isl 0.11
[isl.git] / isl_tab.c
blob3fc0367ff4de20295753d26428f2ad632bfeb679
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_ctx_private.h>
11 #include <isl_mat_private.h>
12 #include "isl_map_private.h"
13 #include "isl_tab.h"
14 #include <isl/seq.h>
15 #include <isl_config.h>
18 * The implementation of tableaus in this file was inspired by Section 8
19 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
20 * prover for program checking".
23 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
24 unsigned n_row, unsigned n_var, unsigned M)
26 int i;
27 struct isl_tab *tab;
28 unsigned off = 2 + M;
30 tab = isl_calloc_type(ctx, struct isl_tab);
31 if (!tab)
32 return NULL;
33 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
34 if (!tab->mat)
35 goto error;
36 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
37 if (!tab->var)
38 goto error;
39 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
40 if (!tab->con)
41 goto error;
42 tab->col_var = isl_alloc_array(ctx, int, n_var);
43 if (!tab->col_var)
44 goto error;
45 tab->row_var = isl_alloc_array(ctx, int, n_row);
46 if (!tab->row_var)
47 goto error;
48 for (i = 0; i < n_var; ++i) {
49 tab->var[i].index = i;
50 tab->var[i].is_row = 0;
51 tab->var[i].is_nonneg = 0;
52 tab->var[i].is_zero = 0;
53 tab->var[i].is_redundant = 0;
54 tab->var[i].frozen = 0;
55 tab->var[i].negated = 0;
56 tab->col_var[i] = i;
58 tab->n_row = 0;
59 tab->n_con = 0;
60 tab->n_eq = 0;
61 tab->max_con = n_row;
62 tab->n_col = n_var;
63 tab->n_var = n_var;
64 tab->max_var = n_var;
65 tab->n_param = 0;
66 tab->n_div = 0;
67 tab->n_dead = 0;
68 tab->n_redundant = 0;
69 tab->strict_redundant = 0;
70 tab->need_undo = 0;
71 tab->rational = 0;
72 tab->empty = 0;
73 tab->in_undo = 0;
74 tab->M = M;
75 tab->cone = 0;
76 tab->bottom.type = isl_tab_undo_bottom;
77 tab->bottom.next = NULL;
78 tab->top = &tab->bottom;
80 tab->n_zero = 0;
81 tab->n_unbounded = 0;
82 tab->basis = NULL;
84 return tab;
85 error:
86 isl_tab_free(tab);
87 return NULL;
90 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
92 unsigned off;
94 if (!tab)
95 return -1;
97 off = 2 + tab->M;
99 if (tab->max_con < tab->n_con + n_new) {
100 struct isl_tab_var *con;
102 con = isl_realloc_array(tab->mat->ctx, tab->con,
103 struct isl_tab_var, tab->max_con + n_new);
104 if (!con)
105 return -1;
106 tab->con = con;
107 tab->max_con += n_new;
109 if (tab->mat->n_row < tab->n_row + n_new) {
110 int *row_var;
112 tab->mat = isl_mat_extend(tab->mat,
113 tab->n_row + n_new, off + tab->n_col);
114 if (!tab->mat)
115 return -1;
116 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
117 int, tab->mat->n_row);
118 if (!row_var)
119 return -1;
120 tab->row_var = row_var;
121 if (tab->row_sign) {
122 enum isl_tab_row_sign *s;
123 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
124 enum isl_tab_row_sign, tab->mat->n_row);
125 if (!s)
126 return -1;
127 tab->row_sign = s;
130 return 0;
133 /* Make room for at least n_new extra variables.
134 * Return -1 if anything went wrong.
136 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
138 struct isl_tab_var *var;
139 unsigned off = 2 + tab->M;
141 if (tab->max_var < tab->n_var + n_new) {
142 var = isl_realloc_array(tab->mat->ctx, tab->var,
143 struct isl_tab_var, tab->n_var + n_new);
144 if (!var)
145 return -1;
146 tab->var = var;
147 tab->max_var += n_new;
150 if (tab->mat->n_col < off + tab->n_col + n_new) {
151 int *p;
153 tab->mat = isl_mat_extend(tab->mat,
154 tab->mat->n_row, off + tab->n_col + n_new);
155 if (!tab->mat)
156 return -1;
157 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
158 int, tab->n_col + n_new);
159 if (!p)
160 return -1;
161 tab->col_var = p;
164 return 0;
167 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
169 if (isl_tab_extend_cons(tab, n_new) >= 0)
170 return tab;
172 isl_tab_free(tab);
173 return NULL;
176 static void free_undo_record(struct isl_tab_undo *undo)
178 switch (undo->type) {
179 case isl_tab_undo_saved_basis:
180 free(undo->u.col_var);
181 break;
182 default:;
184 free(undo);
187 static void free_undo(struct isl_tab *tab)
189 struct isl_tab_undo *undo, *next;
191 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
192 next = undo->next;
193 free_undo_record(undo);
195 tab->top = undo;
198 void isl_tab_free(struct isl_tab *tab)
200 if (!tab)
201 return;
202 free_undo(tab);
203 isl_mat_free(tab->mat);
204 isl_vec_free(tab->dual);
205 isl_basic_map_free(tab->bmap);
206 free(tab->var);
207 free(tab->con);
208 free(tab->row_var);
209 free(tab->col_var);
210 free(tab->row_sign);
211 isl_mat_free(tab->samples);
212 free(tab->sample_index);
213 isl_mat_free(tab->basis);
214 free(tab);
217 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
219 int i;
220 struct isl_tab *dup;
221 unsigned off;
223 if (!tab)
224 return NULL;
226 off = 2 + tab->M;
227 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
228 if (!dup)
229 return NULL;
230 dup->mat = isl_mat_dup(tab->mat);
231 if (!dup->mat)
232 goto error;
233 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
234 if (!dup->var)
235 goto error;
236 for (i = 0; i < tab->n_var; ++i)
237 dup->var[i] = tab->var[i];
238 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
239 if (!dup->con)
240 goto error;
241 for (i = 0; i < tab->n_con; ++i)
242 dup->con[i] = tab->con[i];
243 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
244 if (!dup->col_var)
245 goto error;
246 for (i = 0; i < tab->n_col; ++i)
247 dup->col_var[i] = tab->col_var[i];
248 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
249 if (!dup->row_var)
250 goto error;
251 for (i = 0; i < tab->n_row; ++i)
252 dup->row_var[i] = tab->row_var[i];
253 if (tab->row_sign) {
254 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
255 tab->mat->n_row);
256 if (!dup->row_sign)
257 goto error;
258 for (i = 0; i < tab->n_row; ++i)
259 dup->row_sign[i] = tab->row_sign[i];
261 if (tab->samples) {
262 dup->samples = isl_mat_dup(tab->samples);
263 if (!dup->samples)
264 goto error;
265 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
266 tab->samples->n_row);
267 if (!dup->sample_index)
268 goto error;
269 dup->n_sample = tab->n_sample;
270 dup->n_outside = tab->n_outside;
272 dup->n_row = tab->n_row;
273 dup->n_con = tab->n_con;
274 dup->n_eq = tab->n_eq;
275 dup->max_con = tab->max_con;
276 dup->n_col = tab->n_col;
277 dup->n_var = tab->n_var;
278 dup->max_var = tab->max_var;
279 dup->n_param = tab->n_param;
280 dup->n_div = tab->n_div;
281 dup->n_dead = tab->n_dead;
282 dup->n_redundant = tab->n_redundant;
283 dup->rational = tab->rational;
284 dup->empty = tab->empty;
285 dup->strict_redundant = 0;
286 dup->need_undo = 0;
287 dup->in_undo = 0;
288 dup->M = tab->M;
289 tab->cone = tab->cone;
290 dup->bottom.type = isl_tab_undo_bottom;
291 dup->bottom.next = NULL;
292 dup->top = &dup->bottom;
294 dup->n_zero = tab->n_zero;
295 dup->n_unbounded = tab->n_unbounded;
296 dup->basis = isl_mat_dup(tab->basis);
298 return dup;
299 error:
300 isl_tab_free(dup);
301 return NULL;
304 /* Construct the coefficient matrix of the product tableau
305 * of two tableaus.
306 * mat{1,2} is the coefficient matrix of tableau {1,2}
307 * row{1,2} is the number of rows in tableau {1,2}
308 * col{1,2} is the number of columns in tableau {1,2}
309 * off is the offset to the coefficient column (skipping the
310 * denominator, the constant term and the big parameter if any)
311 * r{1,2} is the number of redundant rows in tableau {1,2}
312 * d{1,2} is the number of dead columns in tableau {1,2}
314 * The order of the rows and columns in the result is as explained
315 * in isl_tab_product.
317 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
318 struct isl_mat *mat2, unsigned row1, unsigned row2,
319 unsigned col1, unsigned col2,
320 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
322 int i;
323 struct isl_mat *prod;
324 unsigned n;
326 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
327 off + col1 + col2);
328 if (!prod)
329 return NULL;
331 n = 0;
332 for (i = 0; i < r1; ++i) {
333 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
334 isl_seq_clr(prod->row[n + i] + off + d1, d2);
335 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
336 mat1->row[i] + off + d1, col1 - d1);
337 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
340 n += r1;
341 for (i = 0; i < r2; ++i) {
342 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
343 isl_seq_clr(prod->row[n + i] + off, d1);
344 isl_seq_cpy(prod->row[n + i] + off + d1,
345 mat2->row[i] + off, d2);
346 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
347 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
348 mat2->row[i] + off + d2, col2 - d2);
351 n += r2;
352 for (i = 0; i < row1 - r1; ++i) {
353 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
354 isl_seq_clr(prod->row[n + i] + off + d1, d2);
355 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
356 mat1->row[r1 + i] + off + d1, col1 - d1);
357 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
360 n += row1 - r1;
361 for (i = 0; i < row2 - r2; ++i) {
362 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
363 isl_seq_clr(prod->row[n + i] + off, d1);
364 isl_seq_cpy(prod->row[n + i] + off + d1,
365 mat2->row[r2 + i] + off, d2);
366 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
367 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
368 mat2->row[r2 + i] + off + d2, col2 - d2);
371 return prod;
374 /* Update the row or column index of a variable that corresponds
375 * to a variable in the first input tableau.
377 static void update_index1(struct isl_tab_var *var,
378 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
380 if (var->index == -1)
381 return;
382 if (var->is_row && var->index >= r1)
383 var->index += r2;
384 if (!var->is_row && var->index >= d1)
385 var->index += d2;
388 /* Update the row or column index of a variable that corresponds
389 * to a variable in the second input tableau.
391 static void update_index2(struct isl_tab_var *var,
392 unsigned row1, unsigned col1,
393 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
395 if (var->index == -1)
396 return;
397 if (var->is_row) {
398 if (var->index < r2)
399 var->index += r1;
400 else
401 var->index += row1;
402 } else {
403 if (var->index < d2)
404 var->index += d1;
405 else
406 var->index += col1;
410 /* Create a tableau that represents the Cartesian product of the sets
411 * represented by tableaus tab1 and tab2.
412 * The order of the rows in the product is
413 * - redundant rows of tab1
414 * - redundant rows of tab2
415 * - non-redundant rows of tab1
416 * - non-redundant rows of tab2
417 * The order of the columns is
418 * - denominator
419 * - constant term
420 * - coefficient of big parameter, if any
421 * - dead columns of tab1
422 * - dead columns of tab2
423 * - live columns of tab1
424 * - live columns of tab2
425 * The order of the variables and the constraints is a concatenation
426 * of order in the two input tableaus.
428 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
430 int i;
431 struct isl_tab *prod;
432 unsigned off;
433 unsigned r1, r2, d1, d2;
435 if (!tab1 || !tab2)
436 return NULL;
438 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
439 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
440 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
441 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
442 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
443 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
444 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
445 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
446 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
448 off = 2 + tab1->M;
449 r1 = tab1->n_redundant;
450 r2 = tab2->n_redundant;
451 d1 = tab1->n_dead;
452 d2 = tab2->n_dead;
453 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
454 if (!prod)
455 return NULL;
456 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
457 tab1->n_row, tab2->n_row,
458 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
459 if (!prod->mat)
460 goto error;
461 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
462 tab1->max_var + tab2->max_var);
463 if (!prod->var)
464 goto error;
465 for (i = 0; i < tab1->n_var; ++i) {
466 prod->var[i] = tab1->var[i];
467 update_index1(&prod->var[i], r1, r2, d1, d2);
469 for (i = 0; i < tab2->n_var; ++i) {
470 prod->var[tab1->n_var + i] = tab2->var[i];
471 update_index2(&prod->var[tab1->n_var + i],
472 tab1->n_row, tab1->n_col,
473 r1, r2, d1, d2);
475 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
476 tab1->max_con + tab2->max_con);
477 if (!prod->con)
478 goto error;
479 for (i = 0; i < tab1->n_con; ++i) {
480 prod->con[i] = tab1->con[i];
481 update_index1(&prod->con[i], r1, r2, d1, d2);
483 for (i = 0; i < tab2->n_con; ++i) {
484 prod->con[tab1->n_con + i] = tab2->con[i];
485 update_index2(&prod->con[tab1->n_con + i],
486 tab1->n_row, tab1->n_col,
487 r1, r2, d1, d2);
489 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
490 tab1->n_col + tab2->n_col);
491 if (!prod->col_var)
492 goto error;
493 for (i = 0; i < tab1->n_col; ++i) {
494 int pos = i < d1 ? i : i + d2;
495 prod->col_var[pos] = tab1->col_var[i];
497 for (i = 0; i < tab2->n_col; ++i) {
498 int pos = i < d2 ? d1 + i : tab1->n_col + i;
499 int t = tab2->col_var[i];
500 if (t >= 0)
501 t += tab1->n_var;
502 else
503 t -= tab1->n_con;
504 prod->col_var[pos] = t;
506 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
507 tab1->mat->n_row + tab2->mat->n_row);
508 if (!prod->row_var)
509 goto error;
510 for (i = 0; i < tab1->n_row; ++i) {
511 int pos = i < r1 ? i : i + r2;
512 prod->row_var[pos] = tab1->row_var[i];
514 for (i = 0; i < tab2->n_row; ++i) {
515 int pos = i < r2 ? r1 + i : tab1->n_row + i;
516 int t = tab2->row_var[i];
517 if (t >= 0)
518 t += tab1->n_var;
519 else
520 t -= tab1->n_con;
521 prod->row_var[pos] = t;
523 prod->samples = NULL;
524 prod->sample_index = NULL;
525 prod->n_row = tab1->n_row + tab2->n_row;
526 prod->n_con = tab1->n_con + tab2->n_con;
527 prod->n_eq = 0;
528 prod->max_con = tab1->max_con + tab2->max_con;
529 prod->n_col = tab1->n_col + tab2->n_col;
530 prod->n_var = tab1->n_var + tab2->n_var;
531 prod->max_var = tab1->max_var + tab2->max_var;
532 prod->n_param = 0;
533 prod->n_div = 0;
534 prod->n_dead = tab1->n_dead + tab2->n_dead;
535 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
536 prod->rational = tab1->rational;
537 prod->empty = tab1->empty || tab2->empty;
538 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
539 prod->need_undo = 0;
540 prod->in_undo = 0;
541 prod->M = tab1->M;
542 prod->cone = tab1->cone;
543 prod->bottom.type = isl_tab_undo_bottom;
544 prod->bottom.next = NULL;
545 prod->top = &prod->bottom;
547 prod->n_zero = 0;
548 prod->n_unbounded = 0;
549 prod->basis = NULL;
551 return prod;
552 error:
553 isl_tab_free(prod);
554 return NULL;
557 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
559 if (i >= 0)
560 return &tab->var[i];
561 else
562 return &tab->con[~i];
565 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
567 return var_from_index(tab, tab->row_var[i]);
570 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
572 return var_from_index(tab, tab->col_var[i]);
575 /* Check if there are any upper bounds on column variable "var",
576 * i.e., non-negative rows where var appears with a negative coefficient.
577 * Return 1 if there are no such bounds.
579 static int max_is_manifestly_unbounded(struct isl_tab *tab,
580 struct isl_tab_var *var)
582 int i;
583 unsigned off = 2 + tab->M;
585 if (var->is_row)
586 return 0;
587 for (i = tab->n_redundant; i < tab->n_row; ++i) {
588 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
589 continue;
590 if (isl_tab_var_from_row(tab, i)->is_nonneg)
591 return 0;
593 return 1;
596 /* Check if there are any lower bounds on column variable "var",
597 * i.e., non-negative rows where var appears with a positive coefficient.
598 * Return 1 if there are no such bounds.
600 static int min_is_manifestly_unbounded(struct isl_tab *tab,
601 struct isl_tab_var *var)
603 int i;
604 unsigned off = 2 + tab->M;
606 if (var->is_row)
607 return 0;
608 for (i = tab->n_redundant; i < tab->n_row; ++i) {
609 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
610 continue;
611 if (isl_tab_var_from_row(tab, i)->is_nonneg)
612 return 0;
614 return 1;
617 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
619 unsigned off = 2 + tab->M;
621 if (tab->M) {
622 int s;
623 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
624 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
625 s = isl_int_sgn(t);
626 if (s)
627 return s;
629 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
630 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
631 return isl_int_sgn(t);
634 /* Given the index of a column "c", return the index of a row
635 * that can be used to pivot the column in, with either an increase
636 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
637 * If "var" is not NULL, then the row returned will be different from
638 * the one associated with "var".
640 * Each row in the tableau is of the form
642 * x_r = a_r0 + \sum_i a_ri x_i
644 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
645 * impose any limit on the increase or decrease in the value of x_c
646 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
647 * for the row with the smallest (most stringent) such bound.
648 * Note that the common denominator of each row drops out of the fraction.
649 * To check if row j has a smaller bound than row r, i.e.,
650 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
651 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
652 * where -sign(a_jc) is equal to "sgn".
654 static int pivot_row(struct isl_tab *tab,
655 struct isl_tab_var *var, int sgn, int c)
657 int j, r, tsgn;
658 isl_int t;
659 unsigned off = 2 + tab->M;
661 isl_int_init(t);
662 r = -1;
663 for (j = tab->n_redundant; j < tab->n_row; ++j) {
664 if (var && j == var->index)
665 continue;
666 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
667 continue;
668 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
669 continue;
670 if (r < 0) {
671 r = j;
672 continue;
674 tsgn = sgn * row_cmp(tab, r, j, c, t);
675 if (tsgn < 0 || (tsgn == 0 &&
676 tab->row_var[j] < tab->row_var[r]))
677 r = j;
679 isl_int_clear(t);
680 return r;
683 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
684 * (sgn < 0) the value of row variable var.
685 * If not NULL, then skip_var is a row variable that should be ignored
686 * while looking for a pivot row. It is usually equal to var.
688 * As the given row in the tableau is of the form
690 * x_r = a_r0 + \sum_i a_ri x_i
692 * we need to find a column such that the sign of a_ri is equal to "sgn"
693 * (such that an increase in x_i will have the desired effect) or a
694 * column with a variable that may attain negative values.
695 * If a_ri is positive, then we need to move x_i in the same direction
696 * to obtain the desired effect. Otherwise, x_i has to move in the
697 * opposite direction.
699 static void find_pivot(struct isl_tab *tab,
700 struct isl_tab_var *var, struct isl_tab_var *skip_var,
701 int sgn, int *row, int *col)
703 int j, r, c;
704 isl_int *tr;
706 *row = *col = -1;
708 isl_assert(tab->mat->ctx, var->is_row, return);
709 tr = tab->mat->row[var->index] + 2 + tab->M;
711 c = -1;
712 for (j = tab->n_dead; j < tab->n_col; ++j) {
713 if (isl_int_is_zero(tr[j]))
714 continue;
715 if (isl_int_sgn(tr[j]) != sgn &&
716 var_from_col(tab, j)->is_nonneg)
717 continue;
718 if (c < 0 || tab->col_var[j] < tab->col_var[c])
719 c = j;
721 if (c < 0)
722 return;
724 sgn *= isl_int_sgn(tr[c]);
725 r = pivot_row(tab, skip_var, sgn, c);
726 *row = r < 0 ? var->index : r;
727 *col = c;
730 /* Return 1 if row "row" represents an obviously redundant inequality.
731 * This means
732 * - it represents an inequality or a variable
733 * - that is the sum of a non-negative sample value and a positive
734 * combination of zero or more non-negative constraints.
736 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
738 int i;
739 unsigned off = 2 + tab->M;
741 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
742 return 0;
744 if (isl_int_is_neg(tab->mat->row[row][1]))
745 return 0;
746 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
747 return 0;
748 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
749 return 0;
751 for (i = tab->n_dead; i < tab->n_col; ++i) {
752 if (isl_int_is_zero(tab->mat->row[row][off + i]))
753 continue;
754 if (tab->col_var[i] >= 0)
755 return 0;
756 if (isl_int_is_neg(tab->mat->row[row][off + i]))
757 return 0;
758 if (!var_from_col(tab, i)->is_nonneg)
759 return 0;
761 return 1;
764 static void swap_rows(struct isl_tab *tab, int row1, int row2)
766 int t;
767 enum isl_tab_row_sign s;
769 t = tab->row_var[row1];
770 tab->row_var[row1] = tab->row_var[row2];
771 tab->row_var[row2] = t;
772 isl_tab_var_from_row(tab, row1)->index = row1;
773 isl_tab_var_from_row(tab, row2)->index = row2;
774 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
776 if (!tab->row_sign)
777 return;
778 s = tab->row_sign[row1];
779 tab->row_sign[row1] = tab->row_sign[row2];
780 tab->row_sign[row2] = s;
783 static int push_union(struct isl_tab *tab,
784 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
785 static int push_union(struct isl_tab *tab,
786 enum isl_tab_undo_type type, union isl_tab_undo_val u)
788 struct isl_tab_undo *undo;
790 if (!tab)
791 return -1;
792 if (!tab->need_undo)
793 return 0;
795 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
796 if (!undo)
797 return -1;
798 undo->type = type;
799 undo->u = u;
800 undo->next = tab->top;
801 tab->top = undo;
803 return 0;
806 int isl_tab_push_var(struct isl_tab *tab,
807 enum isl_tab_undo_type type, struct isl_tab_var *var)
809 union isl_tab_undo_val u;
810 if (var->is_row)
811 u.var_index = tab->row_var[var->index];
812 else
813 u.var_index = tab->col_var[var->index];
814 return push_union(tab, type, u);
817 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
819 union isl_tab_undo_val u = { 0 };
820 return push_union(tab, type, u);
823 /* Push a record on the undo stack describing the current basic
824 * variables, so that the this state can be restored during rollback.
826 int isl_tab_push_basis(struct isl_tab *tab)
828 int i;
829 union isl_tab_undo_val u;
831 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
832 if (!u.col_var)
833 return -1;
834 for (i = 0; i < tab->n_col; ++i)
835 u.col_var[i] = tab->col_var[i];
836 return push_union(tab, isl_tab_undo_saved_basis, u);
839 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
841 union isl_tab_undo_val u;
842 u.callback = callback;
843 return push_union(tab, isl_tab_undo_callback, u);
846 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
848 if (!tab)
849 return NULL;
851 tab->n_sample = 0;
852 tab->n_outside = 0;
853 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
854 if (!tab->samples)
855 goto error;
856 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
857 if (!tab->sample_index)
858 goto error;
859 return tab;
860 error:
861 isl_tab_free(tab);
862 return NULL;
865 struct isl_tab *isl_tab_add_sample(struct isl_tab *tab,
866 __isl_take isl_vec *sample)
868 if (!tab || !sample)
869 goto error;
871 if (tab->n_sample + 1 > tab->samples->n_row) {
872 int *t = isl_realloc_array(tab->mat->ctx,
873 tab->sample_index, int, tab->n_sample + 1);
874 if (!t)
875 goto error;
876 tab->sample_index = t;
879 tab->samples = isl_mat_extend(tab->samples,
880 tab->n_sample + 1, tab->samples->n_col);
881 if (!tab->samples)
882 goto error;
884 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
885 isl_vec_free(sample);
886 tab->sample_index[tab->n_sample] = tab->n_sample;
887 tab->n_sample++;
889 return tab;
890 error:
891 isl_vec_free(sample);
892 isl_tab_free(tab);
893 return NULL;
896 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
898 if (s != tab->n_outside) {
899 int t = tab->sample_index[tab->n_outside];
900 tab->sample_index[tab->n_outside] = tab->sample_index[s];
901 tab->sample_index[s] = t;
902 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
904 tab->n_outside++;
905 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
906 isl_tab_free(tab);
907 return NULL;
910 return tab;
913 /* Record the current number of samples so that we can remove newer
914 * samples during a rollback.
916 int isl_tab_save_samples(struct isl_tab *tab)
918 union isl_tab_undo_val u;
920 if (!tab)
921 return -1;
923 u.n = tab->n_sample;
924 return push_union(tab, isl_tab_undo_saved_samples, u);
927 /* Mark row with index "row" as being redundant.
928 * If we may need to undo the operation or if the row represents
929 * a variable of the original problem, the row is kept,
930 * but no longer considered when looking for a pivot row.
931 * Otherwise, the row is simply removed.
933 * The row may be interchanged with some other row. If it
934 * is interchanged with a later row, return 1. Otherwise return 0.
935 * If the rows are checked in order in the calling function,
936 * then a return value of 1 means that the row with the given
937 * row number may now contain a different row that hasn't been checked yet.
939 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
941 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
942 var->is_redundant = 1;
943 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
944 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
945 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
946 var->is_nonneg = 1;
947 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
948 return -1;
950 if (row != tab->n_redundant)
951 swap_rows(tab, row, tab->n_redundant);
952 tab->n_redundant++;
953 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
954 } else {
955 if (row != tab->n_row - 1)
956 swap_rows(tab, row, tab->n_row - 1);
957 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
958 tab->n_row--;
959 return 1;
963 int isl_tab_mark_empty(struct isl_tab *tab)
965 if (!tab)
966 return -1;
967 if (!tab->empty && tab->need_undo)
968 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
969 return -1;
970 tab->empty = 1;
971 return 0;
974 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
976 struct isl_tab_var *var;
978 if (!tab)
979 return -1;
981 var = &tab->con[con];
982 if (var->frozen)
983 return 0;
984 if (var->index < 0)
985 return 0;
986 var->frozen = 1;
988 if (tab->need_undo)
989 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
991 return 0;
994 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
995 * the original sign of the pivot element.
996 * We only keep track of row signs during PILP solving and in this case
997 * we only pivot a row with negative sign (meaning the value is always
998 * non-positive) using a positive pivot element.
1000 * For each row j, the new value of the parametric constant is equal to
1002 * a_j0 - a_jc a_r0/a_rc
1004 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1005 * a_r0 is the parametric constant of the pivot row and a_jc is the
1006 * pivot column entry of the row j.
1007 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1008 * remains the same if a_jc has the same sign as the row j or if
1009 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1011 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1013 int i;
1014 struct isl_mat *mat = tab->mat;
1015 unsigned off = 2 + tab->M;
1017 if (!tab->row_sign)
1018 return;
1020 if (tab->row_sign[row] == 0)
1021 return;
1022 isl_assert(mat->ctx, row_sgn > 0, return);
1023 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1024 tab->row_sign[row] = isl_tab_row_pos;
1025 for (i = 0; i < tab->n_row; ++i) {
1026 int s;
1027 if (i == row)
1028 continue;
1029 s = isl_int_sgn(mat->row[i][off + col]);
1030 if (!s)
1031 continue;
1032 if (!tab->row_sign[i])
1033 continue;
1034 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1035 continue;
1036 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1037 continue;
1038 tab->row_sign[i] = isl_tab_row_unknown;
1042 /* Given a row number "row" and a column number "col", pivot the tableau
1043 * such that the associated variables are interchanged.
1044 * The given row in the tableau expresses
1046 * x_r = a_r0 + \sum_i a_ri x_i
1048 * or
1050 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1052 * Substituting this equality into the other rows
1054 * x_j = a_j0 + \sum_i a_ji x_i
1056 * with a_jc \ne 0, we obtain
1058 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1060 * The tableau
1062 * n_rc/d_r n_ri/d_r
1063 * n_jc/d_j n_ji/d_j
1065 * where i is any other column and j is any other row,
1066 * is therefore transformed into
1068 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1069 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1071 * The transformation is performed along the following steps
1073 * d_r/n_rc n_ri/n_rc
1074 * n_jc/d_j n_ji/d_j
1076 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1077 * n_jc/d_j n_ji/d_j
1079 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1080 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1082 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1083 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1085 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1086 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1088 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1089 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1092 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1094 int i, j;
1095 int sgn;
1096 int t;
1097 struct isl_mat *mat = tab->mat;
1098 struct isl_tab_var *var;
1099 unsigned off = 2 + tab->M;
1101 if (tab->mat->ctx->abort) {
1102 isl_ctx_set_error(tab->mat->ctx, isl_error_abort);
1103 return -1;
1106 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1107 sgn = isl_int_sgn(mat->row[row][0]);
1108 if (sgn < 0) {
1109 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1110 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1111 } else
1112 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1113 if (j == off - 1 + col)
1114 continue;
1115 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1117 if (!isl_int_is_one(mat->row[row][0]))
1118 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1119 for (i = 0; i < tab->n_row; ++i) {
1120 if (i == row)
1121 continue;
1122 if (isl_int_is_zero(mat->row[i][off + col]))
1123 continue;
1124 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1125 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1126 if (j == off - 1 + col)
1127 continue;
1128 isl_int_mul(mat->row[i][1 + j],
1129 mat->row[i][1 + j], mat->row[row][0]);
1130 isl_int_addmul(mat->row[i][1 + j],
1131 mat->row[i][off + col], mat->row[row][1 + j]);
1133 isl_int_mul(mat->row[i][off + col],
1134 mat->row[i][off + col], mat->row[row][off + col]);
1135 if (!isl_int_is_one(mat->row[i][0]))
1136 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1138 t = tab->row_var[row];
1139 tab->row_var[row] = tab->col_var[col];
1140 tab->col_var[col] = t;
1141 var = isl_tab_var_from_row(tab, row);
1142 var->is_row = 1;
1143 var->index = row;
1144 var = var_from_col(tab, col);
1145 var->is_row = 0;
1146 var->index = col;
1147 update_row_sign(tab, row, col, sgn);
1148 if (tab->in_undo)
1149 return 0;
1150 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1151 if (isl_int_is_zero(mat->row[i][off + col]))
1152 continue;
1153 if (!isl_tab_var_from_row(tab, i)->frozen &&
1154 isl_tab_row_is_redundant(tab, i)) {
1155 int redo = isl_tab_mark_redundant(tab, i);
1156 if (redo < 0)
1157 return -1;
1158 if (redo)
1159 --i;
1162 return 0;
1165 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1166 * or down (sgn < 0) to a row. The variable is assumed not to be
1167 * unbounded in the specified direction.
1168 * If sgn = 0, then the variable is unbounded in both directions,
1169 * and we pivot with any row we can find.
1171 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1172 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1174 int r;
1175 unsigned off = 2 + tab->M;
1177 if (var->is_row)
1178 return 0;
1180 if (sign == 0) {
1181 for (r = tab->n_redundant; r < tab->n_row; ++r)
1182 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1183 break;
1184 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1185 } else {
1186 r = pivot_row(tab, NULL, sign, var->index);
1187 isl_assert(tab->mat->ctx, r >= 0, return -1);
1190 return isl_tab_pivot(tab, r, var->index);
1193 /* Check whether all variables that are marked as non-negative
1194 * also have a non-negative sample value. This function is not
1195 * called from the current code but is useful during debugging.
1197 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
1198 static void check_table(struct isl_tab *tab)
1200 int i;
1202 if (tab->empty)
1203 return;
1204 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1205 struct isl_tab_var *var;
1206 var = isl_tab_var_from_row(tab, i);
1207 if (!var->is_nonneg)
1208 continue;
1209 if (tab->M) {
1210 isl_assert(tab->mat->ctx,
1211 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1212 if (isl_int_is_pos(tab->mat->row[i][2]))
1213 continue;
1215 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1216 abort());
1220 /* Return the sign of the maximal value of "var".
1221 * If the sign is not negative, then on return from this function,
1222 * the sample value will also be non-negative.
1224 * If "var" is manifestly unbounded wrt positive values, we are done.
1225 * Otherwise, we pivot the variable up to a row if needed
1226 * Then we continue pivoting down until either
1227 * - no more down pivots can be performed
1228 * - the sample value is positive
1229 * - the variable is pivoted into a manifestly unbounded column
1231 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1233 int row, col;
1235 if (max_is_manifestly_unbounded(tab, var))
1236 return 1;
1237 if (to_row(tab, var, 1) < 0)
1238 return -2;
1239 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1240 find_pivot(tab, var, var, 1, &row, &col);
1241 if (row == -1)
1242 return isl_int_sgn(tab->mat->row[var->index][1]);
1243 if (isl_tab_pivot(tab, row, col) < 0)
1244 return -2;
1245 if (!var->is_row) /* manifestly unbounded */
1246 return 1;
1248 return 1;
1251 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1253 struct isl_tab_var *var;
1255 if (!tab)
1256 return -2;
1258 var = &tab->con[con];
1259 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1260 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1262 return sign_of_max(tab, var);
1265 static int row_is_neg(struct isl_tab *tab, int row)
1267 if (!tab->M)
1268 return isl_int_is_neg(tab->mat->row[row][1]);
1269 if (isl_int_is_pos(tab->mat->row[row][2]))
1270 return 0;
1271 if (isl_int_is_neg(tab->mat->row[row][2]))
1272 return 1;
1273 return isl_int_is_neg(tab->mat->row[row][1]);
1276 static int row_sgn(struct isl_tab *tab, int row)
1278 if (!tab->M)
1279 return isl_int_sgn(tab->mat->row[row][1]);
1280 if (!isl_int_is_zero(tab->mat->row[row][2]))
1281 return isl_int_sgn(tab->mat->row[row][2]);
1282 else
1283 return isl_int_sgn(tab->mat->row[row][1]);
1286 /* Perform pivots until the row variable "var" has a non-negative
1287 * sample value or until no more upward pivots can be performed.
1288 * Return the sign of the sample value after the pivots have been
1289 * performed.
1291 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1293 int row, col;
1295 while (row_is_neg(tab, var->index)) {
1296 find_pivot(tab, var, var, 1, &row, &col);
1297 if (row == -1)
1298 break;
1299 if (isl_tab_pivot(tab, row, col) < 0)
1300 return -2;
1301 if (!var->is_row) /* manifestly unbounded */
1302 return 1;
1304 return row_sgn(tab, var->index);
1307 /* Perform pivots until we are sure that the row variable "var"
1308 * can attain non-negative values. After return from this
1309 * function, "var" is still a row variable, but its sample
1310 * value may not be non-negative, even if the function returns 1.
1312 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1314 int row, col;
1316 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1317 find_pivot(tab, var, var, 1, &row, &col);
1318 if (row == -1)
1319 break;
1320 if (row == var->index) /* manifestly unbounded */
1321 return 1;
1322 if (isl_tab_pivot(tab, row, col) < 0)
1323 return -1;
1325 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1328 /* Return a negative value if "var" can attain negative values.
1329 * Return a non-negative value otherwise.
1331 * If "var" is manifestly unbounded wrt negative values, we are done.
1332 * Otherwise, if var is in a column, we can pivot it down to a row.
1333 * Then we continue pivoting down until either
1334 * - the pivot would result in a manifestly unbounded column
1335 * => we don't perform the pivot, but simply return -1
1336 * - no more down pivots can be performed
1337 * - the sample value is negative
1338 * If the sample value becomes negative and the variable is supposed
1339 * to be nonnegative, then we undo the last pivot.
1340 * However, if the last pivot has made the pivoting variable
1341 * obviously redundant, then it may have moved to another row.
1342 * In that case we look for upward pivots until we reach a non-negative
1343 * value again.
1345 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1347 int row, col;
1348 struct isl_tab_var *pivot_var = NULL;
1350 if (min_is_manifestly_unbounded(tab, var))
1351 return -1;
1352 if (!var->is_row) {
1353 col = var->index;
1354 row = pivot_row(tab, NULL, -1, col);
1355 pivot_var = var_from_col(tab, col);
1356 if (isl_tab_pivot(tab, row, col) < 0)
1357 return -2;
1358 if (var->is_redundant)
1359 return 0;
1360 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1361 if (var->is_nonneg) {
1362 if (!pivot_var->is_redundant &&
1363 pivot_var->index == row) {
1364 if (isl_tab_pivot(tab, row, col) < 0)
1365 return -2;
1366 } else
1367 if (restore_row(tab, var) < -1)
1368 return -2;
1370 return -1;
1373 if (var->is_redundant)
1374 return 0;
1375 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1376 find_pivot(tab, var, var, -1, &row, &col);
1377 if (row == var->index)
1378 return -1;
1379 if (row == -1)
1380 return isl_int_sgn(tab->mat->row[var->index][1]);
1381 pivot_var = var_from_col(tab, col);
1382 if (isl_tab_pivot(tab, row, col) < 0)
1383 return -2;
1384 if (var->is_redundant)
1385 return 0;
1387 if (pivot_var && var->is_nonneg) {
1388 /* pivot back to non-negative value */
1389 if (!pivot_var->is_redundant && pivot_var->index == row) {
1390 if (isl_tab_pivot(tab, row, col) < 0)
1391 return -2;
1392 } else
1393 if (restore_row(tab, var) < -1)
1394 return -2;
1396 return -1;
1399 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1401 if (tab->M) {
1402 if (isl_int_is_pos(tab->mat->row[row][2]))
1403 return 0;
1404 if (isl_int_is_neg(tab->mat->row[row][2]))
1405 return 1;
1407 return isl_int_is_neg(tab->mat->row[row][1]) &&
1408 isl_int_abs_ge(tab->mat->row[row][1],
1409 tab->mat->row[row][0]);
1412 /* Return 1 if "var" can attain values <= -1.
1413 * Return 0 otherwise.
1415 * The sample value of "var" is assumed to be non-negative when the
1416 * the function is called. If 1 is returned then the constraint
1417 * is not redundant and the sample value is made non-negative again before
1418 * the function returns.
1420 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1422 int row, col;
1423 struct isl_tab_var *pivot_var;
1425 if (min_is_manifestly_unbounded(tab, var))
1426 return 1;
1427 if (!var->is_row) {
1428 col = var->index;
1429 row = pivot_row(tab, NULL, -1, col);
1430 pivot_var = var_from_col(tab, col);
1431 if (isl_tab_pivot(tab, row, col) < 0)
1432 return -1;
1433 if (var->is_redundant)
1434 return 0;
1435 if (row_at_most_neg_one(tab, var->index)) {
1436 if (var->is_nonneg) {
1437 if (!pivot_var->is_redundant &&
1438 pivot_var->index == row) {
1439 if (isl_tab_pivot(tab, row, col) < 0)
1440 return -1;
1441 } else
1442 if (restore_row(tab, var) < -1)
1443 return -1;
1445 return 1;
1448 if (var->is_redundant)
1449 return 0;
1450 do {
1451 find_pivot(tab, var, var, -1, &row, &col);
1452 if (row == var->index) {
1453 if (restore_row(tab, var) < -1)
1454 return -1;
1455 return 1;
1457 if (row == -1)
1458 return 0;
1459 pivot_var = var_from_col(tab, col);
1460 if (isl_tab_pivot(tab, row, col) < 0)
1461 return -1;
1462 if (var->is_redundant)
1463 return 0;
1464 } while (!row_at_most_neg_one(tab, var->index));
1465 if (var->is_nonneg) {
1466 /* pivot back to non-negative value */
1467 if (!pivot_var->is_redundant && pivot_var->index == row)
1468 if (isl_tab_pivot(tab, row, col) < 0)
1469 return -1;
1470 if (restore_row(tab, var) < -1)
1471 return -1;
1473 return 1;
1476 /* Return 1 if "var" can attain values >= 1.
1477 * Return 0 otherwise.
1479 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1481 int row, col;
1482 isl_int *r;
1484 if (max_is_manifestly_unbounded(tab, var))
1485 return 1;
1486 if (to_row(tab, var, 1) < 0)
1487 return -1;
1488 r = tab->mat->row[var->index];
1489 while (isl_int_lt(r[1], r[0])) {
1490 find_pivot(tab, var, var, 1, &row, &col);
1491 if (row == -1)
1492 return isl_int_ge(r[1], r[0]);
1493 if (row == var->index) /* manifestly unbounded */
1494 return 1;
1495 if (isl_tab_pivot(tab, row, col) < 0)
1496 return -1;
1498 return 1;
1501 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1503 int t;
1504 unsigned off = 2 + tab->M;
1505 t = tab->col_var[col1];
1506 tab->col_var[col1] = tab->col_var[col2];
1507 tab->col_var[col2] = t;
1508 var_from_col(tab, col1)->index = col1;
1509 var_from_col(tab, col2)->index = col2;
1510 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1513 /* Mark column with index "col" as representing a zero variable.
1514 * If we may need to undo the operation the column is kept,
1515 * but no longer considered.
1516 * Otherwise, the column is simply removed.
1518 * The column may be interchanged with some other column. If it
1519 * is interchanged with a later column, return 1. Otherwise return 0.
1520 * If the columns are checked in order in the calling function,
1521 * then a return value of 1 means that the column with the given
1522 * column number may now contain a different column that
1523 * hasn't been checked yet.
1525 int isl_tab_kill_col(struct isl_tab *tab, int col)
1527 var_from_col(tab, col)->is_zero = 1;
1528 if (tab->need_undo) {
1529 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1530 var_from_col(tab, col)) < 0)
1531 return -1;
1532 if (col != tab->n_dead)
1533 swap_cols(tab, col, tab->n_dead);
1534 tab->n_dead++;
1535 return 0;
1536 } else {
1537 if (col != tab->n_col - 1)
1538 swap_cols(tab, col, tab->n_col - 1);
1539 var_from_col(tab, tab->n_col - 1)->index = -1;
1540 tab->n_col--;
1541 return 1;
1545 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1547 unsigned off = 2 + tab->M;
1549 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1550 tab->mat->row[row][0]))
1551 return 0;
1552 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1553 tab->n_col - tab->n_dead) != -1)
1554 return 0;
1556 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1557 tab->mat->row[row][0]);
1560 /* For integer tableaus, check if any of the coordinates are stuck
1561 * at a non-integral value.
1563 static int tab_is_manifestly_empty(struct isl_tab *tab)
1565 int i;
1567 if (tab->empty)
1568 return 1;
1569 if (tab->rational)
1570 return 0;
1572 for (i = 0; i < tab->n_var; ++i) {
1573 if (!tab->var[i].is_row)
1574 continue;
1575 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1576 return 1;
1579 return 0;
1582 /* Row variable "var" is non-negative and cannot attain any values
1583 * larger than zero. This means that the coefficients of the unrestricted
1584 * column variables are zero and that the coefficients of the non-negative
1585 * column variables are zero or negative.
1586 * Each of the non-negative variables with a negative coefficient can
1587 * then also be written as the negative sum of non-negative variables
1588 * and must therefore also be zero.
1590 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1591 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1593 int j;
1594 struct isl_mat *mat = tab->mat;
1595 unsigned off = 2 + tab->M;
1597 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1598 var->is_zero = 1;
1599 if (tab->need_undo)
1600 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1601 return -1;
1602 for (j = tab->n_dead; j < tab->n_col; ++j) {
1603 int recheck;
1604 if (isl_int_is_zero(mat->row[var->index][off + j]))
1605 continue;
1606 isl_assert(tab->mat->ctx,
1607 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1608 recheck = isl_tab_kill_col(tab, j);
1609 if (recheck < 0)
1610 return -1;
1611 if (recheck)
1612 --j;
1614 if (isl_tab_mark_redundant(tab, var->index) < 0)
1615 return -1;
1616 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1617 return -1;
1618 return 0;
1621 /* Add a constraint to the tableau and allocate a row for it.
1622 * Return the index into the constraint array "con".
1624 int isl_tab_allocate_con(struct isl_tab *tab)
1626 int r;
1628 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1629 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1631 r = tab->n_con;
1632 tab->con[r].index = tab->n_row;
1633 tab->con[r].is_row = 1;
1634 tab->con[r].is_nonneg = 0;
1635 tab->con[r].is_zero = 0;
1636 tab->con[r].is_redundant = 0;
1637 tab->con[r].frozen = 0;
1638 tab->con[r].negated = 0;
1639 tab->row_var[tab->n_row] = ~r;
1641 tab->n_row++;
1642 tab->n_con++;
1643 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1644 return -1;
1646 return r;
1649 /* Add a variable to the tableau and allocate a column for it.
1650 * Return the index into the variable array "var".
1652 int isl_tab_allocate_var(struct isl_tab *tab)
1654 int r;
1655 int i;
1656 unsigned off = 2 + tab->M;
1658 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1659 isl_assert(tab->mat->ctx, tab->n_var < tab->max_var, return -1);
1661 r = tab->n_var;
1662 tab->var[r].index = tab->n_col;
1663 tab->var[r].is_row = 0;
1664 tab->var[r].is_nonneg = 0;
1665 tab->var[r].is_zero = 0;
1666 tab->var[r].is_redundant = 0;
1667 tab->var[r].frozen = 0;
1668 tab->var[r].negated = 0;
1669 tab->col_var[tab->n_col] = r;
1671 for (i = 0; i < tab->n_row; ++i)
1672 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1674 tab->n_var++;
1675 tab->n_col++;
1676 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1677 return -1;
1679 return r;
1682 /* Add a row to the tableau. The row is given as an affine combination
1683 * of the original variables and needs to be expressed in terms of the
1684 * column variables.
1686 * We add each term in turn.
1687 * If r = n/d_r is the current sum and we need to add k x, then
1688 * if x is a column variable, we increase the numerator of
1689 * this column by k d_r
1690 * if x = f/d_x is a row variable, then the new representation of r is
1692 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1693 * --- + --- = ------------------- = -------------------
1694 * d_r d_r d_r d_x/g m
1696 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1698 * If tab->M is set, then, internally, each variable x is represented
1699 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1701 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1703 int i;
1704 int r;
1705 isl_int *row;
1706 isl_int a, b;
1707 unsigned off = 2 + tab->M;
1709 r = isl_tab_allocate_con(tab);
1710 if (r < 0)
1711 return -1;
1713 isl_int_init(a);
1714 isl_int_init(b);
1715 row = tab->mat->row[tab->con[r].index];
1716 isl_int_set_si(row[0], 1);
1717 isl_int_set(row[1], line[0]);
1718 isl_seq_clr(row + 2, tab->M + tab->n_col);
1719 for (i = 0; i < tab->n_var; ++i) {
1720 if (tab->var[i].is_zero)
1721 continue;
1722 if (tab->var[i].is_row) {
1723 isl_int_lcm(a,
1724 row[0], tab->mat->row[tab->var[i].index][0]);
1725 isl_int_swap(a, row[0]);
1726 isl_int_divexact(a, row[0], a);
1727 isl_int_divexact(b,
1728 row[0], tab->mat->row[tab->var[i].index][0]);
1729 isl_int_mul(b, b, line[1 + i]);
1730 isl_seq_combine(row + 1, a, row + 1,
1731 b, tab->mat->row[tab->var[i].index] + 1,
1732 1 + tab->M + tab->n_col);
1733 } else
1734 isl_int_addmul(row[off + tab->var[i].index],
1735 line[1 + i], row[0]);
1736 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1737 isl_int_submul(row[2], line[1 + i], row[0]);
1739 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1740 isl_int_clear(a);
1741 isl_int_clear(b);
1743 if (tab->row_sign)
1744 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1746 return r;
1749 static int drop_row(struct isl_tab *tab, int row)
1751 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1752 if (row != tab->n_row - 1)
1753 swap_rows(tab, row, tab->n_row - 1);
1754 tab->n_row--;
1755 tab->n_con--;
1756 return 0;
1759 static int drop_col(struct isl_tab *tab, int col)
1761 isl_assert(tab->mat->ctx, tab->col_var[col] == tab->n_var - 1, return -1);
1762 if (col != tab->n_col - 1)
1763 swap_cols(tab, col, tab->n_col - 1);
1764 tab->n_col--;
1765 tab->n_var--;
1766 return 0;
1769 /* Add inequality "ineq" and check if it conflicts with the
1770 * previously added constraints or if it is obviously redundant.
1772 int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1774 int r;
1775 int sgn;
1776 isl_int cst;
1778 if (!tab)
1779 return -1;
1780 if (tab->bmap) {
1781 struct isl_basic_map *bmap = tab->bmap;
1783 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
1784 isl_assert(tab->mat->ctx,
1785 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
1786 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1787 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1788 return -1;
1789 if (!tab->bmap)
1790 return -1;
1792 if (tab->cone) {
1793 isl_int_init(cst);
1794 isl_int_swap(ineq[0], cst);
1796 r = isl_tab_add_row(tab, ineq);
1797 if (tab->cone) {
1798 isl_int_swap(ineq[0], cst);
1799 isl_int_clear(cst);
1801 if (r < 0)
1802 return -1;
1803 tab->con[r].is_nonneg = 1;
1804 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1805 return -1;
1806 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1807 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1808 return -1;
1809 return 0;
1812 sgn = restore_row(tab, &tab->con[r]);
1813 if (sgn < -1)
1814 return -1;
1815 if (sgn < 0)
1816 return isl_tab_mark_empty(tab);
1817 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1818 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1819 return -1;
1820 return 0;
1823 /* Pivot a non-negative variable down until it reaches the value zero
1824 * and then pivot the variable into a column position.
1826 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1827 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1829 int i;
1830 int row, col;
1831 unsigned off = 2 + tab->M;
1833 if (!var->is_row)
1834 return 0;
1836 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1837 find_pivot(tab, var, NULL, -1, &row, &col);
1838 isl_assert(tab->mat->ctx, row != -1, return -1);
1839 if (isl_tab_pivot(tab, row, col) < 0)
1840 return -1;
1841 if (!var->is_row)
1842 return 0;
1845 for (i = tab->n_dead; i < tab->n_col; ++i)
1846 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1847 break;
1849 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1850 if (isl_tab_pivot(tab, var->index, i) < 0)
1851 return -1;
1853 return 0;
1856 /* We assume Gaussian elimination has been performed on the equalities.
1857 * The equalities can therefore never conflict.
1858 * Adding the equalities is currently only really useful for a later call
1859 * to isl_tab_ineq_type.
1861 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1863 int i;
1864 int r;
1866 if (!tab)
1867 return NULL;
1868 r = isl_tab_add_row(tab, eq);
1869 if (r < 0)
1870 goto error;
1872 r = tab->con[r].index;
1873 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1874 tab->n_col - tab->n_dead);
1875 isl_assert(tab->mat->ctx, i >= 0, goto error);
1876 i += tab->n_dead;
1877 if (isl_tab_pivot(tab, r, i) < 0)
1878 goto error;
1879 if (isl_tab_kill_col(tab, i) < 0)
1880 goto error;
1881 tab->n_eq++;
1883 return tab;
1884 error:
1885 isl_tab_free(tab);
1886 return NULL;
1889 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1891 unsigned off = 2 + tab->M;
1893 if (!isl_int_is_zero(tab->mat->row[row][1]))
1894 return 0;
1895 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1896 return 0;
1897 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1898 tab->n_col - tab->n_dead) == -1;
1901 /* Add an equality that is known to be valid for the given tableau.
1903 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1905 struct isl_tab_var *var;
1906 int r;
1908 if (!tab)
1909 return -1;
1910 r = isl_tab_add_row(tab, eq);
1911 if (r < 0)
1912 return -1;
1914 var = &tab->con[r];
1915 r = var->index;
1916 if (row_is_manifestly_zero(tab, r)) {
1917 var->is_zero = 1;
1918 if (isl_tab_mark_redundant(tab, r) < 0)
1919 return -1;
1920 return 0;
1923 if (isl_int_is_neg(tab->mat->row[r][1])) {
1924 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1925 1 + tab->n_col);
1926 var->negated = 1;
1928 var->is_nonneg = 1;
1929 if (to_col(tab, var) < 0)
1930 return -1;
1931 var->is_nonneg = 0;
1932 if (isl_tab_kill_col(tab, var->index) < 0)
1933 return -1;
1935 return 0;
1938 static int add_zero_row(struct isl_tab *tab)
1940 int r;
1941 isl_int *row;
1943 r = isl_tab_allocate_con(tab);
1944 if (r < 0)
1945 return -1;
1947 row = tab->mat->row[tab->con[r].index];
1948 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
1949 isl_int_set_si(row[0], 1);
1951 return r;
1954 /* Add equality "eq" and check if it conflicts with the
1955 * previously added constraints or if it is obviously redundant.
1957 int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
1959 struct isl_tab_undo *snap = NULL;
1960 struct isl_tab_var *var;
1961 int r;
1962 int row;
1963 int sgn;
1964 isl_int cst;
1966 if (!tab)
1967 return -1;
1968 isl_assert(tab->mat->ctx, !tab->M, return -1);
1970 if (tab->need_undo)
1971 snap = isl_tab_snap(tab);
1973 if (tab->cone) {
1974 isl_int_init(cst);
1975 isl_int_swap(eq[0], cst);
1977 r = isl_tab_add_row(tab, eq);
1978 if (tab->cone) {
1979 isl_int_swap(eq[0], cst);
1980 isl_int_clear(cst);
1982 if (r < 0)
1983 return -1;
1985 var = &tab->con[r];
1986 row = var->index;
1987 if (row_is_manifestly_zero(tab, row)) {
1988 if (snap) {
1989 if (isl_tab_rollback(tab, snap) < 0)
1990 return -1;
1991 } else
1992 drop_row(tab, row);
1993 return 0;
1996 if (tab->bmap) {
1997 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1998 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1999 return -1;
2000 isl_seq_neg(eq, eq, 1 + tab->n_var);
2001 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2002 isl_seq_neg(eq, eq, 1 + tab->n_var);
2003 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2004 return -1;
2005 if (!tab->bmap)
2006 return -1;
2007 if (add_zero_row(tab) < 0)
2008 return -1;
2011 sgn = isl_int_sgn(tab->mat->row[row][1]);
2013 if (sgn > 0) {
2014 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2015 1 + tab->n_col);
2016 var->negated = 1;
2017 sgn = -1;
2020 if (sgn < 0) {
2021 sgn = sign_of_max(tab, var);
2022 if (sgn < -1)
2023 return -1;
2024 if (sgn < 0) {
2025 if (isl_tab_mark_empty(tab) < 0)
2026 return -1;
2027 return 0;
2031 var->is_nonneg = 1;
2032 if (to_col(tab, var) < 0)
2033 return -1;
2034 var->is_nonneg = 0;
2035 if (isl_tab_kill_col(tab, var->index) < 0)
2036 return -1;
2038 return 0;
2041 /* Construct and return an inequality that expresses an upper bound
2042 * on the given div.
2043 * In particular, if the div is given by
2045 * d = floor(e/m)
2047 * then the inequality expresses
2049 * m d <= e
2051 static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
2053 unsigned total;
2054 unsigned div_pos;
2055 struct isl_vec *ineq;
2057 if (!bmap)
2058 return NULL;
2060 total = isl_basic_map_total_dim(bmap);
2061 div_pos = 1 + total - bmap->n_div + div;
2063 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2064 if (!ineq)
2065 return NULL;
2067 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2068 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2069 return ineq;
2072 /* For a div d = floor(f/m), add the constraints
2074 * f - m d >= 0
2075 * -(f-(m-1)) + m d >= 0
2077 * Note that the second constraint is the negation of
2079 * f - m d >= m
2081 * If add_ineq is not NULL, then this function is used
2082 * instead of isl_tab_add_ineq to effectively add the inequalities.
2084 static int add_div_constraints(struct isl_tab *tab, unsigned div,
2085 int (*add_ineq)(void *user, isl_int *), void *user)
2087 unsigned total;
2088 unsigned div_pos;
2089 struct isl_vec *ineq;
2091 total = isl_basic_map_total_dim(tab->bmap);
2092 div_pos = 1 + total - tab->bmap->n_div + div;
2094 ineq = ineq_for_div(tab->bmap, div);
2095 if (!ineq)
2096 goto error;
2098 if (add_ineq) {
2099 if (add_ineq(user, ineq->el) < 0)
2100 goto error;
2101 } else {
2102 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2103 goto error;
2106 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2107 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2108 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2109 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2111 if (add_ineq) {
2112 if (add_ineq(user, ineq->el) < 0)
2113 goto error;
2114 } else {
2115 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2116 goto error;
2119 isl_vec_free(ineq);
2121 return 0;
2122 error:
2123 isl_vec_free(ineq);
2124 return -1;
2127 /* Check whether the div described by "div" is obviously non-negative.
2128 * If we are using a big parameter, then we will encode the div
2129 * as div' = M + div, which is always non-negative.
2130 * Otherwise, we check whether div is a non-negative affine combination
2131 * of non-negative variables.
2133 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2135 int i;
2137 if (tab->M)
2138 return 1;
2140 if (isl_int_is_neg(div->el[1]))
2141 return 0;
2143 for (i = 0; i < tab->n_var; ++i) {
2144 if (isl_int_is_neg(div->el[2 + i]))
2145 return 0;
2146 if (isl_int_is_zero(div->el[2 + i]))
2147 continue;
2148 if (!tab->var[i].is_nonneg)
2149 return 0;
2152 return 1;
2155 /* Add an extra div, prescribed by "div" to the tableau and
2156 * the associated bmap (which is assumed to be non-NULL).
2158 * If add_ineq is not NULL, then this function is used instead
2159 * of isl_tab_add_ineq to add the div constraints.
2160 * This complication is needed because the code in isl_tab_pip
2161 * wants to perform some extra processing when an inequality
2162 * is added to the tableau.
2164 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div,
2165 int (*add_ineq)(void *user, isl_int *), void *user)
2167 int r;
2168 int k;
2169 int nonneg;
2171 if (!tab || !div)
2172 return -1;
2174 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2176 nonneg = div_is_nonneg(tab, div);
2178 if (isl_tab_extend_cons(tab, 3) < 0)
2179 return -1;
2180 if (isl_tab_extend_vars(tab, 1) < 0)
2181 return -1;
2182 r = isl_tab_allocate_var(tab);
2183 if (r < 0)
2184 return -1;
2186 if (nonneg)
2187 tab->var[r].is_nonneg = 1;
2189 tab->bmap = isl_basic_map_extend_space(tab->bmap,
2190 isl_basic_map_get_space(tab->bmap), 1, 0, 2);
2191 k = isl_basic_map_alloc_div(tab->bmap);
2192 if (k < 0)
2193 return -1;
2194 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
2195 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
2196 return -1;
2198 if (add_div_constraints(tab, k, add_ineq, user) < 0)
2199 return -1;
2201 return r;
2204 /* If "track" is set, then we want to keep track of all constraints in tab
2205 * in its bmap field. This field is initialized from a copy of "bmap",
2206 * so we need to make sure that all constraints in "bmap" also appear
2207 * in the constructed tab.
2209 __isl_give struct isl_tab *isl_tab_from_basic_map(
2210 __isl_keep isl_basic_map *bmap, int track)
2212 int i;
2213 struct isl_tab *tab;
2215 if (!bmap)
2216 return NULL;
2217 tab = isl_tab_alloc(bmap->ctx,
2218 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2219 isl_basic_map_total_dim(bmap), 0);
2220 if (!tab)
2221 return NULL;
2222 tab->preserve = track;
2223 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2224 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2225 if (isl_tab_mark_empty(tab) < 0)
2226 goto error;
2227 goto done;
2229 for (i = 0; i < bmap->n_eq; ++i) {
2230 tab = add_eq(tab, bmap->eq[i]);
2231 if (!tab)
2232 return tab;
2234 for (i = 0; i < bmap->n_ineq; ++i) {
2235 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2236 goto error;
2237 if (tab->empty)
2238 goto done;
2240 done:
2241 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2242 goto error;
2243 return tab;
2244 error:
2245 isl_tab_free(tab);
2246 return NULL;
2249 __isl_give struct isl_tab *isl_tab_from_basic_set(
2250 __isl_keep isl_basic_set *bset, int track)
2252 return isl_tab_from_basic_map(bset, track);
2255 /* Construct a tableau corresponding to the recession cone of "bset".
2257 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2258 int parametric)
2260 isl_int cst;
2261 int i;
2262 struct isl_tab *tab;
2263 unsigned offset = 0;
2265 if (!bset)
2266 return NULL;
2267 if (parametric)
2268 offset = isl_basic_set_dim(bset, isl_dim_param);
2269 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2270 isl_basic_set_total_dim(bset) - offset, 0);
2271 if (!tab)
2272 return NULL;
2273 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2274 tab->cone = 1;
2276 isl_int_init(cst);
2277 for (i = 0; i < bset->n_eq; ++i) {
2278 isl_int_swap(bset->eq[i][offset], cst);
2279 if (offset > 0) {
2280 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2281 goto error;
2282 } else
2283 tab = add_eq(tab, bset->eq[i]);
2284 isl_int_swap(bset->eq[i][offset], cst);
2285 if (!tab)
2286 goto done;
2288 for (i = 0; i < bset->n_ineq; ++i) {
2289 int r;
2290 isl_int_swap(bset->ineq[i][offset], cst);
2291 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2292 isl_int_swap(bset->ineq[i][offset], cst);
2293 if (r < 0)
2294 goto error;
2295 tab->con[r].is_nonneg = 1;
2296 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2297 goto error;
2299 done:
2300 isl_int_clear(cst);
2301 return tab;
2302 error:
2303 isl_int_clear(cst);
2304 isl_tab_free(tab);
2305 return NULL;
2308 /* Assuming "tab" is the tableau of a cone, check if the cone is
2309 * bounded, i.e., if it is empty or only contains the origin.
2311 int isl_tab_cone_is_bounded(struct isl_tab *tab)
2313 int i;
2315 if (!tab)
2316 return -1;
2317 if (tab->empty)
2318 return 1;
2319 if (tab->n_dead == tab->n_col)
2320 return 1;
2322 for (;;) {
2323 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2324 struct isl_tab_var *var;
2325 int sgn;
2326 var = isl_tab_var_from_row(tab, i);
2327 if (!var->is_nonneg)
2328 continue;
2329 sgn = sign_of_max(tab, var);
2330 if (sgn < -1)
2331 return -1;
2332 if (sgn != 0)
2333 return 0;
2334 if (close_row(tab, var) < 0)
2335 return -1;
2336 break;
2338 if (tab->n_dead == tab->n_col)
2339 return 1;
2340 if (i == tab->n_row)
2341 return 0;
2345 int isl_tab_sample_is_integer(struct isl_tab *tab)
2347 int i;
2349 if (!tab)
2350 return -1;
2352 for (i = 0; i < tab->n_var; ++i) {
2353 int row;
2354 if (!tab->var[i].is_row)
2355 continue;
2356 row = tab->var[i].index;
2357 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2358 tab->mat->row[row][0]))
2359 return 0;
2361 return 1;
2364 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2366 int i;
2367 struct isl_vec *vec;
2369 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2370 if (!vec)
2371 return NULL;
2373 isl_int_set_si(vec->block.data[0], 1);
2374 for (i = 0; i < tab->n_var; ++i) {
2375 if (!tab->var[i].is_row)
2376 isl_int_set_si(vec->block.data[1 + i], 0);
2377 else {
2378 int row = tab->var[i].index;
2379 isl_int_divexact(vec->block.data[1 + i],
2380 tab->mat->row[row][1], tab->mat->row[row][0]);
2384 return vec;
2387 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2389 int i;
2390 struct isl_vec *vec;
2391 isl_int m;
2393 if (!tab)
2394 return NULL;
2396 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2397 if (!vec)
2398 return NULL;
2400 isl_int_init(m);
2402 isl_int_set_si(vec->block.data[0], 1);
2403 for (i = 0; i < tab->n_var; ++i) {
2404 int row;
2405 if (!tab->var[i].is_row) {
2406 isl_int_set_si(vec->block.data[1 + i], 0);
2407 continue;
2409 row = tab->var[i].index;
2410 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2411 isl_int_divexact(m, tab->mat->row[row][0], m);
2412 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2413 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2414 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2416 vec = isl_vec_normalize(vec);
2418 isl_int_clear(m);
2419 return vec;
2422 /* Update "bmap" based on the results of the tableau "tab".
2423 * In particular, implicit equalities are made explicit, redundant constraints
2424 * are removed and if the sample value happens to be integer, it is stored
2425 * in "bmap" (unless "bmap" already had an integer sample).
2427 * The tableau is assumed to have been created from "bmap" using
2428 * isl_tab_from_basic_map.
2430 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2431 struct isl_tab *tab)
2433 int i;
2434 unsigned n_eq;
2436 if (!bmap)
2437 return NULL;
2438 if (!tab)
2439 return bmap;
2441 n_eq = tab->n_eq;
2442 if (tab->empty)
2443 bmap = isl_basic_map_set_to_empty(bmap);
2444 else
2445 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2446 if (isl_tab_is_equality(tab, n_eq + i))
2447 isl_basic_map_inequality_to_equality(bmap, i);
2448 else if (isl_tab_is_redundant(tab, n_eq + i))
2449 isl_basic_map_drop_inequality(bmap, i);
2451 if (bmap->n_eq != n_eq)
2452 isl_basic_map_gauss(bmap, NULL);
2453 if (!tab->rational &&
2454 !bmap->sample && isl_tab_sample_is_integer(tab))
2455 bmap->sample = extract_integer_sample(tab);
2456 return bmap;
2459 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2460 struct isl_tab *tab)
2462 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2463 (struct isl_basic_map *)bset, tab);
2466 /* Given a non-negative variable "var", add a new non-negative variable
2467 * that is the opposite of "var", ensuring that var can only attain the
2468 * value zero.
2469 * If var = n/d is a row variable, then the new variable = -n/d.
2470 * If var is a column variables, then the new variable = -var.
2471 * If the new variable cannot attain non-negative values, then
2472 * the resulting tableau is empty.
2473 * Otherwise, we know the value will be zero and we close the row.
2475 static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2477 unsigned r;
2478 isl_int *row;
2479 int sgn;
2480 unsigned off = 2 + tab->M;
2482 if (var->is_zero)
2483 return 0;
2484 isl_assert(tab->mat->ctx, !var->is_redundant, return -1);
2485 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
2487 if (isl_tab_extend_cons(tab, 1) < 0)
2488 return -1;
2490 r = tab->n_con;
2491 tab->con[r].index = tab->n_row;
2492 tab->con[r].is_row = 1;
2493 tab->con[r].is_nonneg = 0;
2494 tab->con[r].is_zero = 0;
2495 tab->con[r].is_redundant = 0;
2496 tab->con[r].frozen = 0;
2497 tab->con[r].negated = 0;
2498 tab->row_var[tab->n_row] = ~r;
2499 row = tab->mat->row[tab->n_row];
2501 if (var->is_row) {
2502 isl_int_set(row[0], tab->mat->row[var->index][0]);
2503 isl_seq_neg(row + 1,
2504 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2505 } else {
2506 isl_int_set_si(row[0], 1);
2507 isl_seq_clr(row + 1, 1 + tab->n_col);
2508 isl_int_set_si(row[off + var->index], -1);
2511 tab->n_row++;
2512 tab->n_con++;
2513 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2514 return -1;
2516 sgn = sign_of_max(tab, &tab->con[r]);
2517 if (sgn < -1)
2518 return -1;
2519 if (sgn < 0) {
2520 if (isl_tab_mark_empty(tab) < 0)
2521 return -1;
2522 return 0;
2524 tab->con[r].is_nonneg = 1;
2525 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2526 return -1;
2527 /* sgn == 0 */
2528 if (close_row(tab, &tab->con[r]) < 0)
2529 return -1;
2531 return 0;
2534 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2535 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2536 * by r' = r + 1 >= 0.
2537 * If r is a row variable, we simply increase the constant term by one
2538 * (taking into account the denominator).
2539 * If r is a column variable, then we need to modify each row that
2540 * refers to r = r' - 1 by substituting this equality, effectively
2541 * subtracting the coefficient of the column from the constant.
2542 * We should only do this if the minimum is manifestly unbounded,
2543 * however. Otherwise, we may end up with negative sample values
2544 * for non-negative variables.
2545 * So, if r is a column variable with a minimum that is not
2546 * manifestly unbounded, then we need to move it to a row.
2547 * However, the sample value of this row may be negative,
2548 * even after the relaxation, so we need to restore it.
2549 * We therefore prefer to pivot a column up to a row, if possible.
2551 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
2553 struct isl_tab_var *var;
2554 unsigned off = 2 + tab->M;
2556 if (!tab)
2557 return NULL;
2559 var = &tab->con[con];
2561 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2562 isl_die(tab->mat->ctx, isl_error_invalid,
2563 "cannot relax redundant constraint", goto error);
2564 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2565 isl_die(tab->mat->ctx, isl_error_invalid,
2566 "cannot relax dead constraint", goto error);
2568 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2569 if (to_row(tab, var, 1) < 0)
2570 goto error;
2571 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2572 if (to_row(tab, var, -1) < 0)
2573 goto error;
2575 if (var->is_row) {
2576 isl_int_add(tab->mat->row[var->index][1],
2577 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2578 if (restore_row(tab, var) < 0)
2579 goto error;
2580 } else {
2581 int i;
2583 for (i = 0; i < tab->n_row; ++i) {
2584 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2585 continue;
2586 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2587 tab->mat->row[i][off + var->index]);
2592 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2593 goto error;
2595 return tab;
2596 error:
2597 isl_tab_free(tab);
2598 return NULL;
2601 int isl_tab_select_facet(struct isl_tab *tab, int con)
2603 if (!tab)
2604 return -1;
2606 return cut_to_hyperplane(tab, &tab->con[con]);
2609 static int may_be_equality(struct isl_tab *tab, int row)
2611 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2612 : isl_int_lt(tab->mat->row[row][1],
2613 tab->mat->row[row][0]);
2616 /* Check for (near) equalities among the constraints.
2617 * A constraint is an equality if it is non-negative and if
2618 * its maximal value is either
2619 * - zero (in case of rational tableaus), or
2620 * - strictly less than 1 (in case of integer tableaus)
2622 * We first mark all non-redundant and non-dead variables that
2623 * are not frozen and not obviously not an equality.
2624 * Then we iterate over all marked variables if they can attain
2625 * any values larger than zero or at least one.
2626 * If the maximal value is zero, we mark any column variables
2627 * that appear in the row as being zero and mark the row as being redundant.
2628 * Otherwise, if the maximal value is strictly less than one (and the
2629 * tableau is integer), then we restrict the value to being zero
2630 * by adding an opposite non-negative variable.
2632 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2634 int i;
2635 unsigned n_marked;
2637 if (!tab)
2638 return -1;
2639 if (tab->empty)
2640 return 0;
2641 if (tab->n_dead == tab->n_col)
2642 return 0;
2644 n_marked = 0;
2645 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2646 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2647 var->marked = !var->frozen && var->is_nonneg &&
2648 may_be_equality(tab, i);
2649 if (var->marked)
2650 n_marked++;
2652 for (i = tab->n_dead; i < tab->n_col; ++i) {
2653 struct isl_tab_var *var = var_from_col(tab, i);
2654 var->marked = !var->frozen && var->is_nonneg;
2655 if (var->marked)
2656 n_marked++;
2658 while (n_marked) {
2659 struct isl_tab_var *var;
2660 int sgn;
2661 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2662 var = isl_tab_var_from_row(tab, i);
2663 if (var->marked)
2664 break;
2666 if (i == tab->n_row) {
2667 for (i = tab->n_dead; i < tab->n_col; ++i) {
2668 var = var_from_col(tab, i);
2669 if (var->marked)
2670 break;
2672 if (i == tab->n_col)
2673 break;
2675 var->marked = 0;
2676 n_marked--;
2677 sgn = sign_of_max(tab, var);
2678 if (sgn < 0)
2679 return -1;
2680 if (sgn == 0) {
2681 if (close_row(tab, var) < 0)
2682 return -1;
2683 } else if (!tab->rational && !at_least_one(tab, var)) {
2684 if (cut_to_hyperplane(tab, var) < 0)
2685 return -1;
2686 return isl_tab_detect_implicit_equalities(tab);
2688 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2689 var = isl_tab_var_from_row(tab, i);
2690 if (!var->marked)
2691 continue;
2692 if (may_be_equality(tab, i))
2693 continue;
2694 var->marked = 0;
2695 n_marked--;
2699 return 0;
2702 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2704 if (!tab)
2705 return -1;
2706 if (tab->rational) {
2707 int sgn = sign_of_min(tab, var);
2708 if (sgn < -1)
2709 return -1;
2710 return sgn >= 0;
2711 } else {
2712 int irred = isl_tab_min_at_most_neg_one(tab, var);
2713 if (irred < 0)
2714 return -1;
2715 return !irred;
2719 /* Check for (near) redundant constraints.
2720 * A constraint is redundant if it is non-negative and if
2721 * its minimal value (temporarily ignoring the non-negativity) is either
2722 * - zero (in case of rational tableaus), or
2723 * - strictly larger than -1 (in case of integer tableaus)
2725 * We first mark all non-redundant and non-dead variables that
2726 * are not frozen and not obviously negatively unbounded.
2727 * Then we iterate over all marked variables if they can attain
2728 * any values smaller than zero or at most negative one.
2729 * If not, we mark the row as being redundant (assuming it hasn't
2730 * been detected as being obviously redundant in the mean time).
2732 int isl_tab_detect_redundant(struct isl_tab *tab)
2734 int i;
2735 unsigned n_marked;
2737 if (!tab)
2738 return -1;
2739 if (tab->empty)
2740 return 0;
2741 if (tab->n_redundant == tab->n_row)
2742 return 0;
2744 n_marked = 0;
2745 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2746 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2747 var->marked = !var->frozen && var->is_nonneg;
2748 if (var->marked)
2749 n_marked++;
2751 for (i = tab->n_dead; i < tab->n_col; ++i) {
2752 struct isl_tab_var *var = var_from_col(tab, i);
2753 var->marked = !var->frozen && var->is_nonneg &&
2754 !min_is_manifestly_unbounded(tab, var);
2755 if (var->marked)
2756 n_marked++;
2758 while (n_marked) {
2759 struct isl_tab_var *var;
2760 int red;
2761 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2762 var = isl_tab_var_from_row(tab, i);
2763 if (var->marked)
2764 break;
2766 if (i == tab->n_row) {
2767 for (i = tab->n_dead; i < tab->n_col; ++i) {
2768 var = var_from_col(tab, i);
2769 if (var->marked)
2770 break;
2772 if (i == tab->n_col)
2773 break;
2775 var->marked = 0;
2776 n_marked--;
2777 red = con_is_redundant(tab, var);
2778 if (red < 0)
2779 return -1;
2780 if (red && !var->is_redundant)
2781 if (isl_tab_mark_redundant(tab, var->index) < 0)
2782 return -1;
2783 for (i = tab->n_dead; i < tab->n_col; ++i) {
2784 var = var_from_col(tab, i);
2785 if (!var->marked)
2786 continue;
2787 if (!min_is_manifestly_unbounded(tab, var))
2788 continue;
2789 var->marked = 0;
2790 n_marked--;
2794 return 0;
2797 int isl_tab_is_equality(struct isl_tab *tab, int con)
2799 int row;
2800 unsigned off;
2802 if (!tab)
2803 return -1;
2804 if (tab->con[con].is_zero)
2805 return 1;
2806 if (tab->con[con].is_redundant)
2807 return 0;
2808 if (!tab->con[con].is_row)
2809 return tab->con[con].index < tab->n_dead;
2811 row = tab->con[con].index;
2813 off = 2 + tab->M;
2814 return isl_int_is_zero(tab->mat->row[row][1]) &&
2815 (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) &&
2816 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2817 tab->n_col - tab->n_dead) == -1;
2820 /* Return the minimal value of the affine expression "f" with denominator
2821 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2822 * the expression cannot attain arbitrarily small values.
2823 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2824 * The return value reflects the nature of the result (empty, unbounded,
2825 * minimal value returned in *opt).
2827 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
2828 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
2829 unsigned flags)
2831 int r;
2832 enum isl_lp_result res = isl_lp_ok;
2833 struct isl_tab_var *var;
2834 struct isl_tab_undo *snap;
2836 if (!tab)
2837 return isl_lp_error;
2839 if (tab->empty)
2840 return isl_lp_empty;
2842 snap = isl_tab_snap(tab);
2843 r = isl_tab_add_row(tab, f);
2844 if (r < 0)
2845 return isl_lp_error;
2846 var = &tab->con[r];
2847 for (;;) {
2848 int row, col;
2849 find_pivot(tab, var, var, -1, &row, &col);
2850 if (row == var->index) {
2851 res = isl_lp_unbounded;
2852 break;
2854 if (row == -1)
2855 break;
2856 if (isl_tab_pivot(tab, row, col) < 0)
2857 return isl_lp_error;
2859 isl_int_mul(tab->mat->row[var->index][0],
2860 tab->mat->row[var->index][0], denom);
2861 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
2862 int i;
2864 isl_vec_free(tab->dual);
2865 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
2866 if (!tab->dual)
2867 return isl_lp_error;
2868 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
2869 for (i = 0; i < tab->n_con; ++i) {
2870 int pos;
2871 if (tab->con[i].is_row) {
2872 isl_int_set_si(tab->dual->el[1 + i], 0);
2873 continue;
2875 pos = 2 + tab->M + tab->con[i].index;
2876 if (tab->con[i].negated)
2877 isl_int_neg(tab->dual->el[1 + i],
2878 tab->mat->row[var->index][pos]);
2879 else
2880 isl_int_set(tab->dual->el[1 + i],
2881 tab->mat->row[var->index][pos]);
2884 if (opt && res == isl_lp_ok) {
2885 if (opt_denom) {
2886 isl_int_set(*opt, tab->mat->row[var->index][1]);
2887 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
2888 } else
2889 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
2890 tab->mat->row[var->index][0]);
2892 if (isl_tab_rollback(tab, snap) < 0)
2893 return isl_lp_error;
2894 return res;
2897 int isl_tab_is_redundant(struct isl_tab *tab, int con)
2899 if (!tab)
2900 return -1;
2901 if (tab->con[con].is_zero)
2902 return 0;
2903 if (tab->con[con].is_redundant)
2904 return 1;
2905 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
2908 /* Take a snapshot of the tableau that can be restored by s call to
2909 * isl_tab_rollback.
2911 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
2913 if (!tab)
2914 return NULL;
2915 tab->need_undo = 1;
2916 return tab->top;
2919 /* Undo the operation performed by isl_tab_relax.
2921 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
2922 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
2924 unsigned off = 2 + tab->M;
2926 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2927 if (to_row(tab, var, 1) < 0)
2928 return -1;
2930 if (var->is_row) {
2931 isl_int_sub(tab->mat->row[var->index][1],
2932 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2933 if (var->is_nonneg) {
2934 int sgn = restore_row(tab, var);
2935 isl_assert(tab->mat->ctx, sgn >= 0, return -1);
2937 } else {
2938 int i;
2940 for (i = 0; i < tab->n_row; ++i) {
2941 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2942 continue;
2943 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
2944 tab->mat->row[i][off + var->index]);
2949 return 0;
2952 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
2953 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
2955 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
2956 switch (undo->type) {
2957 case isl_tab_undo_nonneg:
2958 var->is_nonneg = 0;
2959 break;
2960 case isl_tab_undo_redundant:
2961 var->is_redundant = 0;
2962 tab->n_redundant--;
2963 restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant));
2964 break;
2965 case isl_tab_undo_freeze:
2966 var->frozen = 0;
2967 break;
2968 case isl_tab_undo_zero:
2969 var->is_zero = 0;
2970 if (!var->is_row)
2971 tab->n_dead--;
2972 break;
2973 case isl_tab_undo_allocate:
2974 if (undo->u.var_index >= 0) {
2975 isl_assert(tab->mat->ctx, !var->is_row, return -1);
2976 drop_col(tab, var->index);
2977 break;
2979 if (!var->is_row) {
2980 if (!max_is_manifestly_unbounded(tab, var)) {
2981 if (to_row(tab, var, 1) < 0)
2982 return -1;
2983 } else if (!min_is_manifestly_unbounded(tab, var)) {
2984 if (to_row(tab, var, -1) < 0)
2985 return -1;
2986 } else
2987 if (to_row(tab, var, 0) < 0)
2988 return -1;
2990 drop_row(tab, var->index);
2991 break;
2992 case isl_tab_undo_relax:
2993 return unrelax(tab, var);
2994 default:
2995 isl_die(tab->mat->ctx, isl_error_internal,
2996 "perform_undo_var called on invalid undo record",
2997 return -1);
3000 return 0;
3003 /* Restore the tableau to the state where the basic variables
3004 * are those in "col_var".
3005 * We first construct a list of variables that are currently in
3006 * the basis, but shouldn't. Then we iterate over all variables
3007 * that should be in the basis and for each one that is currently
3008 * not in the basis, we exchange it with one of the elements of the
3009 * list constructed before.
3010 * We can always find an appropriate variable to pivot with because
3011 * the current basis is mapped to the old basis by a non-singular
3012 * matrix and so we can never end up with a zero row.
3014 static int restore_basis(struct isl_tab *tab, int *col_var)
3016 int i, j;
3017 int n_extra = 0;
3018 int *extra = NULL; /* current columns that contain bad stuff */
3019 unsigned off = 2 + tab->M;
3021 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3022 if (!extra)
3023 goto error;
3024 for (i = 0; i < tab->n_col; ++i) {
3025 for (j = 0; j < tab->n_col; ++j)
3026 if (tab->col_var[i] == col_var[j])
3027 break;
3028 if (j < tab->n_col)
3029 continue;
3030 extra[n_extra++] = i;
3032 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3033 struct isl_tab_var *var;
3034 int row;
3036 for (j = 0; j < tab->n_col; ++j)
3037 if (col_var[i] == tab->col_var[j])
3038 break;
3039 if (j < tab->n_col)
3040 continue;
3041 var = var_from_index(tab, col_var[i]);
3042 row = var->index;
3043 for (j = 0; j < n_extra; ++j)
3044 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3045 break;
3046 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3047 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3048 goto error;
3049 extra[j] = extra[--n_extra];
3052 free(extra);
3053 return 0;
3054 error:
3055 free(extra);
3056 return -1;
3059 /* Remove all samples with index n or greater, i.e., those samples
3060 * that were added since we saved this number of samples in
3061 * isl_tab_save_samples.
3063 static void drop_samples_since(struct isl_tab *tab, int n)
3065 int i;
3067 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3068 if (tab->sample_index[i] < n)
3069 continue;
3071 if (i != tab->n_sample - 1) {
3072 int t = tab->sample_index[tab->n_sample-1];
3073 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3074 tab->sample_index[i] = t;
3075 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3077 tab->n_sample--;
3081 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3082 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3084 switch (undo->type) {
3085 case isl_tab_undo_empty:
3086 tab->empty = 0;
3087 break;
3088 case isl_tab_undo_nonneg:
3089 case isl_tab_undo_redundant:
3090 case isl_tab_undo_freeze:
3091 case isl_tab_undo_zero:
3092 case isl_tab_undo_allocate:
3093 case isl_tab_undo_relax:
3094 return perform_undo_var(tab, undo);
3095 case isl_tab_undo_bmap_eq:
3096 return isl_basic_map_free_equality(tab->bmap, 1);
3097 case isl_tab_undo_bmap_ineq:
3098 return isl_basic_map_free_inequality(tab->bmap, 1);
3099 case isl_tab_undo_bmap_div:
3100 if (isl_basic_map_free_div(tab->bmap, 1) < 0)
3101 return -1;
3102 if (tab->samples)
3103 tab->samples->n_col--;
3104 break;
3105 case isl_tab_undo_saved_basis:
3106 if (restore_basis(tab, undo->u.col_var) < 0)
3107 return -1;
3108 break;
3109 case isl_tab_undo_drop_sample:
3110 tab->n_outside--;
3111 break;
3112 case isl_tab_undo_saved_samples:
3113 drop_samples_since(tab, undo->u.n);
3114 break;
3115 case isl_tab_undo_callback:
3116 return undo->u.callback->run(undo->u.callback);
3117 default:
3118 isl_assert(tab->mat->ctx, 0, return -1);
3120 return 0;
3123 /* Return the tableau to the state it was in when the snapshot "snap"
3124 * was taken.
3126 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3128 struct isl_tab_undo *undo, *next;
3130 if (!tab)
3131 return -1;
3133 tab->in_undo = 1;
3134 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3135 next = undo->next;
3136 if (undo == snap)
3137 break;
3138 if (perform_undo(tab, undo) < 0) {
3139 tab->top = undo;
3140 free_undo(tab);
3141 tab->in_undo = 0;
3142 return -1;
3144 free_undo_record(undo);
3146 tab->in_undo = 0;
3147 tab->top = undo;
3148 if (!undo)
3149 return -1;
3150 return 0;
3153 /* The given row "row" represents an inequality violated by all
3154 * points in the tableau. Check for some special cases of such
3155 * separating constraints.
3156 * In particular, if the row has been reduced to the constant -1,
3157 * then we know the inequality is adjacent (but opposite) to
3158 * an equality in the tableau.
3159 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3160 * of the tableau and c a positive constant, then the inequality
3161 * is adjacent (but opposite) to the inequality r'.
3163 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3165 int pos;
3166 unsigned off = 2 + tab->M;
3168 if (tab->rational)
3169 return isl_ineq_separate;
3171 if (!isl_int_is_one(tab->mat->row[row][0]))
3172 return isl_ineq_separate;
3174 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3175 tab->n_col - tab->n_dead);
3176 if (pos == -1) {
3177 if (isl_int_is_negone(tab->mat->row[row][1]))
3178 return isl_ineq_adj_eq;
3179 else
3180 return isl_ineq_separate;
3183 if (!isl_int_eq(tab->mat->row[row][1],
3184 tab->mat->row[row][off + tab->n_dead + pos]))
3185 return isl_ineq_separate;
3187 pos = isl_seq_first_non_zero(
3188 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3189 tab->n_col - tab->n_dead - pos - 1);
3191 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3194 /* Check the effect of inequality "ineq" on the tableau "tab".
3195 * The result may be
3196 * isl_ineq_redundant: satisfied by all points in the tableau
3197 * isl_ineq_separate: satisfied by no point in the tableau
3198 * isl_ineq_cut: satisfied by some by not all points
3199 * isl_ineq_adj_eq: adjacent to an equality
3200 * isl_ineq_adj_ineq: adjacent to an inequality.
3202 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3204 enum isl_ineq_type type = isl_ineq_error;
3205 struct isl_tab_undo *snap = NULL;
3206 int con;
3207 int row;
3209 if (!tab)
3210 return isl_ineq_error;
3212 if (isl_tab_extend_cons(tab, 1) < 0)
3213 return isl_ineq_error;
3215 snap = isl_tab_snap(tab);
3217 con = isl_tab_add_row(tab, ineq);
3218 if (con < 0)
3219 goto error;
3221 row = tab->con[con].index;
3222 if (isl_tab_row_is_redundant(tab, row))
3223 type = isl_ineq_redundant;
3224 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3225 (tab->rational ||
3226 isl_int_abs_ge(tab->mat->row[row][1],
3227 tab->mat->row[row][0]))) {
3228 int nonneg = at_least_zero(tab, &tab->con[con]);
3229 if (nonneg < 0)
3230 goto error;
3231 if (nonneg)
3232 type = isl_ineq_cut;
3233 else
3234 type = separation_type(tab, row);
3235 } else {
3236 int red = con_is_redundant(tab, &tab->con[con]);
3237 if (red < 0)
3238 goto error;
3239 if (!red)
3240 type = isl_ineq_cut;
3241 else
3242 type = isl_ineq_redundant;
3245 if (isl_tab_rollback(tab, snap))
3246 return isl_ineq_error;
3247 return type;
3248 error:
3249 return isl_ineq_error;
3252 int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
3254 bmap = isl_basic_map_cow(bmap);
3255 if (!tab || !bmap)
3256 goto error;
3258 if (tab->empty) {
3259 bmap = isl_basic_map_set_to_empty(bmap);
3260 if (!bmap)
3261 goto error;
3262 tab->bmap = bmap;
3263 return 0;
3266 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
3267 isl_assert(tab->mat->ctx,
3268 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
3270 tab->bmap = bmap;
3272 return 0;
3273 error:
3274 isl_basic_map_free(bmap);
3275 return -1;
3278 int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
3280 return isl_tab_track_bmap(tab, (isl_basic_map *)bset);
3283 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
3285 if (!tab)
3286 return NULL;
3288 return (isl_basic_set *)tab->bmap;
3291 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
3292 FILE *out, int indent)
3294 unsigned r, c;
3295 int i;
3297 if (!tab) {
3298 fprintf(out, "%*snull tab\n", indent, "");
3299 return;
3301 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
3302 tab->n_redundant, tab->n_dead);
3303 if (tab->rational)
3304 fprintf(out, ", rational");
3305 if (tab->empty)
3306 fprintf(out, ", empty");
3307 fprintf(out, "\n");
3308 fprintf(out, "%*s[", indent, "");
3309 for (i = 0; i < tab->n_var; ++i) {
3310 if (i)
3311 fprintf(out, (i == tab->n_param ||
3312 i == tab->n_var - tab->n_div) ? "; "
3313 : ", ");
3314 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
3315 tab->var[i].index,
3316 tab->var[i].is_zero ? " [=0]" :
3317 tab->var[i].is_redundant ? " [R]" : "");
3319 fprintf(out, "]\n");
3320 fprintf(out, "%*s[", indent, "");
3321 for (i = 0; i < tab->n_con; ++i) {
3322 if (i)
3323 fprintf(out, ", ");
3324 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
3325 tab->con[i].index,
3326 tab->con[i].is_zero ? " [=0]" :
3327 tab->con[i].is_redundant ? " [R]" : "");
3329 fprintf(out, "]\n");
3330 fprintf(out, "%*s[", indent, "");
3331 for (i = 0; i < tab->n_row; ++i) {
3332 const char *sign = "";
3333 if (i)
3334 fprintf(out, ", ");
3335 if (tab->row_sign) {
3336 if (tab->row_sign[i] == isl_tab_row_unknown)
3337 sign = "?";
3338 else if (tab->row_sign[i] == isl_tab_row_neg)
3339 sign = "-";
3340 else if (tab->row_sign[i] == isl_tab_row_pos)
3341 sign = "+";
3342 else
3343 sign = "+-";
3345 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
3346 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
3348 fprintf(out, "]\n");
3349 fprintf(out, "%*s[", indent, "");
3350 for (i = 0; i < tab->n_col; ++i) {
3351 if (i)
3352 fprintf(out, ", ");
3353 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
3354 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
3356 fprintf(out, "]\n");
3357 r = tab->mat->n_row;
3358 tab->mat->n_row = tab->n_row;
3359 c = tab->mat->n_col;
3360 tab->mat->n_col = 2 + tab->M + tab->n_col;
3361 isl_mat_print_internal(tab->mat, out, indent);
3362 tab->mat->n_row = r;
3363 tab->mat->n_col = c;
3364 if (tab->bmap)
3365 isl_basic_map_print_internal(tab->bmap, out, indent);
3368 void isl_tab_dump(__isl_keep struct isl_tab *tab)
3370 isl_tab_print_internal(tab, stderr, 0);