empty < 0 || empty) {
2472 isl_union_map_free(executed);
2473 return empty < 0 ? -1 : 0;
2476 space = isl_set_get_space(class_domain);
2477 domain = separate_schedule_domains(space, executed, domains->build);
2479 list = isl_basic_set_list_from_set(domain);
2480 domains->list = isl_basic_set_list_concat(domains->list, list);
2482 return 0;
2485 /* Split up the domain at the current depth into disjoint
2486 * basic sets for which code should be generated separately
2487 * for the given separation class domain.
2489 * If any separation classes have been defined, then "class_domain"
2490 * is the domain of the current class and does not refer to inner dimensions.
2491 * Otherwise, "class_domain" is the universe domain.
2493 * We first make sure that the class domain is disjoint from
2494 * previously considered class domains.
2496 * The separate domains can be computed directly from the "class_domain".
2498 * The unroll, atomic and remainder domains need the constraints
2499 * from the schedule domain.
2501 * For unrolling, the actual schedule domain is needed (with divs that
2502 * may refer to the current dimension) so that stride detection can be
2503 * performed.
2505 * For atomic and remainder domains, inner dimensions and divs involving
2506 * the current dimensions should be eliminated.
2507 * In case we are working within a separation class, we need to intersect
2508 * the result with the current "class_domain" to ensure that the domains
2509 * are disjoint from those generated from other class domains.
2511 * The domain that has been made atomic may be larger than specified
2512 * by the user since it needs to be representable as a single basic set.
2513 * This possibly larger domain is stored in domains->atomic by
2514 * compute_atomic_domain.
2516 * If anything is left after handling separate, unroll and atomic,
2517 * we split it up into basic sets and append the basic sets to domains->list.
2519 static int compute_partial_domains(struct isl_codegen_domains *domains,
2520 __isl_take isl_set *class_domain)
2522 isl_basic_set_list *list;
2523 isl_set *domain;
2525 class_domain = isl_set_subtract(class_domain,
2526 isl_set_copy(domains->done));
2527 domains->done = isl_set_union(domains->done,
2528 isl_set_copy(class_domain));
2530 domain = isl_set_copy(class_domain);
2532 if (compute_separate_domain(domains, domain) < 0)
2533 goto error;
2534 domain = isl_set_subtract(domain,
2535 isl_set_copy(domains->option[separate]));
2537 domain = isl_set_intersect(domain,
2538 isl_set_copy(domains->schedule_domain));
2540 if (compute_unroll_domains(domains, domain) < 0)
2541 goto error;
2542 domain = isl_set_subtract(domain,
2543 isl_set_copy(domains->option[unroll]));
2545 domain = isl_ast_build_eliminate(domains->build, domain);
2546 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2548 if (compute_atomic_domain(domains, domain) < 0)
2549 domain = isl_set_free(domain);
2550 domain = isl_set_subtract(domain, domains->atomic);
2552 domain = isl_set_coalesce(domain);
2553 domain = isl_set_make_disjoint(domain);
2555 list = isl_basic_set_list_from_set(domain);
2556 domains->list = isl_basic_set_list_concat(domains->list, list);
2558 isl_set_free(class_domain);
2560 return 0;
2561 error:
2562 isl_set_free(domain);
2563 isl_set_free(class_domain);
2564 return -1;
2567 /* Split up the domain at the current depth into disjoint
2568 * basic sets for which code should be generated separately
2569 * for the separation class identified by "pnt".
2571 * We extract the corresponding class domain from domains->sep_class,
2572 * eliminate inner dimensions and pass control to compute_partial_domains.
2574 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2576 struct isl_codegen_domains *domains = user;
2577 isl_set *class_set;
2578 isl_set *domain;
2579 int disjoint;
2581 class_set = isl_set_from_point(pnt);
2582 domain = isl_map_domain(isl_map_intersect_range(
2583 isl_map_copy(domains->sep_class), class_set));
2584 domain = isl_ast_build_compute_gist(domains->build, domain);
2585 domain = isl_ast_build_eliminate(domains->build, domain);
2587 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2588 if (disjoint < 0)
2589 return -1;
2590 if (disjoint) {
2591 isl_set_free(domain);
2592 return 0;
2595 return compute_partial_domains(domains, domain);
2598 /* Extract the domains at the current depth that should be atomic,
2599 * separated or unrolled and store them in option.
2601 * The domains specified by the user might overlap, so we make
2602 * them disjoint by subtracting earlier domains from later domains.
2604 static void compute_domains_init_options(isl_set *option[3],
2605 __isl_keep isl_ast_build *build)
2607 enum isl_ast_build_domain_type type, type2;
2609 for (type = atomic; type <= separate; ++type) {
2610 option[type] = isl_ast_build_get_option_domain(build, type);
2611 for (type2 = atomic; type2 < type; ++type2)
2612 option[type] = isl_set_subtract(option[type],
2613 isl_set_copy(option[type2]));
2616 option[unroll] = isl_set_coalesce(option[unroll]);
2617 option[unroll] = isl_set_make_disjoint(option[unroll]);
2620 /* Split up the domain at the current depth into disjoint
2621 * basic sets for which code should be generated separately,
2622 * based on the user-specified options.
2623 * Return the list of disjoint basic sets.
2625 * There are three kinds of domains that we need to keep track of.
2626 * - the "schedule domain" is the domain of "executed"
2627 * - the "class domain" is the domain corresponding to the currrent
2628 * separation class
2629 * - the "option domain" is the domain corresponding to one of the options
2630 * atomic, unroll or separate
2632 * We first consider the individial values of the separation classes
2633 * and split up the domain for each of them separately.
2634 * Finally, we consider the remainder. If no separation classes were
2635 * specified, then we call compute_partial_domains with the universe
2636 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2637 * with inner dimensions removed. We do this because we want to
2638 * avoid computing the complement of the class domains (i.e., the difference
2639 * between the universe and domains->done).
2641 static __isl_give isl_basic_set_list *compute_domains(
2642 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2644 struct isl_codegen_domains domains;
2645 isl_ctx *ctx;
2646 isl_set *domain;
2647 isl_union_set *schedule_domain;
2648 isl_set *classes;
2649 isl_space *space;
2650 int n_param;
2651 enum isl_ast_build_domain_type type;
2652 int empty;
2654 if (!executed)
2655 return NULL;
2657 ctx = isl_union_map_get_ctx(executed);
2658 domains.list = isl_basic_set_list_alloc(ctx, 0);
2660 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2661 domain = isl_set_from_union_set(schedule_domain);
2663 compute_domains_init_options(domains.option, build);
2665 domains.sep_class = isl_ast_build_get_separation_class(build);
2666 classes = isl_map_range(isl_map_copy(domains.sep_class));
2667 n_param = isl_set_dim(classes, isl_dim_param);
2668 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2670 space = isl_set_get_space(domain);
2671 domains.build = build;
2672 domains.schedule_domain = isl_set_copy(domain);
2673 domains.executed = executed;
2674 domains.done = isl_set_empty(space);
2676 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2677 domains.list = isl_basic_set_list_free(domains.list);
2678 isl_set_free(classes);
2680 empty = isl_set_is_empty(domains.done);
2681 if (empty < 0) {
2682 domains.list = isl_basic_set_list_free(domains.list);
2683 domain = isl_set_free(domain);
2684 } else if (empty) {
2685 isl_set_free(domain);
2686 domain = isl_set_universe(isl_set_get_space(domains.done));
2687 } else {
2688 domain = isl_ast_build_eliminate(build, domain);
2690 if (compute_partial_domains(&domains, domain) < 0)
2691 domains.list = isl_basic_set_list_free(domains.list);
2693 isl_set_free(domains.schedule_domain);
2694 isl_set_free(domains.done);
2695 isl_map_free(domains.sep_class);
2696 for (type = atomic; type <= separate; ++type)
2697 isl_set_free(domains.option[type]);
2699 return domains.list;
2702 /* Generate code for a single component, after shifting (if any)
2703 * has been applied.
2705 * We first split up the domain at the current depth into disjoint
2706 * basic sets based on the user-specified options.
2707 * Then we generated code for each of them and concatenate the results.
2709 static __isl_give isl_ast_graft_list *generate_shifted_component(
2710 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2712 isl_basic_set_list *domain_list;
2713 isl_ast_graft_list *list = NULL;
2715 domain_list = compute_domains(executed, build);
2716 list = generate_parallel_domains(domain_list, executed, build);
2718 isl_basic_set_list_free(domain_list);
2719 isl_union_map_free(executed);
2720 isl_ast_build_free(build);
2722 return list;
2725 struct isl_set_map_pair {
2726 isl_set *set;
2727 isl_map *map;
2730 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2731 * of indices into the "domain" array,
2732 * return the union of the "map" fields of the elements
2733 * indexed by the first "n" elements of "order".
2735 static __isl_give isl_union_map *construct_component_executed(
2736 struct isl_set_map_pair *domain, int *order, int n)
2738 int i;
2739 isl_map *map;
2740 isl_union_map *executed;
2742 map = isl_map_copy(domain[order[0]].map);
2743 executed = isl_union_map_from_map(map);
2744 for (i = 1; i < n; ++i) {
2745 map = isl_map_copy(domain[order[i]].map);
2746 executed = isl_union_map_add_map(executed, map);
2749 return executed;
2752 /* Generate code for a single component, after shifting (if any)
2753 * has been applied.
2755 * The component inverse schedule is specified as the "map" fields
2756 * of the elements of "domain" indexed by the first "n" elements of "order".
2758 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2759 struct isl_set_map_pair *domain, int *order, int n,
2760 __isl_take isl_ast_build *build)
2762 isl_union_map *executed;
2764 executed = construct_component_executed(domain, order, n);
2765 return generate_shifted_component(executed, build);
2768 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2769 * of indices into the "domain" array,
2770 * do all (except for at most one) of the "set" field of the elements
2771 * indexed by the first "n" elements of "order" have a fixed value
2772 * at position "depth"?
2774 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2775 int *order, int n, int depth)
2777 int i;
2778 int non_fixed = -1;
2780 for (i = 0; i < n; ++i) {
2781 int f;
2783 f = isl_set_plain_is_fixed(domain[order[i]].set,
2784 isl_dim_set, depth, NULL);
2785 if (f < 0)
2786 return -1;
2787 if (f)
2788 continue;
2789 if (non_fixed >= 0)
2790 return 0;
2791 non_fixed = i;
2794 return 1;
2797 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2798 * of indices into the "domain" array,
2799 * eliminate the inner dimensions from the "set" field of the elements
2800 * indexed by the first "n" elements of "order", provided the current
2801 * dimension does not have a fixed value.
2803 * Return the index of the first element in "order" with a corresponding
2804 * "set" field that does not have an (obviously) fixed value.
2806 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2807 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2809 int i;
2810 int base = -1;
2812 for (i = n - 1; i >= 0; --i) {
2813 int f;
2814 f = isl_set_plain_is_fixed(domain[order[i]].set,
2815 isl_dim_set, depth, NULL);
2816 if (f < 0)
2817 return -1;
2818 if (f)
2819 continue;
2820 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2821 domain[order[i]].set);
2822 base = i;
2825 return base;
2828 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2829 * of indices into the "domain" array,
2830 * find the element of "domain" (amongst those indexed by the first "n"
2831 * elements of "order") with the "set" field that has the smallest
2832 * value for the current iterator.
2834 * Note that the domain with the smallest value may depend on the parameters
2835 * and/or outer loop dimension. Since the result of this function is only
2836 * used as heuristic, we only make a reasonable attempt at finding the best
2837 * domain, one that should work in case a single domain provides the smallest
2838 * value for the current dimension over all values of the parameters
2839 * and outer dimensions.
2841 * In particular, we compute the smallest value of the first domain
2842 * and replace it by that of any later domain if that later domain
2843 * has a smallest value that is smaller for at least some value
2844 * of the parameters and outer dimensions.
2846 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2847 __isl_keep isl_ast_build *build)
2849 int i;
2850 isl_map *min_first;
2851 int first = 0;
2853 min_first = isl_ast_build_map_to_iterator(build,
2854 isl_set_copy(domain[order[0]].set));
2855 min_first = isl_map_lexmin(min_first);
2857 for (i = 1; i < n; ++i) {
2858 isl_map *min, *test;
2859 int empty;
2861 min = isl_ast_build_map_to_iterator(build,
2862 isl_set_copy(domain[order[i]].set));
2863 min = isl_map_lexmin(min);
2864 test = isl_map_copy(min);
2865 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2866 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2867 empty = isl_map_is_empty(test);
2868 isl_map_free(test);
2869 if (empty >= 0 && !empty) {
2870 isl_map_free(min_first);
2871 first = i;
2872 min_first = min;
2873 } else
2874 isl_map_free(min);
2876 if (empty < 0)
2877 break;
2880 isl_map_free(min_first);
2882 return i < n ? -1 : first;
2885 /* Construct a shifted inverse schedule based on the original inverse schedule,
2886 * the stride and the offset.
2888 * The original inverse schedule is specified as the "map" fields
2889 * of the elements of "domain" indexed by the first "n" elements of "order".
2891 * "stride" and "offset" are such that the difference
2892 * between the values of the current dimension of domain "i"
2893 * and the values of the current dimension for some reference domain are
2894 * equal to
2896 * stride * integer + offset[i]
2898 * Moreover, 0 <= offset[i] < stride.
2900 * For each domain, we create a map
2902 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2904 * where j refers to the current dimension and the other dimensions are
2905 * unchanged, and apply this map to the original schedule domain.
2907 * For example, for the original schedule
2909 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2911 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2912 * we apply the mapping
2914 * { [j] -> [j, 0] }
2916 * to the schedule of the "A" domain and the mapping
2918 * { [j - 1] -> [j, 1] }
2920 * to the schedule of the "B" domain.
2923 * Note that after the transformation, the differences between pairs
2924 * of values of the current dimension over all domains are multiples
2925 * of stride and that we have therefore exposed the stride.
2928 * To see that the mapping preserves the lexicographic order,
2929 * first note that each of the individual maps above preserves the order.
2930 * If the value of the current iterator is j1 in one domain and j2 in another,
2931 * then if j1 = j2, we know that the same map is applied to both domains
2932 * and the order is preserved.
2933 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2934 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2936 * j1 - c1 < j2 - c2
2938 * and the order is preserved.
2939 * If c1 < c2, then we know
2941 * 0 <= c2 - c1 < s
2943 * We also have
2945 * j2 - j1 = n * s + r
2947 * with n >= 0 and 0 <= r < s.
2948 * In other words, r = c2 - c1.
2949 * If n > 0, then
2951 * j1 - c1 < j2 - c2
2953 * If n = 0, then
2955 * j1 - c1 = j2 - c2
2957 * and so
2959 * (j1 - c1, c1) << (j2 - c2, c2)
2961 * with "<<" the lexicographic order, proving that the order is preserved
2962 * in all cases.
2964 static __isl_give isl_union_map *contruct_shifted_executed(
2965 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2966 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
2968 int i;
2969 isl_int v;
2970 isl_union_map *executed;
2971 isl_space *space;
2972 isl_map *map;
2973 int depth;
2974 isl_constraint *c;
2976 depth = isl_ast_build_get_depth(build);
2977 space = isl_ast_build_get_space(build, 1);
2978 executed = isl_union_map_empty(isl_space_copy(space));
2979 space = isl_space_map_from_set(space);
2980 map = isl_map_identity(isl_space_copy(space));
2981 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
2982 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
2983 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
2985 c = isl_equality_alloc(isl_local_space_from_space(space));
2986 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
2987 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
2989 isl_int_init(v);
2991 for (i = 0; i < n; ++i) {
2992 isl_map *map_i;
2994 if (isl_vec_get_element(offset, i, &v) < 0)
2995 break;
2996 map_i = isl_map_copy(map);
2997 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
2998 isl_int_neg(v, v);
2999 c = isl_constraint_set_constant(c, v);
3000 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
3002 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
3003 map_i);
3004 executed = isl_union_map_add_map(executed, map_i);
3007 isl_constraint_free(c);
3008 isl_map_free(map);
3010 isl_int_clear(v);
3012 if (i < n)
3013 executed = isl_union_map_free(executed);
3015 return executed;
3018 /* Generate code for a single component, after exposing the stride,
3019 * given that the schedule domain is "shifted strided".
3021 * The component inverse schedule is specified as the "map" fields
3022 * of the elements of "domain" indexed by the first "n" elements of "order".
3024 * The schedule domain being "shifted strided" means that the differences
3025 * between the values of the current dimension of domain "i"
3026 * and the values of the current dimension for some reference domain are
3027 * equal to
3029 * stride * integer + offset[i]
3031 * We first look for the domain with the "smallest" value for the current
3032 * dimension and adjust the offsets such that the offset of the "smallest"
3033 * domain is equal to zero. The other offsets are reduced modulo stride.
3035 * Based on this information, we construct a new inverse schedule in
3036 * contruct_shifted_executed that exposes the stride.
3037 * Since this involves the introduction of a new schedule dimension,
3038 * the build needs to be changed accodingly.
3039 * After computing the AST, the newly introduced dimension needs
3040 * to be removed again from the list of grafts. We do this by plugging
3041 * in a mapping that represents the new schedule domain in terms of the
3042 * old schedule domain.
3044 static __isl_give isl_ast_graft_list *generate_shift_component(
3045 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
3046 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
3048 isl_ast_graft_list *list;
3049 int first;
3050 int depth;
3051 isl_ctx *ctx;
3052 isl_int val;
3053 isl_vec *v;
3054 isl_space *space;
3055 isl_multi_aff *ma, *zero;
3056 isl_union_map *executed;
3058 ctx = isl_ast_build_get_ctx(build);
3059 depth = isl_ast_build_get_depth(build);
3061 first = first_offset(domain, order, n, build);
3062 if (first < 0)
3063 return isl_ast_build_free(build);
3065 isl_int_init(val);
3066 v = isl_vec_alloc(ctx, n);
3067 if (isl_vec_get_element(offset, first, &val) < 0)
3068 v = isl_vec_free(v);
3069 isl_int_neg(val, val);
3070 v = isl_vec_set(v, val);
3071 v = isl_vec_add(v, isl_vec_copy(offset));
3072 v = isl_vec_fdiv_r(v, stride);
3074 executed = contruct_shifted_executed(domain, order, n, stride, v,
3075 build);
3076 space = isl_ast_build_get_space(build, 1);
3077 space = isl_space_map_from_set(space);
3078 ma = isl_multi_aff_identity(isl_space_copy(space));
3079 space = isl_space_from_domain(isl_space_domain(space));
3080 space = isl_space_add_dims(space, isl_dim_out, 1);
3081 zero = isl_multi_aff_zero(space);
3082 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3083 build = isl_ast_build_insert_dim(build, depth + 1);
3084 list = generate_shifted_component(executed, build);
3086 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3088 isl_vec_free(v);
3089 isl_int_clear(val);
3091 return list;
3094 /* Generate code for a single component.
3096 * The component inverse schedule is specified as the "map" fields
3097 * of the elements of "domain" indexed by the first "n" elements of "order".
3099 * This function may modify the "set" fields of "domain".
3101 * Before proceeding with the actual code generation for the component,
3102 * we first check if there are any "shifted" strides, meaning that
3103 * the schedule domains of the individual domains are all strided,
3104 * but that they have different offsets, resulting in the union
3105 * of schedule domains not being strided anymore.
3107 * The simplest example is the schedule
3109 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3111 * Both schedule domains are strided, but their union is not.
3112 * This function detects such cases and then rewrites the schedule to
3114 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3116 * In the new schedule, the schedule domains have the same offset (modulo
3117 * the stride), ensuring that the union of schedule domains is also strided.
3120 * If there is only a single domain in the component, then there is
3121 * nothing to do. Similarly, if the current schedule dimension has
3122 * a fixed value for almost all domains then there is nothing to be done.
3123 * In particular, we need at least two domains where the current schedule
3124 * dimension does not have a fixed value.
3125 * Finally, if any of the options refer to the current schedule dimension,
3126 * then we bail out as well. It would be possible to reformulate the options
3127 * in terms of the new schedule domain, but that would introduce constraints
3128 * that separate the domains in the options and that is something we would
3129 * like to avoid.
3132 * To see if there is any shifted stride, we look at the differences
3133 * between the values of the current dimension in pairs of domains
3134 * for equal values of outer dimensions. These differences should be
3135 * of the form
3137 * m x + r
3139 * with "m" the stride and "r" a constant. Note that we cannot perform
3140 * this analysis on individual domains as the lower bound in each domain
3141 * may depend on parameters or outer dimensions and so the current dimension
3142 * itself may not have a fixed remainder on division by the stride.
3144 * In particular, we compare the first domain that does not have an
3145 * obviously fixed value for the current dimension to itself and all
3146 * other domains and collect the offsets and the gcd of the strides.
3147 * If the gcd becomes one, then we failed to find shifted strides.
3148 * If all the offsets are the same (for those domains that do not have
3149 * an obviously fixed value for the current dimension), then we do not
3150 * apply the transformation.
3151 * If none of the domains were skipped, then there is nothing to do.
3152 * If some of them were skipped, then if we apply separation, the schedule
3153 * domain should get split in pieces with a (non-shifted) stride.
3155 * Otherwise, we apply a shift to expose the stride in
3156 * generate_shift_component.
3158 static __isl_give isl_ast_graft_list *generate_component(
3159 struct isl_set_map_pair *domain, int *order, int n,
3160 __isl_take isl_ast_build *build)
3162 int i, d;
3163 int depth;
3164 isl_ctx *ctx;
3165 isl_map *map;
3166 isl_set *deltas;
3167 isl_int m, r, gcd;
3168 isl_vec *v;
3169 int fixed, skip;
3170 int base;
3171 isl_ast_graft_list *list;
3172 int res = 0;
3174 depth = isl_ast_build_get_depth(build);
3176 skip = n == 1;
3177 if (skip >= 0 && !skip)
3178 skip = at_most_one_non_fixed(domain, order, n, depth);
3179 if (skip >= 0 && !skip)
3180 skip = isl_ast_build_options_involve_depth(build);
3181 if (skip < 0)
3182 return isl_ast_build_free(build);
3183 if (skip)
3184 return generate_shifted_component_from_list(domain,
3185 order, n, build);
3187 base = eliminate_non_fixed(domain, order, n, depth, build);
3188 if (base < 0)
3189 return isl_ast_build_free(build);
3191 ctx = isl_ast_build_get_ctx(build);
3193 isl_int_init(m);
3194 isl_int_init(r);
3195 isl_int_init(gcd);
3196 v = isl_vec_alloc(ctx, n);
3198 fixed = 1;
3199 for (i = 0; i < n; ++i) {
3200 map = isl_map_from_domain_and_range(
3201 isl_set_copy(domain[order[base]].set),
3202 isl_set_copy(domain[order[i]].set));
3203 for (d = 0; d < depth; ++d)
3204 map = isl_map_equate(map, isl_dim_in, d,
3205 isl_dim_out, d);
3206 deltas = isl_map_deltas(map);
3207 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
3208 isl_set_free(deltas);
3209 if (res < 0)
3210 break;
3212 if (i == 0)
3213 isl_int_set(gcd, m);
3214 else
3215 isl_int_gcd(gcd, gcd, m);
3216 if (isl_int_is_one(gcd))
3217 break;
3218 v = isl_vec_set_element(v, i, r);
3220 res = isl_set_plain_is_fixed(domain[order[i]].set,
3221 isl_dim_set, depth, NULL);
3222 if (res < 0)
3223 break;
3224 if (res)
3225 continue;
3227 if (fixed && i > base) {
3228 isl_vec_get_element(v, base, &m);
3229 if (isl_int_ne(m, r))
3230 fixed = 0;
3234 if (res < 0) {
3235 isl_ast_build_free(build);
3236 list = NULL;
3237 } else if (i < n || fixed) {
3238 list = generate_shifted_component_from_list(domain,
3239 order, n, build);
3240 } else {
3241 list = generate_shift_component(domain, order, n, gcd, v,
3242 build);
3245 isl_vec_free(v);
3246 isl_int_clear(gcd);
3247 isl_int_clear(r);
3248 isl_int_clear(m);
3250 return list;
3253 /* Store both "map" itself and its domain in the
3254 * structure pointed to by *next and advance to the next array element.
3256 static int extract_domain(__isl_take isl_map *map, void *user)
3258 struct isl_set_map_pair **next = user;
3260 (*next)->map = isl_map_copy(map);
3261 (*next)->set = isl_map_domain(map);
3262 (*next)++;
3264 return 0;
3267 /* Internal data for any_scheduled_after.
3269 * "depth" is the number of loops that have already been generated
3270 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3271 * "domain" is an array of set-map pairs corresponding to the different
3272 * iteration domains. The set is the schedule domain, i.e., the domain
3273 * of the inverse schedule, while the map is the inverse schedule itself.
3275 struct isl_any_scheduled_after_data {
3276 int depth;
3277 int group_coscheduled;
3278 struct isl_set_map_pair *domain;
3281 /* Is any element of domain "i" scheduled after any element of domain "j"
3282 * (for a common iteration of the first data->depth loops)?
3284 * data->domain[i].set contains the domain of the inverse schedule
3285 * for domain "i", i.e., elements in the schedule domain.
3287 * If data->group_coscheduled is set, then we also return 1 if there
3288 * is any pair of elements in the two domains that are scheduled together.
3290 static int any_scheduled_after(int i, int j, void *user)
3292 struct isl_any_scheduled_after_data *data = user;
3293 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3294 int pos;
3296 for (pos = data->depth; pos < dim; ++pos) {
3297 int follows;
3299 follows = isl_set_follows_at(data->domain[i].set,
3300 data->domain[j].set, pos);
3302 if (follows < -1)
3303 return -1;
3304 if (follows > 0)
3305 return 1;
3306 if (follows < 0)
3307 return 0;
3310 return data->group_coscheduled;
3313 /* Look for independent components at the current depth and generate code
3314 * for each component separately. The resulting lists of grafts are
3315 * merged in an attempt to combine grafts with identical guards.
3317 * Code for two domains can be generated separately if all the elements
3318 * of one domain are scheduled before (or together with) all the elements
3319 * of the other domain. We therefore consider the graph with as nodes
3320 * the domains and an edge between two nodes if any element of the first
3321 * node is scheduled after any element of the second node.
3322 * If the ast_build_group_coscheduled is set, then we also add an edge if
3323 * there is any pair of elements in the two domains that are scheduled
3324 * together.
3325 * Code is then generated (by generate_component)
3326 * for each of the strongly connected components in this graph
3327 * in their topological order.
3329 * Since the test is performed on the domain of the inverse schedules of
3330 * the different domains, we precompute these domains and store
3331 * them in data.domain.
3333 static __isl_give isl_ast_graft_list *generate_components(
3334 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3336 int i;
3337 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3338 int n = isl_union_map_n_map(executed);
3339 struct isl_any_scheduled_after_data data;
3340 struct isl_set_map_pair *next;
3341 struct isl_tarjan_graph *g = NULL;
3342 isl_ast_graft_list *list = NULL;
3343 int n_domain = 0;
3345 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3346 if (!data.domain)
3347 goto error;
3348 n_domain = n;
3350 next = data.domain;
3351 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3352 goto error;
3354 if (!build)
3355 goto error;
3356 data.depth = isl_ast_build_get_depth(build);
3357 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3358 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3360 list = isl_ast_graft_list_alloc(ctx, 0);
3362 i = 0;
3363 while (list && n) {
3364 isl_ast_graft_list *list_c;
3365 int first = i;
3367 if (g->order[i] == -1)
3368 isl_die(ctx, isl_error_internal, "cannot happen",
3369 goto error);
3370 ++i; --n;
3371 while (g->order[i] != -1) {
3372 ++i; --n;
3375 list_c = generate_component(data.domain,
3376 g->order + first, i - first,
3377 isl_ast_build_copy(build));
3378 list = isl_ast_graft_list_merge(list, list_c, build);
3380 ++i;
3383 if (0)
3384 error: list = isl_ast_graft_list_free(list);
3385 isl_tarjan_graph_free(g);
3386 for (i = 0; i < n_domain; ++i) {
3387 isl_map_free(data.domain[i].map);
3388 isl_set_free(data.domain[i].set);
3390 free(data.domain);
3391 isl_union_map_free(executed);
3392 isl_ast_build_free(build);
3394 return list;
3397 /* Generate code for the next level (and all inner levels).
3399 * If "executed" is empty, i.e., no code needs to be generated,
3400 * then we return an empty list.
3402 * If we have already generated code for all loop levels, then we pass
3403 * control to generate_inner_level.
3405 * If "executed" lives in a single space, i.e., if code needs to be
3406 * generated for a single domain, then there can only be a single
3407 * component and we go directly to generate_shifted_component.
3408 * Otherwise, we call generate_components to detect the components
3409 * and to call generate_component on each of them separately.
3411 static __isl_give isl_ast_graft_list *generate_next_level(
3412 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3414 int depth;
3416 if (!build || !executed)
3417 goto error;
3419 if (isl_union_map_is_empty(executed)) {
3420 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3421 isl_union_map_free(executed);
3422 isl_ast_build_free(build);
3423 return isl_ast_graft_list_alloc(ctx, 0);
3426 depth = isl_ast_build_get_depth(build);
3427 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3428 return generate_inner_level(executed, build);
3430 if (isl_union_map_n_map(executed) == 1)
3431 return generate_shifted_component(executed, build);
3433 return generate_components(executed, build);
3434 error:
3435 isl_union_map_free(executed);
3436 isl_ast_build_free(build);
3437 return NULL;
3440 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3441 * internal, executed and build are the inputs to generate_code.
3442 * list collects the output.
3444 struct isl_generate_code_data {
3445 int internal;
3446 isl_union_map *executed;
3447 isl_ast_build *build;
3449 isl_ast_graft_list *list;
3452 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3454 * [E -> S] -> D
3456 * with E the external build schedule and S the additional schedule "space",
3457 * reformulate the inverse schedule in terms of the internal schedule domain,
3458 * i.e., return
3460 * [I -> S] -> D
3462 * We first obtain a mapping
3464 * I -> E
3466 * take the inverse and the product with S -> S, resulting in
3468 * [I -> S] -> [E -> S]
3470 * Applying the map to the input produces the desired result.
3472 static __isl_give isl_union_map *internal_executed(
3473 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3474 __isl_keep isl_ast_build *build)
3476 isl_map *id, *proj;
3478 proj = isl_ast_build_get_schedule_map(build);
3479 proj = isl_map_reverse(proj);
3480 space = isl_space_map_from_set(isl_space_copy(space));
3481 id = isl_map_identity(space);
3482 proj = isl_map_product(proj, id);
3483 executed = isl_union_map_apply_domain(executed,
3484 isl_union_map_from_map(proj));
3485 return executed;
3488 /* Generate an AST that visits the elements in the range of data->executed
3489 * in the relative order specified by the corresponding image element(s)
3490 * for those image elements that belong to "set".
3491 * Add the result to data->list.
3493 * The caller ensures that "set" is a universe domain.
3494 * "space" is the space of the additional part of the schedule.
3495 * It is equal to the space of "set" if build->domain is parametric.
3496 * Otherwise, it is equal to the range of the wrapped space of "set".
3498 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3499 * was called from an outside user (data->internal not set), then
3500 * the (inverse) schedule refers to the external build domain and needs to
3501 * be transformed to refer to the internal build domain.
3503 * The build is extended to include the additional part of the schedule.
3504 * If the original build space was not parametric, then the options
3505 * in data->build refer only to the additional part of the schedule
3506 * and they need to be adjusted to refer to the complete AST build
3507 * domain.
3509 * After having adjusted inverse schedule and build, we start generating
3510 * code with the outer loop of the current code generation
3511 * in generate_next_level.
3513 * If the original build space was not parametric, we undo the embedding
3514 * on the resulting isl_ast_node_list so that it can be used within
3515 * the outer AST build.
3517 static int generate_code_in_space(struct isl_generate_code_data *data,
3518 __isl_take isl_set *set, __isl_take isl_space *space)
3520 isl_union_map *executed;
3521 isl_ast_build *build;
3522 isl_ast_graft_list *list;
3523 int embed;
3525 executed = isl_union_map_copy(data->executed);
3526 executed = isl_union_map_intersect_domain(executed,
3527 isl_union_set_from_set(set));
3529 embed = !isl_set_is_params(data->build->domain);
3530 if (embed && !data->internal)
3531 executed = internal_executed(executed, space, data->build);
3533 build = isl_ast_build_copy(data->build);
3534 build = isl_ast_build_product(build, space);
3536 list = generate_next_level(executed, build);
3538 list = isl_ast_graft_list_unembed(list, embed);
3540 data->list = isl_ast_graft_list_concat(data->list, list);
3542 return 0;
3545 /* Generate an AST that visits the elements in the range of data->executed
3546 * in the relative order specified by the corresponding domain element(s)
3547 * for those domain elements that belong to "set".
3548 * Add the result to data->list.
3550 * The caller ensures that "set" is a universe domain.
3552 * If the build space S is not parametric, then the space of "set"
3553 * need to be a wrapped relation with S as domain. That is, it needs
3554 * to be of the form
3556 * [S -> T]
3558 * Check this property and pass control to generate_code_in_space
3559 * passing along T.
3560 * If the build space is not parametric, then T is the space of "set".
3562 static int generate_code_set(__isl_take isl_set *set, void *user)
3564 struct isl_generate_code_data *data = user;
3565 isl_space *space, *build_space;
3566 int is_domain;
3568 space = isl_set_get_space(set);
3570 if (isl_set_is_params(data->build->domain))
3571 return generate_code_in_space(data, set, space);
3573 build_space = isl_ast_build_get_space(data->build, data->internal);
3574 space = isl_space_unwrap(space);
3575 is_domain = isl_space_is_domain(build_space, space);
3576 isl_space_free(build_space);
3577 space = isl_space_range(space);
3579 if (is_domain < 0)
3580 goto error;
3581 if (!is_domain)
3582 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3583 "invalid nested schedule space", goto error);
3585 return generate_code_in_space(data, set, space);
3586 error:
3587 isl_set_free(set);
3588 isl_space_free(space);
3589 return -1;
3592 /* Generate an AST that visits the elements in the range of "executed"
3593 * in the relative order specified by the corresponding domain element(s).
3595 * "build" is an isl_ast_build that has either been constructed by
3596 * isl_ast_build_from_context or passed to a callback set by
3597 * isl_ast_build_set_create_leaf.
3598 * In the first case, the space of the isl_ast_build is typically
3599 * a parametric space, although this is currently not enforced.
3600 * In the second case, the space is never a parametric space.
3601 * If the space S is not parametric, then the domain space(s) of "executed"
3602 * need to be wrapped relations with S as domain.
3604 * If the domain of "executed" consists of several spaces, then an AST
3605 * is generated for each of them (in arbitrary order) and the results
3606 * are concatenated.
3608 * If "internal" is set, then the domain "S" above refers to the internal
3609 * schedule domain representation. Otherwise, it refers to the external
3610 * representation, as returned by isl_ast_build_get_schedule_space.
3612 * We essentially run over all the spaces in the domain of "executed"
3613 * and call generate_code_set on each of them.
3615 static __isl_give isl_ast_graft_list *generate_code(
3616 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3617 int internal)
3619 isl_ctx *ctx;
3620 struct isl_generate_code_data data = { 0 };
3621 isl_space *space;
3622 isl_union_set *schedule_domain;
3623 isl_union_map *universe;
3625 if (!build)
3626 goto error;
3627 space = isl_ast_build_get_space(build, 1);
3628 space = isl_space_align_params(space,
3629 isl_union_map_get_space(executed));
3630 space = isl_space_align_params(space,
3631 isl_union_map_get_space(build->options));
3632 build = isl_ast_build_align_params(build, isl_space_copy(space));
3633 executed = isl_union_map_align_params(executed, space);
3634 if (!executed || !build)
3635 goto error;
3637 ctx = isl_ast_build_get_ctx(build);
3639 data.internal = internal;
3640 data.executed = executed;
3641 data.build = build;
3642 data.list = isl_ast_graft_list_alloc(ctx, 0);
3644 universe = isl_union_map_universe(isl_union_map_copy(executed));
3645 schedule_domain = isl_union_map_domain(universe);
3646 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3647 &data) < 0)
3648 data.list = isl_ast_graft_list_free(data.list);
3650 isl_union_set_free(schedule_domain);
3651 isl_union_map_free(executed);
3653 isl_ast_build_free(build);
3654 return data.list;
3655 error:
3656 isl_union_map_free(executed);
3657 isl_ast_build_free(build);
3658 return NULL;
3661 /* Generate an AST that visits the elements in the domain of "schedule"
3662 * in the relative order specified by the corresponding image element(s).
3664 * "build" is an isl_ast_build that has either been constructed by
3665 * isl_ast_build_from_context or passed to a callback set by
3666 * isl_ast_build_set_create_leaf.
3667 * In the first case, the space of the isl_ast_build is typically
3668 * a parametric space, although this is currently not enforced.
3669 * In the second case, the space is never a parametric space.
3670 * If the space S is not parametric, then the range space(s) of "schedule"
3671 * need to be wrapped relations with S as domain.
3673 * If the range of "schedule" consists of several spaces, then an AST
3674 * is generated for each of them (in arbitrary order) and the results
3675 * are concatenated.
3677 * We first initialize the local copies of the relevant options.
3678 * We do this here rather than when the isl_ast_build is created
3679 * because the options may have changed between the construction
3680 * of the isl_ast_build and the call to isl_generate_code.
3682 * The main computation is performed on an inverse schedule (with
3683 * the schedule domain in the domain and the elements to be executed
3684 * in the range) called "executed".
3686 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3687 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3689 isl_ast_graft_list *list;
3690 isl_ast_node *node;
3691 isl_union_map *executed;
3693 build = isl_ast_build_copy(build);
3694 build = isl_ast_build_set_single_valued(build, 0);
3695 executed = isl_union_map_reverse(schedule);
3696 list = generate_code(executed, isl_ast_build_copy(build), 0);
3697 node = isl_ast_node_from_graft_list(list, build);
3698 isl_ast_build_free(build);
3700 return node;