isl_basic_set_from_point: handle NULL input
[isl.git] / isl_transitive_closure.c
blob37f557267fb5b5bacf7ef65eeda96e77692d454d
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl/map.h>
14 #include <isl/seq.h>
15 #include <isl_space_private.h>
16 #include <isl/lp.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_options_private.h>
20 #include <isl_tarjan.h>
22 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
24 isl_map *map2;
25 int closed;
27 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
28 closed = isl_map_is_subset(map2, map);
29 isl_map_free(map2);
31 return closed;
34 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
36 isl_union_map *umap2;
37 int closed;
39 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
40 isl_union_map_copy(umap));
41 closed = isl_union_map_is_subset(umap2, umap);
42 isl_union_map_free(umap2);
44 return closed;
47 /* Given a map that represents a path with the length of the path
48 * encoded as the difference between the last output coordindate
49 * and the last input coordinate, set this length to either
50 * exactly "length" (if "exactly" is set) or at least "length"
51 * (if "exactly" is not set).
53 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
54 int exactly, int length)
56 isl_space *dim;
57 struct isl_basic_map *bmap;
58 unsigned d;
59 unsigned nparam;
60 int k;
61 isl_int *c;
63 if (!map)
64 return NULL;
66 dim = isl_map_get_space(map);
67 d = isl_space_dim(dim, isl_dim_in);
68 nparam = isl_space_dim(dim, isl_dim_param);
69 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
70 if (exactly) {
71 k = isl_basic_map_alloc_equality(bmap);
72 c = bmap->eq[k];
73 } else {
74 k = isl_basic_map_alloc_inequality(bmap);
75 c = bmap->ineq[k];
77 if (k < 0)
78 goto error;
79 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
80 isl_int_set_si(c[0], -length);
81 isl_int_set_si(c[1 + nparam + d - 1], -1);
82 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
84 bmap = isl_basic_map_finalize(bmap);
85 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
87 return map;
88 error:
89 isl_basic_map_free(bmap);
90 isl_map_free(map);
91 return NULL;
94 /* Check whether the overapproximation of the power of "map" is exactly
95 * the power of "map". Let R be "map" and A_k the overapproximation.
96 * The approximation is exact if
98 * A_1 = R
99 * A_k = A_{k-1} \circ R k >= 2
101 * Since A_k is known to be an overapproximation, we only need to check
103 * A_1 \subset R
104 * A_k \subset A_{k-1} \circ R k >= 2
106 * In practice, "app" has an extra input and output coordinate
107 * to encode the length of the path. So, we first need to add
108 * this coordinate to "map" and set the length of the path to
109 * one.
111 static int check_power_exactness(__isl_take isl_map *map,
112 __isl_take isl_map *app)
114 int exact;
115 isl_map *app_1;
116 isl_map *app_2;
118 map = isl_map_add_dims(map, isl_dim_in, 1);
119 map = isl_map_add_dims(map, isl_dim_out, 1);
120 map = set_path_length(map, 1, 1);
122 app_1 = set_path_length(isl_map_copy(app), 1, 1);
124 exact = isl_map_is_subset(app_1, map);
125 isl_map_free(app_1);
127 if (!exact || exact < 0) {
128 isl_map_free(app);
129 isl_map_free(map);
130 return exact;
133 app_1 = set_path_length(isl_map_copy(app), 0, 1);
134 app_2 = set_path_length(app, 0, 2);
135 app_1 = isl_map_apply_range(map, app_1);
137 exact = isl_map_is_subset(app_2, app_1);
139 isl_map_free(app_1);
140 isl_map_free(app_2);
142 return exact;
145 /* Check whether the overapproximation of the power of "map" is exactly
146 * the power of "map", possibly after projecting out the power (if "project"
147 * is set).
149 * If "project" is set and if "steps" can only result in acyclic paths,
150 * then we check
152 * A = R \cup (A \circ R)
154 * where A is the overapproximation with the power projected out, i.e.,
155 * an overapproximation of the transitive closure.
156 * More specifically, since A is known to be an overapproximation, we check
158 * A \subset R \cup (A \circ R)
160 * Otherwise, we check if the power is exact.
162 * Note that "app" has an extra input and output coordinate to encode
163 * the length of the part. If we are only interested in the transitive
164 * closure, then we can simply project out these coordinates first.
166 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
167 int project)
169 isl_map *test;
170 int exact;
171 unsigned d;
173 if (!project)
174 return check_power_exactness(map, app);
176 d = isl_map_dim(map, isl_dim_in);
177 app = set_path_length(app, 0, 1);
178 app = isl_map_project_out(app, isl_dim_in, d, 1);
179 app = isl_map_project_out(app, isl_dim_out, d, 1);
181 app = isl_map_reset_space(app, isl_map_get_space(map));
183 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
184 test = isl_map_union(test, isl_map_copy(map));
186 exact = isl_map_is_subset(app, test);
188 isl_map_free(app);
189 isl_map_free(test);
191 isl_map_free(map);
193 return exact;
197 * The transitive closure implementation is based on the paper
198 * "Computing the Transitive Closure of a Union of Affine Integer
199 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
200 * Albert Cohen.
203 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
204 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
205 * that maps an element x to any element that can be reached
206 * by taking a non-negative number of steps along any of
207 * the extended offsets v'_i = [v_i 1].
208 * That is, construct
210 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
212 * For any element in this relation, the number of steps taken
213 * is equal to the difference in the final coordinates.
215 static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim,
216 __isl_keep isl_mat *steps)
218 int i, j, k;
219 struct isl_basic_map *path = NULL;
220 unsigned d;
221 unsigned n;
222 unsigned nparam;
224 if (!dim || !steps)
225 goto error;
227 d = isl_space_dim(dim, isl_dim_in);
228 n = steps->n_row;
229 nparam = isl_space_dim(dim, isl_dim_param);
231 path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n);
233 for (i = 0; i < n; ++i) {
234 k = isl_basic_map_alloc_div(path);
235 if (k < 0)
236 goto error;
237 isl_assert(steps->ctx, i == k, goto error);
238 isl_int_set_si(path->div[k][0], 0);
241 for (i = 0; i < d; ++i) {
242 k = isl_basic_map_alloc_equality(path);
243 if (k < 0)
244 goto error;
245 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
246 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
247 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
248 if (i == d - 1)
249 for (j = 0; j < n; ++j)
250 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
251 else
252 for (j = 0; j < n; ++j)
253 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
254 steps->row[j][i]);
257 for (i = 0; i < n; ++i) {
258 k = isl_basic_map_alloc_inequality(path);
259 if (k < 0)
260 goto error;
261 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
262 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
265 isl_space_free(dim);
267 path = isl_basic_map_simplify(path);
268 path = isl_basic_map_finalize(path);
269 return isl_map_from_basic_map(path);
270 error:
271 isl_space_free(dim);
272 isl_basic_map_free(path);
273 return NULL;
276 #define IMPURE 0
277 #define PURE_PARAM 1
278 #define PURE_VAR 2
279 #define MIXED 3
281 /* Check whether the parametric constant term of constraint c is never
282 * positive in "bset".
284 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
285 isl_int *c, int *div_purity)
287 unsigned d;
288 unsigned n_div;
289 unsigned nparam;
290 int i;
291 int k;
292 int empty;
294 n_div = isl_basic_set_dim(bset, isl_dim_div);
295 d = isl_basic_set_dim(bset, isl_dim_set);
296 nparam = isl_basic_set_dim(bset, isl_dim_param);
298 bset = isl_basic_set_copy(bset);
299 bset = isl_basic_set_cow(bset);
300 bset = isl_basic_set_extend_constraints(bset, 0, 1);
301 k = isl_basic_set_alloc_inequality(bset);
302 if (k < 0)
303 goto error;
304 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
305 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
306 for (i = 0; i < n_div; ++i) {
307 if (div_purity[i] != PURE_PARAM)
308 continue;
309 isl_int_set(bset->ineq[k][1 + nparam + d + i],
310 c[1 + nparam + d + i]);
312 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
313 empty = isl_basic_set_is_empty(bset);
314 isl_basic_set_free(bset);
316 return empty;
317 error:
318 isl_basic_set_free(bset);
319 return -1;
322 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
323 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
324 * Return MIXED if only the coefficients of the parameters and the set
325 * variables are non-zero and if moreover the parametric constant
326 * can never attain positive values.
327 * Return IMPURE otherwise.
329 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
330 int eq)
332 unsigned d;
333 unsigned n_div;
334 unsigned nparam;
335 int empty;
336 int i;
337 int p = 0, v = 0;
339 n_div = isl_basic_set_dim(bset, isl_dim_div);
340 d = isl_basic_set_dim(bset, isl_dim_set);
341 nparam = isl_basic_set_dim(bset, isl_dim_param);
343 for (i = 0; i < n_div; ++i) {
344 if (isl_int_is_zero(c[1 + nparam + d + i]))
345 continue;
346 switch (div_purity[i]) {
347 case PURE_PARAM: p = 1; break;
348 case PURE_VAR: v = 1; break;
349 default: return IMPURE;
352 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
353 return PURE_VAR;
354 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
355 return PURE_PARAM;
357 empty = parametric_constant_never_positive(bset, c, div_purity);
358 if (eq && empty >= 0 && !empty) {
359 isl_seq_neg(c, c, 1 + nparam + d + n_div);
360 empty = parametric_constant_never_positive(bset, c, div_purity);
363 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
366 /* Return an array of integers indicating the type of each div in bset.
367 * If the div is (recursively) defined in terms of only the parameters,
368 * then the type is PURE_PARAM.
369 * If the div is (recursively) defined in terms of only the set variables,
370 * then the type is PURE_VAR.
371 * Otherwise, the type is IMPURE.
373 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
375 int i, j;
376 int *div_purity;
377 unsigned d;
378 unsigned n_div;
379 unsigned nparam;
381 if (!bset)
382 return NULL;
384 n_div = isl_basic_set_dim(bset, isl_dim_div);
385 d = isl_basic_set_dim(bset, isl_dim_set);
386 nparam = isl_basic_set_dim(bset, isl_dim_param);
388 div_purity = isl_alloc_array(bset->ctx, int, n_div);
389 if (n_div && !div_purity)
390 return NULL;
392 for (i = 0; i < bset->n_div; ++i) {
393 int p = 0, v = 0;
394 if (isl_int_is_zero(bset->div[i][0])) {
395 div_purity[i] = IMPURE;
396 continue;
398 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
399 p = 1;
400 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
401 v = 1;
402 for (j = 0; j < i; ++j) {
403 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
404 continue;
405 switch (div_purity[j]) {
406 case PURE_PARAM: p = 1; break;
407 case PURE_VAR: v = 1; break;
408 default: p = v = 1; break;
411 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
414 return div_purity;
417 /* Given a path with the as yet unconstrained length at position "pos",
418 * check if setting the length to zero results in only the identity
419 * mapping.
421 static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
423 isl_basic_map *test = NULL;
424 isl_basic_map *id = NULL;
425 int k;
426 int is_id;
428 test = isl_basic_map_copy(path);
429 test = isl_basic_map_extend_constraints(test, 1, 0);
430 k = isl_basic_map_alloc_equality(test);
431 if (k < 0)
432 goto error;
433 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
434 isl_int_set_si(test->eq[k][pos], 1);
435 id = isl_basic_map_identity(isl_basic_map_get_space(path));
436 is_id = isl_basic_map_is_equal(test, id);
437 isl_basic_map_free(test);
438 isl_basic_map_free(id);
439 return is_id;
440 error:
441 isl_basic_map_free(test);
442 return -1;
445 /* If any of the constraints is found to be impure then this function
446 * sets *impurity to 1.
448 * If impurity is NULL then we are dealing with a non-parametric set
449 * and so the constraints are obviously PURE_VAR.
451 static __isl_give isl_basic_map *add_delta_constraints(
452 __isl_take isl_basic_map *path,
453 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
454 unsigned d, int *div_purity, int eq, int *impurity)
456 int i, k;
457 int n = eq ? delta->n_eq : delta->n_ineq;
458 isl_int **delta_c = eq ? delta->eq : delta->ineq;
459 unsigned n_div;
461 n_div = isl_basic_set_dim(delta, isl_dim_div);
463 for (i = 0; i < n; ++i) {
464 isl_int *path_c;
465 int p = PURE_VAR;
466 if (impurity)
467 p = purity(delta, delta_c[i], div_purity, eq);
468 if (p < 0)
469 goto error;
470 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
471 *impurity = 1;
472 if (p == IMPURE)
473 continue;
474 if (eq && p != MIXED) {
475 k = isl_basic_map_alloc_equality(path);
476 path_c = path->eq[k];
477 } else {
478 k = isl_basic_map_alloc_inequality(path);
479 path_c = path->ineq[k];
481 if (k < 0)
482 goto error;
483 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
484 if (p == PURE_VAR) {
485 isl_seq_cpy(path_c + off,
486 delta_c[i] + 1 + nparam, d);
487 isl_int_set(path_c[off + d], delta_c[i][0]);
488 } else if (p == PURE_PARAM) {
489 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
490 } else {
491 isl_seq_cpy(path_c + off,
492 delta_c[i] + 1 + nparam, d);
493 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
495 isl_seq_cpy(path_c + off - n_div,
496 delta_c[i] + 1 + nparam + d, n_div);
499 return path;
500 error:
501 isl_basic_map_free(path);
502 return NULL;
505 /* Given a set of offsets "delta", construct a relation of the
506 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
507 * is an overapproximation of the relations that
508 * maps an element x to any element that can be reached
509 * by taking a non-negative number of steps along any of
510 * the elements in "delta".
511 * That is, construct an approximation of
513 * { [x] -> [y] : exists f \in \delta, k \in Z :
514 * y = x + k [f, 1] and k >= 0 }
516 * For any element in this relation, the number of steps taken
517 * is equal to the difference in the final coordinates.
519 * In particular, let delta be defined as
521 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
522 * C x + C'p + c >= 0 and
523 * D x + D'p + d >= 0 }
525 * where the constraints C x + C'p + c >= 0 are such that the parametric
526 * constant term of each constraint j, "C_j x + C'_j p + c_j",
527 * can never attain positive values, then the relation is constructed as
529 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
530 * A f + k a >= 0 and B p + b >= 0 and
531 * C f + C'p + c >= 0 and k >= 1 }
532 * union { [x] -> [x] }
534 * If the zero-length paths happen to correspond exactly to the identity
535 * mapping, then we return
537 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
538 * A f + k a >= 0 and B p + b >= 0 and
539 * C f + C'p + c >= 0 and k >= 0 }
541 * instead.
543 * Existentially quantified variables in \delta are handled by
544 * classifying them as independent of the parameters, purely
545 * parameter dependent and others. Constraints containing
546 * any of the other existentially quantified variables are removed.
547 * This is safe, but leads to an additional overapproximation.
549 * If there are any impure constraints, then we also eliminate
550 * the parameters from \delta, resulting in a set
552 * \delta' = { [x] : E x + e >= 0 }
554 * and add the constraints
556 * E f + k e >= 0
558 * to the constructed relation.
560 static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim,
561 __isl_take isl_basic_set *delta)
563 isl_basic_map *path = NULL;
564 unsigned d;
565 unsigned n_div;
566 unsigned nparam;
567 unsigned off;
568 int i, k;
569 int is_id;
570 int *div_purity = NULL;
571 int impurity = 0;
573 if (!delta)
574 goto error;
575 n_div = isl_basic_set_dim(delta, isl_dim_div);
576 d = isl_basic_set_dim(delta, isl_dim_set);
577 nparam = isl_basic_set_dim(delta, isl_dim_param);
578 path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1,
579 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
580 off = 1 + nparam + 2 * (d + 1) + n_div;
582 for (i = 0; i < n_div + d + 1; ++i) {
583 k = isl_basic_map_alloc_div(path);
584 if (k < 0)
585 goto error;
586 isl_int_set_si(path->div[k][0], 0);
589 for (i = 0; i < d + 1; ++i) {
590 k = isl_basic_map_alloc_equality(path);
591 if (k < 0)
592 goto error;
593 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
594 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
595 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
596 isl_int_set_si(path->eq[k][off + i], 1);
599 div_purity = get_div_purity(delta);
600 if (n_div && !div_purity)
601 goto error;
603 path = add_delta_constraints(path, delta, off, nparam, d,
604 div_purity, 1, &impurity);
605 path = add_delta_constraints(path, delta, off, nparam, d,
606 div_purity, 0, &impurity);
607 if (impurity) {
608 isl_space *dim = isl_basic_set_get_space(delta);
609 delta = isl_basic_set_project_out(delta,
610 isl_dim_param, 0, nparam);
611 delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam);
612 delta = isl_basic_set_reset_space(delta, dim);
613 if (!delta)
614 goto error;
615 path = isl_basic_map_extend_constraints(path, delta->n_eq,
616 delta->n_ineq + 1);
617 path = add_delta_constraints(path, delta, off, nparam, d,
618 NULL, 1, NULL);
619 path = add_delta_constraints(path, delta, off, nparam, d,
620 NULL, 0, NULL);
621 path = isl_basic_map_gauss(path, NULL);
624 is_id = empty_path_is_identity(path, off + d);
625 if (is_id < 0)
626 goto error;
628 k = isl_basic_map_alloc_inequality(path);
629 if (k < 0)
630 goto error;
631 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
632 if (!is_id)
633 isl_int_set_si(path->ineq[k][0], -1);
634 isl_int_set_si(path->ineq[k][off + d], 1);
636 free(div_purity);
637 isl_basic_set_free(delta);
638 path = isl_basic_map_finalize(path);
639 if (is_id) {
640 isl_space_free(dim);
641 return isl_map_from_basic_map(path);
643 return isl_basic_map_union(path, isl_basic_map_identity(dim));
644 error:
645 free(div_purity);
646 isl_space_free(dim);
647 isl_basic_set_free(delta);
648 isl_basic_map_free(path);
649 return NULL;
652 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
653 * construct a map that equates the parameter to the difference
654 * in the final coordinates and imposes that this difference is positive.
655 * That is, construct
657 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
659 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim,
660 unsigned param)
662 struct isl_basic_map *bmap;
663 unsigned d;
664 unsigned nparam;
665 int k;
667 d = isl_space_dim(dim, isl_dim_in);
668 nparam = isl_space_dim(dim, isl_dim_param);
669 bmap = isl_basic_map_alloc_space(dim, 0, 1, 1);
670 k = isl_basic_map_alloc_equality(bmap);
671 if (k < 0)
672 goto error;
673 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
674 isl_int_set_si(bmap->eq[k][1 + param], -1);
675 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
676 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
678 k = isl_basic_map_alloc_inequality(bmap);
679 if (k < 0)
680 goto error;
681 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
682 isl_int_set_si(bmap->ineq[k][1 + param], 1);
683 isl_int_set_si(bmap->ineq[k][0], -1);
685 bmap = isl_basic_map_finalize(bmap);
686 return isl_map_from_basic_map(bmap);
687 error:
688 isl_basic_map_free(bmap);
689 return NULL;
692 /* Check whether "path" is acyclic, where the last coordinates of domain
693 * and range of path encode the number of steps taken.
694 * That is, check whether
696 * { d | d = y - x and (x,y) in path }
698 * does not contain any element with positive last coordinate (positive length)
699 * and zero remaining coordinates (cycle).
701 static int is_acyclic(__isl_take isl_map *path)
703 int i;
704 int acyclic;
705 unsigned dim;
706 struct isl_set *delta;
708 delta = isl_map_deltas(path);
709 dim = isl_set_dim(delta, isl_dim_set);
710 for (i = 0; i < dim; ++i) {
711 if (i == dim -1)
712 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
713 else
714 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
717 acyclic = isl_set_is_empty(delta);
718 isl_set_free(delta);
720 return acyclic;
723 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
724 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
725 * construct a map that is an overapproximation of the map
726 * that takes an element from the space D \times Z to another
727 * element from the same space, such that the first n coordinates of the
728 * difference between them is a sum of differences between images
729 * and pre-images in one of the R_i and such that the last coordinate
730 * is equal to the number of steps taken.
731 * That is, let
733 * \Delta_i = { y - x | (x, y) in R_i }
735 * then the constructed map is an overapproximation of
737 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
738 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
740 * The elements of the singleton \Delta_i's are collected as the
741 * rows of the steps matrix. For all these \Delta_i's together,
742 * a single path is constructed.
743 * For each of the other \Delta_i's, we compute an overapproximation
744 * of the paths along elements of \Delta_i.
745 * Since each of these paths performs an addition, composition is
746 * symmetric and we can simply compose all resulting paths in any order.
748 static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim,
749 __isl_keep isl_map *map, int *project)
751 struct isl_mat *steps = NULL;
752 struct isl_map *path = NULL;
753 unsigned d;
754 int i, j, n;
756 d = isl_map_dim(map, isl_dim_in);
758 path = isl_map_identity(isl_space_copy(dim));
760 steps = isl_mat_alloc(map->ctx, map->n, d);
761 if (!steps)
762 goto error;
764 n = 0;
765 for (i = 0; i < map->n; ++i) {
766 struct isl_basic_set *delta;
768 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
770 for (j = 0; j < d; ++j) {
771 int fixed;
773 fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
774 &steps->row[n][j]);
775 if (fixed < 0) {
776 isl_basic_set_free(delta);
777 goto error;
779 if (!fixed)
780 break;
784 if (j < d) {
785 path = isl_map_apply_range(path,
786 path_along_delta(isl_space_copy(dim), delta));
787 path = isl_map_coalesce(path);
788 } else {
789 isl_basic_set_free(delta);
790 ++n;
794 if (n > 0) {
795 steps->n_row = n;
796 path = isl_map_apply_range(path,
797 path_along_steps(isl_space_copy(dim), steps));
800 if (project && *project) {
801 *project = is_acyclic(isl_map_copy(path));
802 if (*project < 0)
803 goto error;
806 isl_space_free(dim);
807 isl_mat_free(steps);
808 return path;
809 error:
810 isl_space_free(dim);
811 isl_mat_free(steps);
812 isl_map_free(path);
813 return NULL;
816 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
818 isl_set *i;
819 int no_overlap;
821 if (!isl_space_tuple_match(set1->dim, isl_dim_set, set2->dim, isl_dim_set))
822 return 0;
824 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
825 no_overlap = isl_set_is_empty(i);
826 isl_set_free(i);
828 return no_overlap < 0 ? -1 : !no_overlap;
831 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
832 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
833 * construct a map that is an overapproximation of the map
834 * that takes an element from the dom R \times Z to an
835 * element from ran R \times Z, such that the first n coordinates of the
836 * difference between them is a sum of differences between images
837 * and pre-images in one of the R_i and such that the last coordinate
838 * is equal to the number of steps taken.
839 * That is, let
841 * \Delta_i = { y - x | (x, y) in R_i }
843 * then the constructed map is an overapproximation of
845 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
846 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
847 * x in dom R and x + d in ran R and
848 * \sum_i k_i >= 1 }
850 static __isl_give isl_map *construct_component(__isl_take isl_space *dim,
851 __isl_keep isl_map *map, int *exact, int project)
853 struct isl_set *domain = NULL;
854 struct isl_set *range = NULL;
855 struct isl_map *app = NULL;
856 struct isl_map *path = NULL;
858 domain = isl_map_domain(isl_map_copy(map));
859 domain = isl_set_coalesce(domain);
860 range = isl_map_range(isl_map_copy(map));
861 range = isl_set_coalesce(range);
862 if (!isl_set_overlaps(domain, range)) {
863 isl_set_free(domain);
864 isl_set_free(range);
865 isl_space_free(dim);
867 map = isl_map_copy(map);
868 map = isl_map_add_dims(map, isl_dim_in, 1);
869 map = isl_map_add_dims(map, isl_dim_out, 1);
870 map = set_path_length(map, 1, 1);
871 return map;
873 app = isl_map_from_domain_and_range(domain, range);
874 app = isl_map_add_dims(app, isl_dim_in, 1);
875 app = isl_map_add_dims(app, isl_dim_out, 1);
877 path = construct_extended_path(isl_space_copy(dim), map,
878 exact && *exact ? &project : NULL);
879 app = isl_map_intersect(app, path);
881 if (exact && *exact &&
882 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
883 project)) < 0)
884 goto error;
886 isl_space_free(dim);
887 app = set_path_length(app, 0, 1);
888 return app;
889 error:
890 isl_space_free(dim);
891 isl_map_free(app);
892 return NULL;
895 /* Call construct_component and, if "project" is set, project out
896 * the final coordinates.
898 static __isl_give isl_map *construct_projected_component(
899 __isl_take isl_space *dim,
900 __isl_keep isl_map *map, int *exact, int project)
902 isl_map *app;
903 unsigned d;
905 if (!dim)
906 return NULL;
907 d = isl_space_dim(dim, isl_dim_in);
909 app = construct_component(dim, map, exact, project);
910 if (project) {
911 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
912 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
914 return app;
917 /* Compute an extended version, i.e., with path lengths, of
918 * an overapproximation of the transitive closure of "bmap"
919 * with path lengths greater than or equal to zero and with
920 * domain and range equal to "dom".
922 static __isl_give isl_map *q_closure(__isl_take isl_space *dim,
923 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
925 int project = 1;
926 isl_map *path;
927 isl_map *map;
928 isl_map *app;
930 dom = isl_set_add_dims(dom, isl_dim_set, 1);
931 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
932 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
933 path = construct_extended_path(dim, map, &project);
934 app = isl_map_intersect(app, path);
936 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
937 goto error;
939 return app;
940 error:
941 isl_map_free(app);
942 return NULL;
945 /* Check whether qc has any elements of length at least one
946 * with domain and/or range outside of dom and ran.
948 static int has_spurious_elements(__isl_keep isl_map *qc,
949 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
951 isl_set *s;
952 int subset;
953 unsigned d;
955 if (!qc || !dom || !ran)
956 return -1;
958 d = isl_map_dim(qc, isl_dim_in);
960 qc = isl_map_copy(qc);
961 qc = set_path_length(qc, 0, 1);
962 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
963 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
965 s = isl_map_domain(isl_map_copy(qc));
966 subset = isl_set_is_subset(s, dom);
967 isl_set_free(s);
968 if (subset < 0)
969 goto error;
970 if (!subset) {
971 isl_map_free(qc);
972 return 1;
975 s = isl_map_range(qc);
976 subset = isl_set_is_subset(s, ran);
977 isl_set_free(s);
979 return subset < 0 ? -1 : !subset;
980 error:
981 isl_map_free(qc);
982 return -1;
985 #define LEFT 2
986 #define RIGHT 1
988 /* For each basic map in "map", except i, check whether it combines
989 * with the transitive closure that is reflexive on C combines
990 * to the left and to the right.
992 * In particular, if
994 * dom map_j \subseteq C
996 * then right[j] is set to 1. Otherwise, if
998 * ran map_i \cap dom map_j = \emptyset
1000 * then right[j] is set to 0. Otherwise, composing to the right
1001 * is impossible.
1003 * Similar, for composing to the left, we have if
1005 * ran map_j \subseteq C
1007 * then left[j] is set to 1. Otherwise, if
1009 * dom map_i \cap ran map_j = \emptyset
1011 * then left[j] is set to 0. Otherwise, composing to the left
1012 * is impossible.
1014 * The return value is or'd with LEFT if composing to the left
1015 * is possible and with RIGHT if composing to the right is possible.
1017 static int composability(__isl_keep isl_set *C, int i,
1018 isl_set **dom, isl_set **ran, int *left, int *right,
1019 __isl_keep isl_map *map)
1021 int j;
1022 int ok;
1024 ok = LEFT | RIGHT;
1025 for (j = 0; j < map->n && ok; ++j) {
1026 int overlaps, subset;
1027 if (j == i)
1028 continue;
1030 if (ok & RIGHT) {
1031 if (!dom[j])
1032 dom[j] = isl_set_from_basic_set(
1033 isl_basic_map_domain(
1034 isl_basic_map_copy(map->p[j])));
1035 if (!dom[j])
1036 return -1;
1037 overlaps = isl_set_overlaps(ran[i], dom[j]);
1038 if (overlaps < 0)
1039 return -1;
1040 if (!overlaps)
1041 right[j] = 0;
1042 else {
1043 subset = isl_set_is_subset(dom[j], C);
1044 if (subset < 0)
1045 return -1;
1046 if (subset)
1047 right[j] = 1;
1048 else
1049 ok &= ~RIGHT;
1053 if (ok & LEFT) {
1054 if (!ran[j])
1055 ran[j] = isl_set_from_basic_set(
1056 isl_basic_map_range(
1057 isl_basic_map_copy(map->p[j])));
1058 if (!ran[j])
1059 return -1;
1060 overlaps = isl_set_overlaps(dom[i], ran[j]);
1061 if (overlaps < 0)
1062 return -1;
1063 if (!overlaps)
1064 left[j] = 0;
1065 else {
1066 subset = isl_set_is_subset(ran[j], C);
1067 if (subset < 0)
1068 return -1;
1069 if (subset)
1070 left[j] = 1;
1071 else
1072 ok &= ~LEFT;
1077 return ok;
1080 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1082 map = isl_map_reset(map, isl_dim_in);
1083 map = isl_map_reset(map, isl_dim_out);
1084 return map;
1087 /* Return a map that is a union of the basic maps in "map", except i,
1088 * composed to left and right with qc based on the entries of "left"
1089 * and "right".
1091 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1092 __isl_take isl_map *qc, int *left, int *right)
1094 int j;
1095 isl_map *comp;
1097 comp = isl_map_empty(isl_map_get_space(map));
1098 for (j = 0; j < map->n; ++j) {
1099 isl_map *map_j;
1101 if (j == i)
1102 continue;
1104 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1105 map_j = anonymize(map_j);
1106 if (left && left[j])
1107 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1108 if (right && right[j])
1109 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1110 comp = isl_map_union(comp, map_j);
1113 comp = isl_map_compute_divs(comp);
1114 comp = isl_map_coalesce(comp);
1116 isl_map_free(qc);
1118 return comp;
1121 /* Compute the transitive closure of "map" incrementally by
1122 * computing
1124 * map_i^+ \cup qc^+
1126 * or
1128 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1130 * or
1132 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1134 * depending on whether left or right are NULL.
1136 static __isl_give isl_map *compute_incremental(
1137 __isl_take isl_space *dim, __isl_keep isl_map *map,
1138 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1140 isl_map *map_i;
1141 isl_map *tc;
1142 isl_map *rtc = NULL;
1144 if (!map)
1145 goto error;
1146 isl_assert(map->ctx, left || right, goto error);
1148 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1149 tc = construct_projected_component(isl_space_copy(dim), map_i,
1150 exact, 1);
1151 isl_map_free(map_i);
1153 if (*exact)
1154 qc = isl_map_transitive_closure(qc, exact);
1156 if (!*exact) {
1157 isl_space_free(dim);
1158 isl_map_free(tc);
1159 isl_map_free(qc);
1160 return isl_map_universe(isl_map_get_space(map));
1163 if (!left || !right)
1164 rtc = isl_map_union(isl_map_copy(tc),
1165 isl_map_identity(isl_map_get_space(tc)));
1166 if (!right)
1167 qc = isl_map_apply_range(rtc, qc);
1168 if (!left)
1169 qc = isl_map_apply_range(qc, rtc);
1170 qc = isl_map_union(tc, qc);
1172 isl_space_free(dim);
1174 return qc;
1175 error:
1176 isl_space_free(dim);
1177 isl_map_free(qc);
1178 return NULL;
1181 /* Given a map "map", try to find a basic map such that
1182 * map^+ can be computed as
1184 * map^+ = map_i^+ \cup
1185 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1187 * with C the simple hull of the domain and range of the input map.
1188 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1189 * and by intersecting domain and range with C.
1190 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1191 * Also, we only use the incremental computation if all the transitive
1192 * closures are exact and if the number of basic maps in the union,
1193 * after computing the integer divisions, is smaller than the number
1194 * of basic maps in the input map.
1196 static int incemental_on_entire_domain(__isl_keep isl_space *dim,
1197 __isl_keep isl_map *map,
1198 isl_set **dom, isl_set **ran, int *left, int *right,
1199 __isl_give isl_map **res)
1201 int i;
1202 isl_set *C;
1203 unsigned d;
1205 *res = NULL;
1207 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1208 isl_map_range(isl_map_copy(map)));
1209 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1210 if (!C)
1211 return -1;
1212 if (C->n != 1) {
1213 isl_set_free(C);
1214 return 0;
1217 d = isl_map_dim(map, isl_dim_in);
1219 for (i = 0; i < map->n; ++i) {
1220 isl_map *qc;
1221 int exact_i, spurious;
1222 int j;
1223 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1224 isl_basic_map_copy(map->p[i])));
1225 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1226 isl_basic_map_copy(map->p[i])));
1227 qc = q_closure(isl_space_copy(dim), isl_set_copy(C),
1228 map->p[i], &exact_i);
1229 if (!qc)
1230 goto error;
1231 if (!exact_i) {
1232 isl_map_free(qc);
1233 continue;
1235 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1236 if (spurious) {
1237 isl_map_free(qc);
1238 if (spurious < 0)
1239 goto error;
1240 continue;
1242 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1243 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1244 qc = isl_map_compute_divs(qc);
1245 for (j = 0; j < map->n; ++j)
1246 left[j] = right[j] = 1;
1247 qc = compose(map, i, qc, left, right);
1248 if (!qc)
1249 goto error;
1250 if (qc->n >= map->n) {
1251 isl_map_free(qc);
1252 continue;
1254 *res = compute_incremental(isl_space_copy(dim), map, i, qc,
1255 left, right, &exact_i);
1256 if (!*res)
1257 goto error;
1258 if (exact_i)
1259 break;
1260 isl_map_free(*res);
1261 *res = NULL;
1264 isl_set_free(C);
1266 return *res != NULL;
1267 error:
1268 isl_set_free(C);
1269 return -1;
1272 /* Try and compute the transitive closure of "map" as
1274 * map^+ = map_i^+ \cup
1275 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1277 * with C either the simple hull of the domain and range of the entire
1278 * map or the simple hull of domain and range of map_i.
1280 static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim,
1281 __isl_keep isl_map *map, int *exact, int project)
1283 int i;
1284 isl_set **dom = NULL;
1285 isl_set **ran = NULL;
1286 int *left = NULL;
1287 int *right = NULL;
1288 isl_set *C;
1289 unsigned d;
1290 isl_map *res = NULL;
1292 if (!project)
1293 return construct_projected_component(dim, map, exact, project);
1295 if (!map)
1296 goto error;
1297 if (map->n <= 1)
1298 return construct_projected_component(dim, map, exact, project);
1300 d = isl_map_dim(map, isl_dim_in);
1302 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1303 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1304 left = isl_calloc_array(map->ctx, int, map->n);
1305 right = isl_calloc_array(map->ctx, int, map->n);
1306 if (!ran || !dom || !left || !right)
1307 goto error;
1309 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1310 goto error;
1312 for (i = 0; !res && i < map->n; ++i) {
1313 isl_map *qc;
1314 int exact_i, spurious, comp;
1315 if (!dom[i])
1316 dom[i] = isl_set_from_basic_set(
1317 isl_basic_map_domain(
1318 isl_basic_map_copy(map->p[i])));
1319 if (!dom[i])
1320 goto error;
1321 if (!ran[i])
1322 ran[i] = isl_set_from_basic_set(
1323 isl_basic_map_range(
1324 isl_basic_map_copy(map->p[i])));
1325 if (!ran[i])
1326 goto error;
1327 C = isl_set_union(isl_set_copy(dom[i]),
1328 isl_set_copy(ran[i]));
1329 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1330 if (!C)
1331 goto error;
1332 if (C->n != 1) {
1333 isl_set_free(C);
1334 continue;
1336 comp = composability(C, i, dom, ran, left, right, map);
1337 if (!comp || comp < 0) {
1338 isl_set_free(C);
1339 if (comp < 0)
1340 goto error;
1341 continue;
1343 qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i);
1344 if (!qc)
1345 goto error;
1346 if (!exact_i) {
1347 isl_map_free(qc);
1348 continue;
1350 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1351 if (spurious) {
1352 isl_map_free(qc);
1353 if (spurious < 0)
1354 goto error;
1355 continue;
1357 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1358 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1359 qc = isl_map_compute_divs(qc);
1360 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1361 (comp & RIGHT) ? right : NULL);
1362 if (!qc)
1363 goto error;
1364 if (qc->n >= map->n) {
1365 isl_map_free(qc);
1366 continue;
1368 res = compute_incremental(isl_space_copy(dim), map, i, qc,
1369 (comp & LEFT) ? left : NULL,
1370 (comp & RIGHT) ? right : NULL, &exact_i);
1371 if (!res)
1372 goto error;
1373 if (exact_i)
1374 break;
1375 isl_map_free(res);
1376 res = NULL;
1379 for (i = 0; i < map->n; ++i) {
1380 isl_set_free(dom[i]);
1381 isl_set_free(ran[i]);
1383 free(dom);
1384 free(ran);
1385 free(left);
1386 free(right);
1388 if (res) {
1389 isl_space_free(dim);
1390 return res;
1393 return construct_projected_component(dim, map, exact, project);
1394 error:
1395 if (dom)
1396 for (i = 0; i < map->n; ++i)
1397 isl_set_free(dom[i]);
1398 free(dom);
1399 if (ran)
1400 for (i = 0; i < map->n; ++i)
1401 isl_set_free(ran[i]);
1402 free(ran);
1403 free(left);
1404 free(right);
1405 isl_space_free(dim);
1406 return NULL;
1409 /* Given an array of sets "set", add "dom" at position "pos"
1410 * and search for elements at earlier positions that overlap with "dom".
1411 * If any can be found, then merge all of them, together with "dom", into
1412 * a single set and assign the union to the first in the array,
1413 * which becomes the new group leader for all groups involved in the merge.
1414 * During the search, we only consider group leaders, i.e., those with
1415 * group[i] = i, as the other sets have already been combined
1416 * with one of the group leaders.
1418 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1420 int i;
1422 group[pos] = pos;
1423 set[pos] = isl_set_copy(dom);
1425 for (i = pos - 1; i >= 0; --i) {
1426 int o;
1428 if (group[i] != i)
1429 continue;
1431 o = isl_set_overlaps(set[i], dom);
1432 if (o < 0)
1433 goto error;
1434 if (!o)
1435 continue;
1437 set[i] = isl_set_union(set[i], set[group[pos]]);
1438 set[group[pos]] = NULL;
1439 if (!set[i])
1440 goto error;
1441 group[group[pos]] = i;
1442 group[pos] = i;
1445 isl_set_free(dom);
1446 return 0;
1447 error:
1448 isl_set_free(dom);
1449 return -1;
1452 /* Replace each entry in the n by n grid of maps by the cross product
1453 * with the relation { [i] -> [i + 1] }.
1455 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1457 int i, j, k;
1458 isl_space *dim;
1459 isl_basic_map *bstep;
1460 isl_map *step;
1461 unsigned nparam;
1463 if (!map)
1464 return -1;
1466 dim = isl_map_get_space(map);
1467 nparam = isl_space_dim(dim, isl_dim_param);
1468 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1469 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1470 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1471 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1472 bstep = isl_basic_map_alloc_space(dim, 0, 1, 0);
1473 k = isl_basic_map_alloc_equality(bstep);
1474 if (k < 0) {
1475 isl_basic_map_free(bstep);
1476 return -1;
1478 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1479 isl_int_set_si(bstep->eq[k][0], 1);
1480 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1481 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1482 bstep = isl_basic_map_finalize(bstep);
1483 step = isl_map_from_basic_map(bstep);
1485 for (i = 0; i < n; ++i)
1486 for (j = 0; j < n; ++j)
1487 grid[i][j] = isl_map_product(grid[i][j],
1488 isl_map_copy(step));
1490 isl_map_free(step);
1492 return 0;
1495 /* The core of the Floyd-Warshall algorithm.
1496 * Updates the given n x x matrix of relations in place.
1498 * The algorithm iterates over all vertices. In each step, the whole
1499 * matrix is updated to include all paths that go to the current vertex,
1500 * possibly stay there a while (including passing through earlier vertices)
1501 * and then come back. At the start of each iteration, the diagonal
1502 * element corresponding to the current vertex is replaced by its
1503 * transitive closure to account for all indirect paths that stay
1504 * in the current vertex.
1506 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1508 int r, p, q;
1510 for (r = 0; r < n; ++r) {
1511 int r_exact;
1512 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1513 (exact && *exact) ? &r_exact : NULL);
1514 if (exact && *exact && !r_exact)
1515 *exact = 0;
1517 for (p = 0; p < n; ++p)
1518 for (q = 0; q < n; ++q) {
1519 isl_map *loop;
1520 if (p == r && q == r)
1521 continue;
1522 loop = isl_map_apply_range(
1523 isl_map_copy(grid[p][r]),
1524 isl_map_copy(grid[r][q]));
1525 grid[p][q] = isl_map_union(grid[p][q], loop);
1526 loop = isl_map_apply_range(
1527 isl_map_copy(grid[p][r]),
1528 isl_map_apply_range(
1529 isl_map_copy(grid[r][r]),
1530 isl_map_copy(grid[r][q])));
1531 grid[p][q] = isl_map_union(grid[p][q], loop);
1532 grid[p][q] = isl_map_coalesce(grid[p][q]);
1537 /* Given a partition of the domains and ranges of the basic maps in "map",
1538 * apply the Floyd-Warshall algorithm with the elements in the partition
1539 * as vertices.
1541 * In particular, there are "n" elements in the partition and "group" is
1542 * an array of length 2 * map->n with entries in [0,n-1].
1544 * We first construct a matrix of relations based on the partition information,
1545 * apply Floyd-Warshall on this matrix of relations and then take the
1546 * union of all entries in the matrix as the final result.
1548 * If we are actually computing the power instead of the transitive closure,
1549 * i.e., when "project" is not set, then the result should have the
1550 * path lengths encoded as the difference between an extra pair of
1551 * coordinates. We therefore apply the nested transitive closures
1552 * to relations that include these lengths. In particular, we replace
1553 * the input relation by the cross product with the unit length relation
1554 * { [i] -> [i + 1] }.
1556 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim,
1557 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1559 int i, j, k;
1560 isl_map ***grid = NULL;
1561 isl_map *app;
1563 if (!map)
1564 goto error;
1566 if (n == 1) {
1567 free(group);
1568 return incremental_closure(dim, map, exact, project);
1571 grid = isl_calloc_array(map->ctx, isl_map **, n);
1572 if (!grid)
1573 goto error;
1574 for (i = 0; i < n; ++i) {
1575 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1576 if (!grid[i])
1577 goto error;
1578 for (j = 0; j < n; ++j)
1579 grid[i][j] = isl_map_empty(isl_map_get_space(map));
1582 for (k = 0; k < map->n; ++k) {
1583 i = group[2 * k];
1584 j = group[2 * k + 1];
1585 grid[i][j] = isl_map_union(grid[i][j],
1586 isl_map_from_basic_map(
1587 isl_basic_map_copy(map->p[k])));
1590 if (!project && add_length(map, grid, n) < 0)
1591 goto error;
1593 floyd_warshall_iterate(grid, n, exact);
1595 app = isl_map_empty(isl_map_get_space(map));
1597 for (i = 0; i < n; ++i) {
1598 for (j = 0; j < n; ++j)
1599 app = isl_map_union(app, grid[i][j]);
1600 free(grid[i]);
1602 free(grid);
1604 free(group);
1605 isl_space_free(dim);
1607 return app;
1608 error:
1609 if (grid)
1610 for (i = 0; i < n; ++i) {
1611 if (!grid[i])
1612 continue;
1613 for (j = 0; j < n; ++j)
1614 isl_map_free(grid[i][j]);
1615 free(grid[i]);
1617 free(grid);
1618 free(group);
1619 isl_space_free(dim);
1620 return NULL;
1623 /* Partition the domains and ranges of the n basic relations in list
1624 * into disjoint cells.
1626 * To find the partition, we simply consider all of the domains
1627 * and ranges in turn and combine those that overlap.
1628 * "set" contains the partition elements and "group" indicates
1629 * to which partition element a given domain or range belongs.
1630 * The domain of basic map i corresponds to element 2 * i in these arrays,
1631 * while the domain corresponds to element 2 * i + 1.
1632 * During the construction group[k] is either equal to k,
1633 * in which case set[k] contains the union of all the domains and
1634 * ranges in the corresponding group, or is equal to some l < k,
1635 * with l another domain or range in the same group.
1637 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1638 isl_set ***set, int *n_group)
1640 int i;
1641 int *group = NULL;
1642 int g;
1644 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1645 group = isl_alloc_array(ctx, int, 2 * n);
1647 if (!*set || !group)
1648 goto error;
1650 for (i = 0; i < n; ++i) {
1651 isl_set *dom;
1652 dom = isl_set_from_basic_set(isl_basic_map_domain(
1653 isl_basic_map_copy(list[i])));
1654 if (merge(*set, group, dom, 2 * i) < 0)
1655 goto error;
1656 dom = isl_set_from_basic_set(isl_basic_map_range(
1657 isl_basic_map_copy(list[i])));
1658 if (merge(*set, group, dom, 2 * i + 1) < 0)
1659 goto error;
1662 g = 0;
1663 for (i = 0; i < 2 * n; ++i)
1664 if (group[i] == i) {
1665 if (g != i) {
1666 (*set)[g] = (*set)[i];
1667 (*set)[i] = NULL;
1669 group[i] = g++;
1670 } else
1671 group[i] = group[group[i]];
1673 *n_group = g;
1675 return group;
1676 error:
1677 if (*set) {
1678 for (i = 0; i < 2 * n; ++i)
1679 isl_set_free((*set)[i]);
1680 free(*set);
1681 *set = NULL;
1683 free(group);
1684 return NULL;
1687 /* Check if the domains and ranges of the basic maps in "map" can
1688 * be partitioned, and if so, apply Floyd-Warshall on the elements
1689 * of the partition. Note that we also apply this algorithm
1690 * if we want to compute the power, i.e., when "project" is not set.
1691 * However, the results are unlikely to be exact since the recursive
1692 * calls inside the Floyd-Warshall algorithm typically result in
1693 * non-linear path lengths quite quickly.
1695 static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim,
1696 __isl_keep isl_map *map, int *exact, int project)
1698 int i;
1699 isl_set **set = NULL;
1700 int *group = NULL;
1701 int n;
1703 if (!map)
1704 goto error;
1705 if (map->n <= 1)
1706 return incremental_closure(dim, map, exact, project);
1708 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1709 if (!group)
1710 goto error;
1712 for (i = 0; i < 2 * map->n; ++i)
1713 isl_set_free(set[i]);
1715 free(set);
1717 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1718 error:
1719 isl_space_free(dim);
1720 return NULL;
1723 /* Structure for representing the nodes of the graph of which
1724 * strongly connected components are being computed.
1726 * list contains the actual nodes
1727 * check_closed is set if we may have used the fact that
1728 * a pair of basic maps can be interchanged
1730 struct isl_tc_follows_data {
1731 isl_basic_map **list;
1732 int check_closed;
1735 /* Check whether in the computation of the transitive closure
1736 * "list[i]" (R_1) should follow (or be part of the same component as)
1737 * "list[j]" (R_2).
1739 * That is check whether
1741 * R_1 \circ R_2
1743 * is a subset of
1745 * R_2 \circ R_1
1747 * If so, then there is no reason for R_1 to immediately follow R_2
1748 * in any path.
1750 * *check_closed is set if the subset relation holds while
1751 * R_1 \circ R_2 is not empty.
1753 static int basic_map_follows(int i, int j, void *user)
1755 struct isl_tc_follows_data *data = user;
1756 struct isl_map *map12 = NULL;
1757 struct isl_map *map21 = NULL;
1758 int subset;
1760 if (!isl_space_tuple_match(data->list[i]->dim, isl_dim_in,
1761 data->list[j]->dim, isl_dim_out))
1762 return 0;
1764 map21 = isl_map_from_basic_map(
1765 isl_basic_map_apply_range(
1766 isl_basic_map_copy(data->list[j]),
1767 isl_basic_map_copy(data->list[i])));
1768 subset = isl_map_is_empty(map21);
1769 if (subset < 0)
1770 goto error;
1771 if (subset) {
1772 isl_map_free(map21);
1773 return 0;
1776 if (!isl_space_tuple_match(data->list[i]->dim, isl_dim_in,
1777 data->list[i]->dim, isl_dim_out) ||
1778 !isl_space_tuple_match(data->list[j]->dim, isl_dim_in,
1779 data->list[j]->dim, isl_dim_out)) {
1780 isl_map_free(map21);
1781 return 1;
1784 map12 = isl_map_from_basic_map(
1785 isl_basic_map_apply_range(
1786 isl_basic_map_copy(data->list[i]),
1787 isl_basic_map_copy(data->list[j])));
1789 subset = isl_map_is_subset(map21, map12);
1791 isl_map_free(map12);
1792 isl_map_free(map21);
1794 if (subset)
1795 data->check_closed = 1;
1797 return subset < 0 ? -1 : !subset;
1798 error:
1799 isl_map_free(map21);
1800 return -1;
1803 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1804 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1805 * construct a map that is an overapproximation of the map
1806 * that takes an element from the dom R \times Z to an
1807 * element from ran R \times Z, such that the first n coordinates of the
1808 * difference between them is a sum of differences between images
1809 * and pre-images in one of the R_i and such that the last coordinate
1810 * is equal to the number of steps taken.
1811 * If "project" is set, then these final coordinates are not included,
1812 * i.e., a relation of type Z^n -> Z^n is returned.
1813 * That is, let
1815 * \Delta_i = { y - x | (x, y) in R_i }
1817 * then the constructed map is an overapproximation of
1819 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1820 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1821 * x in dom R and x + d in ran R }
1823 * or
1825 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1826 * d = (\sum_i k_i \delta_i) and
1827 * x in dom R and x + d in ran R }
1829 * if "project" is set.
1831 * We first split the map into strongly connected components, perform
1832 * the above on each component and then join the results in the correct
1833 * order, at each join also taking in the union of both arguments
1834 * to allow for paths that do not go through one of the two arguments.
1836 static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim,
1837 __isl_keep isl_map *map, int *exact, int project)
1839 int i, n, c;
1840 struct isl_map *path = NULL;
1841 struct isl_tc_follows_data data;
1842 struct isl_tarjan_graph *g = NULL;
1843 int *orig_exact;
1844 int local_exact;
1846 if (!map)
1847 goto error;
1848 if (map->n <= 1)
1849 return floyd_warshall(dim, map, exact, project);
1851 data.list = map->p;
1852 data.check_closed = 0;
1853 g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data);
1854 if (!g)
1855 goto error;
1857 orig_exact = exact;
1858 if (data.check_closed && !exact)
1859 exact = &local_exact;
1861 c = 0;
1862 i = 0;
1863 n = map->n;
1864 if (project)
1865 path = isl_map_empty(isl_map_get_space(map));
1866 else
1867 path = isl_map_empty(isl_space_copy(dim));
1868 path = anonymize(path);
1869 while (n) {
1870 struct isl_map *comp;
1871 isl_map *path_comp, *path_comb;
1872 comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
1873 while (g->order[i] != -1) {
1874 comp = isl_map_add_basic_map(comp,
1875 isl_basic_map_copy(map->p[g->order[i]]));
1876 --n;
1877 ++i;
1879 path_comp = floyd_warshall(isl_space_copy(dim),
1880 comp, exact, project);
1881 path_comp = anonymize(path_comp);
1882 path_comb = isl_map_apply_range(isl_map_copy(path),
1883 isl_map_copy(path_comp));
1884 path = isl_map_union(path, path_comp);
1885 path = isl_map_union(path, path_comb);
1886 isl_map_free(comp);
1887 ++i;
1888 ++c;
1891 if (c > 1 && data.check_closed && !*exact) {
1892 int closed;
1894 closed = isl_map_is_transitively_closed(path);
1895 if (closed < 0)
1896 goto error;
1897 if (!closed) {
1898 isl_tarjan_graph_free(g);
1899 isl_map_free(path);
1900 return floyd_warshall(dim, map, orig_exact, project);
1904 isl_tarjan_graph_free(g);
1905 isl_space_free(dim);
1907 return path;
1908 error:
1909 isl_tarjan_graph_free(g);
1910 isl_space_free(dim);
1911 isl_map_free(path);
1912 return NULL;
1915 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1916 * construct a map that is an overapproximation of the map
1917 * that takes an element from the space D to another
1918 * element from the same space, such that the difference between
1919 * them is a strictly positive sum of differences between images
1920 * and pre-images in one of the R_i.
1921 * The number of differences in the sum is equated to parameter "param".
1922 * That is, let
1924 * \Delta_i = { y - x | (x, y) in R_i }
1926 * then the constructed map is an overapproximation of
1928 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1929 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1930 * or
1932 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1933 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1935 * if "project" is set.
1937 * If "project" is not set, then
1938 * we construct an extended mapping with an extra coordinate
1939 * that indicates the number of steps taken. In particular,
1940 * the difference in the last coordinate is equal to the number
1941 * of steps taken to move from a domain element to the corresponding
1942 * image element(s).
1944 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1945 int *exact, int project)
1947 struct isl_map *app = NULL;
1948 isl_space *dim = NULL;
1949 unsigned d;
1951 if (!map)
1952 return NULL;
1954 dim = isl_map_get_space(map);
1956 d = isl_space_dim(dim, isl_dim_in);
1957 dim = isl_space_add_dims(dim, isl_dim_in, 1);
1958 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1960 app = construct_power_components(isl_space_copy(dim), map,
1961 exact, project);
1963 isl_space_free(dim);
1965 return app;
1968 /* Compute the positive powers of "map", or an overapproximation.
1969 * If the result is exact, then *exact is set to 1.
1971 * If project is set, then we are actually interested in the transitive
1972 * closure, so we can use a more relaxed exactness check.
1973 * The lengths of the paths are also projected out instead of being
1974 * encoded as the difference between an extra pair of final coordinates.
1976 static __isl_give isl_map *map_power(__isl_take isl_map *map,
1977 int *exact, int project)
1979 struct isl_map *app = NULL;
1981 if (exact)
1982 *exact = 1;
1984 if (!map)
1985 return NULL;
1987 isl_assert(map->ctx,
1988 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
1989 goto error);
1991 app = construct_power(map, exact, project);
1993 isl_map_free(map);
1994 return app;
1995 error:
1996 isl_map_free(map);
1997 isl_map_free(app);
1998 return NULL;
2001 /* Compute the positive powers of "map", or an overapproximation.
2002 * The result maps the exponent to a nested copy of the corresponding power.
2003 * If the result is exact, then *exact is set to 1.
2004 * map_power constructs an extended relation with the path lengths
2005 * encoded as the difference between the final coordinates.
2006 * In the final step, this difference is equated to an extra parameter
2007 * and made positive. The extra coordinates are subsequently projected out
2008 * and the parameter is turned into the domain of the result.
2010 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
2012 isl_space *target_dim;
2013 isl_space *dim;
2014 isl_map *diff;
2015 unsigned d;
2016 unsigned param;
2018 if (!map)
2019 return NULL;
2021 d = isl_map_dim(map, isl_dim_in);
2022 param = isl_map_dim(map, isl_dim_param);
2024 map = isl_map_compute_divs(map);
2025 map = isl_map_coalesce(map);
2027 if (isl_map_plain_is_empty(map)) {
2028 map = isl_map_from_range(isl_map_wrap(map));
2029 map = isl_map_add_dims(map, isl_dim_in, 1);
2030 map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2031 return map;
2034 target_dim = isl_map_get_space(map);
2035 target_dim = isl_space_from_range(isl_space_wrap(target_dim));
2036 target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1);
2037 target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k");
2039 map = map_power(map, exact, 0);
2041 map = isl_map_add_dims(map, isl_dim_param, 1);
2042 dim = isl_map_get_space(map);
2043 diff = equate_parameter_to_length(dim, param);
2044 map = isl_map_intersect(map, diff);
2045 map = isl_map_project_out(map, isl_dim_in, d, 1);
2046 map = isl_map_project_out(map, isl_dim_out, d, 1);
2047 map = isl_map_from_range(isl_map_wrap(map));
2048 map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2050 map = isl_map_reset_space(map, target_dim);
2052 return map;
2055 /* Compute a relation that maps each element in the range of the input
2056 * relation to the lengths of all paths composed of edges in the input
2057 * relation that end up in the given range element.
2058 * The result may be an overapproximation, in which case *exact is set to 0.
2059 * The resulting relation is very similar to the power relation.
2060 * The difference are that the domain has been projected out, the
2061 * range has become the domain and the exponent is the range instead
2062 * of a parameter.
2064 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2065 int *exact)
2067 isl_space *dim;
2068 isl_map *diff;
2069 unsigned d;
2070 unsigned param;
2072 if (!map)
2073 return NULL;
2075 d = isl_map_dim(map, isl_dim_in);
2076 param = isl_map_dim(map, isl_dim_param);
2078 map = isl_map_compute_divs(map);
2079 map = isl_map_coalesce(map);
2081 if (isl_map_plain_is_empty(map)) {
2082 if (exact)
2083 *exact = 1;
2084 map = isl_map_project_out(map, isl_dim_out, 0, d);
2085 map = isl_map_add_dims(map, isl_dim_out, 1);
2086 return map;
2089 map = map_power(map, exact, 0);
2091 map = isl_map_add_dims(map, isl_dim_param, 1);
2092 dim = isl_map_get_space(map);
2093 diff = equate_parameter_to_length(dim, param);
2094 map = isl_map_intersect(map, diff);
2095 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2096 map = isl_map_project_out(map, isl_dim_out, d, 1);
2097 map = isl_map_reverse(map);
2098 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2100 return map;
2103 /* Check whether equality i of bset is a pure stride constraint
2104 * on a single dimensions, i.e., of the form
2106 * v = k e
2108 * with k a constant and e an existentially quantified variable.
2110 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2112 unsigned nparam;
2113 unsigned d;
2114 unsigned n_div;
2115 int pos1;
2116 int pos2;
2118 if (!bset)
2119 return -1;
2121 if (!isl_int_is_zero(bset->eq[i][0]))
2122 return 0;
2124 nparam = isl_basic_set_dim(bset, isl_dim_param);
2125 d = isl_basic_set_dim(bset, isl_dim_set);
2126 n_div = isl_basic_set_dim(bset, isl_dim_div);
2128 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2129 return 0;
2130 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2131 if (pos1 == -1)
2132 return 0;
2133 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2134 d - pos1 - 1) != -1)
2135 return 0;
2137 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2138 if (pos2 == -1)
2139 return 0;
2140 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2141 n_div - pos2 - 1) != -1)
2142 return 0;
2143 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2144 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2145 return 0;
2147 return 1;
2150 /* Given a map, compute the smallest superset of this map that is of the form
2152 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2154 * (where p ranges over the (non-parametric) dimensions),
2155 * compute the transitive closure of this map, i.e.,
2157 * { i -> j : exists k > 0:
2158 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2160 * and intersect domain and range of this transitive closure with
2161 * the given domain and range.
2163 * If with_id is set, then try to include as much of the identity mapping
2164 * as possible, by computing
2166 * { i -> j : exists k >= 0:
2167 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2169 * instead (i.e., allow k = 0).
2171 * In practice, we compute the difference set
2173 * delta = { j - i | i -> j in map },
2175 * look for stride constraint on the individual dimensions and compute
2176 * (constant) lower and upper bounds for each individual dimension,
2177 * adding a constraint for each bound not equal to infinity.
2179 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2180 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2182 int i;
2183 int k;
2184 unsigned d;
2185 unsigned nparam;
2186 unsigned total;
2187 isl_space *dim;
2188 isl_set *delta;
2189 isl_map *app = NULL;
2190 isl_basic_set *aff = NULL;
2191 isl_basic_map *bmap = NULL;
2192 isl_vec *obj = NULL;
2193 isl_int opt;
2195 isl_int_init(opt);
2197 delta = isl_map_deltas(isl_map_copy(map));
2199 aff = isl_set_affine_hull(isl_set_copy(delta));
2200 if (!aff)
2201 goto error;
2202 dim = isl_map_get_space(map);
2203 d = isl_space_dim(dim, isl_dim_in);
2204 nparam = isl_space_dim(dim, isl_dim_param);
2205 total = isl_space_dim(dim, isl_dim_all);
2206 bmap = isl_basic_map_alloc_space(dim,
2207 aff->n_div + 1, aff->n_div, 2 * d + 1);
2208 for (i = 0; i < aff->n_div + 1; ++i) {
2209 k = isl_basic_map_alloc_div(bmap);
2210 if (k < 0)
2211 goto error;
2212 isl_int_set_si(bmap->div[k][0], 0);
2214 for (i = 0; i < aff->n_eq; ++i) {
2215 if (!is_eq_stride(aff, i))
2216 continue;
2217 k = isl_basic_map_alloc_equality(bmap);
2218 if (k < 0)
2219 goto error;
2220 isl_seq_clr(bmap->eq[k], 1 + nparam);
2221 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2222 aff->eq[i] + 1 + nparam, d);
2223 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2224 aff->eq[i] + 1 + nparam, d);
2225 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2226 aff->eq[i] + 1 + nparam + d, aff->n_div);
2227 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2229 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2230 if (!obj)
2231 goto error;
2232 isl_seq_clr(obj->el, 1 + nparam + d);
2233 for (i = 0; i < d; ++ i) {
2234 enum isl_lp_result res;
2236 isl_int_set_si(obj->el[1 + nparam + i], 1);
2238 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2239 NULL, NULL);
2240 if (res == isl_lp_error)
2241 goto error;
2242 if (res == isl_lp_ok) {
2243 k = isl_basic_map_alloc_inequality(bmap);
2244 if (k < 0)
2245 goto error;
2246 isl_seq_clr(bmap->ineq[k],
2247 1 + nparam + 2 * d + bmap->n_div);
2248 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2249 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2250 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2253 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2254 NULL, NULL);
2255 if (res == isl_lp_error)
2256 goto error;
2257 if (res == isl_lp_ok) {
2258 k = isl_basic_map_alloc_inequality(bmap);
2259 if (k < 0)
2260 goto error;
2261 isl_seq_clr(bmap->ineq[k],
2262 1 + nparam + 2 * d + bmap->n_div);
2263 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2264 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2265 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2268 isl_int_set_si(obj->el[1 + nparam + i], 0);
2270 k = isl_basic_map_alloc_inequality(bmap);
2271 if (k < 0)
2272 goto error;
2273 isl_seq_clr(bmap->ineq[k],
2274 1 + nparam + 2 * d + bmap->n_div);
2275 if (!with_id)
2276 isl_int_set_si(bmap->ineq[k][0], -1);
2277 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2279 app = isl_map_from_domain_and_range(dom, ran);
2281 isl_vec_free(obj);
2282 isl_basic_set_free(aff);
2283 isl_map_free(map);
2284 bmap = isl_basic_map_finalize(bmap);
2285 isl_set_free(delta);
2286 isl_int_clear(opt);
2288 map = isl_map_from_basic_map(bmap);
2289 map = isl_map_intersect(map, app);
2291 return map;
2292 error:
2293 isl_vec_free(obj);
2294 isl_basic_map_free(bmap);
2295 isl_basic_set_free(aff);
2296 isl_set_free(dom);
2297 isl_set_free(ran);
2298 isl_map_free(map);
2299 isl_set_free(delta);
2300 isl_int_clear(opt);
2301 return NULL;
2304 /* Given a map, compute the smallest superset of this map that is of the form
2306 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2308 * (where p ranges over the (non-parametric) dimensions),
2309 * compute the transitive closure of this map, i.e.,
2311 * { i -> j : exists k > 0:
2312 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2314 * and intersect domain and range of this transitive closure with
2315 * domain and range of the original map.
2317 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2319 isl_set *domain;
2320 isl_set *range;
2322 domain = isl_map_domain(isl_map_copy(map));
2323 domain = isl_set_coalesce(domain);
2324 range = isl_map_range(isl_map_copy(map));
2325 range = isl_set_coalesce(range);
2327 return box_closure_on_domain(map, domain, range, 0);
2330 /* Given a map, compute the smallest superset of this map that is of the form
2332 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2334 * (where p ranges over the (non-parametric) dimensions),
2335 * compute the transitive and partially reflexive closure of this map, i.e.,
2337 * { i -> j : exists k >= 0:
2338 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2340 * and intersect domain and range of this transitive closure with
2341 * the given domain.
2343 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2344 __isl_take isl_set *dom)
2346 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2349 /* Check whether app is the transitive closure of map.
2350 * In particular, check that app is acyclic and, if so,
2351 * check that
2353 * app \subset (map \cup (map \circ app))
2355 static int check_exactness_omega(__isl_keep isl_map *map,
2356 __isl_keep isl_map *app)
2358 isl_set *delta;
2359 int i;
2360 int is_empty, is_exact;
2361 unsigned d;
2362 isl_map *test;
2364 delta = isl_map_deltas(isl_map_copy(app));
2365 d = isl_set_dim(delta, isl_dim_set);
2366 for (i = 0; i < d; ++i)
2367 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2368 is_empty = isl_set_is_empty(delta);
2369 isl_set_free(delta);
2370 if (is_empty < 0)
2371 return -1;
2372 if (!is_empty)
2373 return 0;
2375 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2376 test = isl_map_union(test, isl_map_copy(map));
2377 is_exact = isl_map_is_subset(app, test);
2378 isl_map_free(test);
2380 return is_exact;
2383 /* Check if basic map M_i can be combined with all the other
2384 * basic maps such that
2386 * (\cup_j M_j)^+
2388 * can be computed as
2390 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2392 * In particular, check if we can compute a compact representation
2393 * of
2395 * M_i^* \circ M_j \circ M_i^*
2397 * for each j != i.
2398 * Let M_i^? be an extension of M_i^+ that allows paths
2399 * of length zero, i.e., the result of box_closure(., 1).
2400 * The criterion, as proposed by Kelly et al., is that
2401 * id = M_i^? - M_i^+ can be represented as a basic map
2402 * and that
2404 * id \circ M_j \circ id = M_j
2406 * for each j != i.
2408 * If this function returns 1, then tc and qc are set to
2409 * M_i^+ and M_i^?, respectively.
2411 static int can_be_split_off(__isl_keep isl_map *map, int i,
2412 __isl_give isl_map **tc, __isl_give isl_map **qc)
2414 isl_map *map_i, *id = NULL;
2415 int j = -1;
2416 isl_set *C;
2418 *tc = NULL;
2419 *qc = NULL;
2421 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2422 isl_map_range(isl_map_copy(map)));
2423 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2424 if (!C)
2425 goto error;
2427 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2428 *tc = box_closure(isl_map_copy(map_i));
2429 *qc = box_closure_with_identity(map_i, C);
2430 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2432 if (!id || !*qc)
2433 goto error;
2434 if (id->n != 1 || (*qc)->n != 1)
2435 goto done;
2437 for (j = 0; j < map->n; ++j) {
2438 isl_map *map_j, *test;
2439 int is_ok;
2441 if (i == j)
2442 continue;
2443 map_j = isl_map_from_basic_map(
2444 isl_basic_map_copy(map->p[j]));
2445 test = isl_map_apply_range(isl_map_copy(id),
2446 isl_map_copy(map_j));
2447 test = isl_map_apply_range(test, isl_map_copy(id));
2448 is_ok = isl_map_is_equal(test, map_j);
2449 isl_map_free(map_j);
2450 isl_map_free(test);
2451 if (is_ok < 0)
2452 goto error;
2453 if (!is_ok)
2454 break;
2457 done:
2458 isl_map_free(id);
2459 if (j == map->n)
2460 return 1;
2462 isl_map_free(*qc);
2463 isl_map_free(*tc);
2464 *qc = NULL;
2465 *tc = NULL;
2467 return 0;
2468 error:
2469 isl_map_free(id);
2470 isl_map_free(*qc);
2471 isl_map_free(*tc);
2472 *qc = NULL;
2473 *tc = NULL;
2474 return -1;
2477 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2478 int *exact)
2480 isl_map *app;
2482 app = box_closure(isl_map_copy(map));
2483 if (exact)
2484 *exact = check_exactness_omega(map, app);
2486 isl_map_free(map);
2487 return app;
2490 /* Compute an overapproximation of the transitive closure of "map"
2491 * using a variation of the algorithm from
2492 * "Transitive Closure of Infinite Graphs and its Applications"
2493 * by Kelly et al.
2495 * We first check whether we can can split of any basic map M_i and
2496 * compute
2498 * (\cup_j M_j)^+
2500 * as
2502 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2504 * using a recursive call on the remaining map.
2506 * If not, we simply call box_closure on the whole map.
2508 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2509 int *exact)
2511 int i, j;
2512 int exact_i;
2513 isl_map *app;
2515 if (!map)
2516 return NULL;
2517 if (map->n == 1)
2518 return box_closure_with_check(map, exact);
2520 for (i = 0; i < map->n; ++i) {
2521 int ok;
2522 isl_map *qc, *tc;
2523 ok = can_be_split_off(map, i, &tc, &qc);
2524 if (ok < 0)
2525 goto error;
2526 if (!ok)
2527 continue;
2529 app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
2531 for (j = 0; j < map->n; ++j) {
2532 if (j == i)
2533 continue;
2534 app = isl_map_add_basic_map(app,
2535 isl_basic_map_copy(map->p[j]));
2538 app = isl_map_apply_range(isl_map_copy(qc), app);
2539 app = isl_map_apply_range(app, qc);
2541 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2542 exact_i = check_exactness_omega(map, app);
2543 if (exact_i == 1) {
2544 if (exact)
2545 *exact = exact_i;
2546 isl_map_free(map);
2547 return app;
2549 isl_map_free(app);
2550 if (exact_i < 0)
2551 goto error;
2554 return box_closure_with_check(map, exact);
2555 error:
2556 isl_map_free(map);
2557 return NULL;
2560 /* Compute the transitive closure of "map", or an overapproximation.
2561 * If the result is exact, then *exact is set to 1.
2562 * Simply use map_power to compute the powers of map, but tell
2563 * it to project out the lengths of the paths instead of equating
2564 * the length to a parameter.
2566 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2567 int *exact)
2569 isl_space *target_dim;
2570 int closed;
2572 if (!map)
2573 goto error;
2575 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2576 return transitive_closure_omega(map, exact);
2578 map = isl_map_compute_divs(map);
2579 map = isl_map_coalesce(map);
2580 closed = isl_map_is_transitively_closed(map);
2581 if (closed < 0)
2582 goto error;
2583 if (closed) {
2584 if (exact)
2585 *exact = 1;
2586 return map;
2589 target_dim = isl_map_get_space(map);
2590 map = map_power(map, exact, 1);
2591 map = isl_map_reset_space(map, target_dim);
2593 return map;
2594 error:
2595 isl_map_free(map);
2596 return NULL;
2599 static int inc_count(__isl_take isl_map *map, void *user)
2601 int *n = user;
2603 *n += map->n;
2605 isl_map_free(map);
2607 return 0;
2610 static int collect_basic_map(__isl_take isl_map *map, void *user)
2612 int i;
2613 isl_basic_map ***next = user;
2615 for (i = 0; i < map->n; ++i) {
2616 **next = isl_basic_map_copy(map->p[i]);
2617 if (!**next)
2618 goto error;
2619 (*next)++;
2622 isl_map_free(map);
2623 return 0;
2624 error:
2625 isl_map_free(map);
2626 return -1;
2629 /* Perform Floyd-Warshall on the given list of basic relations.
2630 * The basic relations may live in different dimensions,
2631 * but basic relations that get assigned to the diagonal of the
2632 * grid have domains and ranges of the same dimension and so
2633 * the standard algorithm can be used because the nested transitive
2634 * closures are only applied to diagonal elements and because all
2635 * compositions are peformed on relations with compatible domains and ranges.
2637 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2638 __isl_keep isl_basic_map **list, int n, int *exact)
2640 int i, j, k;
2641 int n_group;
2642 int *group = NULL;
2643 isl_set **set = NULL;
2644 isl_map ***grid = NULL;
2645 isl_union_map *app;
2647 group = setup_groups(ctx, list, n, &set, &n_group);
2648 if (!group)
2649 goto error;
2651 grid = isl_calloc_array(ctx, isl_map **, n_group);
2652 if (!grid)
2653 goto error;
2654 for (i = 0; i < n_group; ++i) {
2655 grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
2656 if (!grid[i])
2657 goto error;
2658 for (j = 0; j < n_group; ++j) {
2659 isl_space *dim1, *dim2, *dim;
2660 dim1 = isl_space_reverse(isl_set_get_space(set[i]));
2661 dim2 = isl_set_get_space(set[j]);
2662 dim = isl_space_join(dim1, dim2);
2663 grid[i][j] = isl_map_empty(dim);
2667 for (k = 0; k < n; ++k) {
2668 i = group[2 * k];
2669 j = group[2 * k + 1];
2670 grid[i][j] = isl_map_union(grid[i][j],
2671 isl_map_from_basic_map(
2672 isl_basic_map_copy(list[k])));
2675 floyd_warshall_iterate(grid, n_group, exact);
2677 app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
2679 for (i = 0; i < n_group; ++i) {
2680 for (j = 0; j < n_group; ++j)
2681 app = isl_union_map_add_map(app, grid[i][j]);
2682 free(grid[i]);
2684 free(grid);
2686 for (i = 0; i < 2 * n; ++i)
2687 isl_set_free(set[i]);
2688 free(set);
2690 free(group);
2691 return app;
2692 error:
2693 if (grid)
2694 for (i = 0; i < n_group; ++i) {
2695 if (!grid[i])
2696 continue;
2697 for (j = 0; j < n_group; ++j)
2698 isl_map_free(grid[i][j]);
2699 free(grid[i]);
2701 free(grid);
2702 if (set) {
2703 for (i = 0; i < 2 * n; ++i)
2704 isl_set_free(set[i]);
2705 free(set);
2707 free(group);
2708 return NULL;
2711 /* Perform Floyd-Warshall on the given union relation.
2712 * The implementation is very similar to that for non-unions.
2713 * The main difference is that it is applied unconditionally.
2714 * We first extract a list of basic maps from the union map
2715 * and then perform the algorithm on this list.
2717 static __isl_give isl_union_map *union_floyd_warshall(
2718 __isl_take isl_union_map *umap, int *exact)
2720 int i, n;
2721 isl_ctx *ctx;
2722 isl_basic_map **list = NULL;
2723 isl_basic_map **next;
2724 isl_union_map *res;
2726 n = 0;
2727 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2728 goto error;
2730 ctx = isl_union_map_get_ctx(umap);
2731 list = isl_calloc_array(ctx, isl_basic_map *, n);
2732 if (!list)
2733 goto error;
2735 next = list;
2736 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2737 goto error;
2739 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2741 if (list) {
2742 for (i = 0; i < n; ++i)
2743 isl_basic_map_free(list[i]);
2744 free(list);
2747 isl_union_map_free(umap);
2748 return res;
2749 error:
2750 if (list) {
2751 for (i = 0; i < n; ++i)
2752 isl_basic_map_free(list[i]);
2753 free(list);
2755 isl_union_map_free(umap);
2756 return NULL;
2759 /* Decompose the give union relation into strongly connected components.
2760 * The implementation is essentially the same as that of
2761 * construct_power_components with the major difference that all
2762 * operations are performed on union maps.
2764 static __isl_give isl_union_map *union_components(
2765 __isl_take isl_union_map *umap, int *exact)
2767 int i;
2768 int n;
2769 isl_ctx *ctx;
2770 isl_basic_map **list = NULL;
2771 isl_basic_map **next;
2772 isl_union_map *path = NULL;
2773 struct isl_tc_follows_data data;
2774 struct isl_tarjan_graph *g = NULL;
2775 int c, l;
2776 int recheck = 0;
2778 n = 0;
2779 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2780 goto error;
2782 if (n == 0)
2783 return umap;
2784 if (n <= 1)
2785 return union_floyd_warshall(umap, exact);
2787 ctx = isl_union_map_get_ctx(umap);
2788 list = isl_calloc_array(ctx, isl_basic_map *, n);
2789 if (!list)
2790 goto error;
2792 next = list;
2793 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2794 goto error;
2796 data.list = list;
2797 data.check_closed = 0;
2798 g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data);
2799 if (!g)
2800 goto error;
2802 c = 0;
2803 i = 0;
2804 l = n;
2805 path = isl_union_map_empty(isl_union_map_get_space(umap));
2806 while (l) {
2807 isl_union_map *comp;
2808 isl_union_map *path_comp, *path_comb;
2809 comp = isl_union_map_empty(isl_union_map_get_space(umap));
2810 while (g->order[i] != -1) {
2811 comp = isl_union_map_add_map(comp,
2812 isl_map_from_basic_map(
2813 isl_basic_map_copy(list[g->order[i]])));
2814 --l;
2815 ++i;
2817 path_comp = union_floyd_warshall(comp, exact);
2818 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2819 isl_union_map_copy(path_comp));
2820 path = isl_union_map_union(path, path_comp);
2821 path = isl_union_map_union(path, path_comb);
2822 ++i;
2823 ++c;
2826 if (c > 1 && data.check_closed && !*exact) {
2827 int closed;
2829 closed = isl_union_map_is_transitively_closed(path);
2830 if (closed < 0)
2831 goto error;
2832 recheck = !closed;
2835 isl_tarjan_graph_free(g);
2837 for (i = 0; i < n; ++i)
2838 isl_basic_map_free(list[i]);
2839 free(list);
2841 if (recheck) {
2842 isl_union_map_free(path);
2843 return union_floyd_warshall(umap, exact);
2846 isl_union_map_free(umap);
2848 return path;
2849 error:
2850 isl_tarjan_graph_free(g);
2851 if (list) {
2852 for (i = 0; i < n; ++i)
2853 isl_basic_map_free(list[i]);
2854 free(list);
2856 isl_union_map_free(umap);
2857 isl_union_map_free(path);
2858 return NULL;
2861 /* Compute the transitive closure of "umap", or an overapproximation.
2862 * If the result is exact, then *exact is set to 1.
2864 __isl_give isl_union_map *isl_union_map_transitive_closure(
2865 __isl_take isl_union_map *umap, int *exact)
2867 int closed;
2869 if (!umap)
2870 return NULL;
2872 if (exact)
2873 *exact = 1;
2875 umap = isl_union_map_compute_divs(umap);
2876 umap = isl_union_map_coalesce(umap);
2877 closed = isl_union_map_is_transitively_closed(umap);
2878 if (closed < 0)
2879 goto error;
2880 if (closed)
2881 return umap;
2882 umap = union_components(umap, exact);
2883 return umap;
2884 error:
2885 isl_union_map_free(umap);
2886 return NULL;
2889 struct isl_union_power {
2890 isl_union_map *pow;
2891 int *exact;
2894 static int power(__isl_take isl_map *map, void *user)
2896 struct isl_union_power *up = user;
2898 map = isl_map_power(map, up->exact);
2899 up->pow = isl_union_map_from_map(map);
2901 return -1;
2904 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
2906 static __isl_give isl_union_map *increment(__isl_take isl_space *dim)
2908 int k;
2909 isl_basic_map *bmap;
2911 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2912 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2913 bmap = isl_basic_map_alloc_space(dim, 0, 1, 0);
2914 k = isl_basic_map_alloc_equality(bmap);
2915 if (k < 0)
2916 goto error;
2917 isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap));
2918 isl_int_set_si(bmap->eq[k][0], 1);
2919 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
2920 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
2921 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2922 error:
2923 isl_basic_map_free(bmap);
2924 return NULL;
2927 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2929 static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim)
2931 isl_basic_map *bmap;
2933 dim = isl_space_add_dims(dim, isl_dim_in, 1);
2934 dim = isl_space_add_dims(dim, isl_dim_out, 1);
2935 bmap = isl_basic_map_universe(dim);
2936 bmap = isl_basic_map_deltas_map(bmap);
2938 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2941 /* Compute the positive powers of "map", or an overapproximation.
2942 * The result maps the exponent to a nested copy of the corresponding power.
2943 * If the result is exact, then *exact is set to 1.
2945 __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
2946 int *exact)
2948 int n;
2949 isl_union_map *inc;
2950 isl_union_map *dm;
2952 if (!umap)
2953 return NULL;
2954 n = isl_union_map_n_map(umap);
2955 if (n == 0)
2956 return umap;
2957 if (n == 1) {
2958 struct isl_union_power up = { NULL, exact };
2959 isl_union_map_foreach_map(umap, &power, &up);
2960 isl_union_map_free(umap);
2961 return up.pow;
2963 inc = increment(isl_union_map_get_space(umap));
2964 umap = isl_union_map_product(inc, umap);
2965 umap = isl_union_map_transitive_closure(umap, exact);
2966 umap = isl_union_map_zip(umap);
2967 dm = deltas_map(isl_union_map_get_space(umap));
2968 umap = isl_union_map_apply_domain(umap, dm);
2970 return umap;
2973 #undef TYPE
2974 #define TYPE isl_map
2975 #include "isl_power_templ.c"
2977 #undef TYPE
2978 #define TYPE isl_union_map
2979 #include "isl_power_templ.c"