isl_ast_build_eliminate_divs: remove unknown divs before divs involving depth
[isl.git] / isl_ast_codegen.c
blob89bc512c1452a7ab2c3491cbc1ae4204b3277477
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <isl/aff.h>
11 #include <isl/set.h>
12 #include <isl/ilp.h>
13 #include <isl/union_map.h>
14 #include <isl_sort.h>
15 #include <isl_tarjan.h>
16 #include <isl_ast_private.h>
17 #include <isl_ast_build_expr.h>
18 #include <isl_ast_build_private.h>
19 #include <isl_ast_graft_private.h>
20 #include <isl_list_private.h>
22 /* Add the constraint to the list that "user" points to, if it is not
23 * a div constraint.
25 static int collect_constraint(__isl_take isl_constraint *constraint,
26 void *user)
28 isl_constraint_list **list = user;
30 if (isl_constraint_is_div_constraint(constraint))
31 isl_constraint_free(constraint);
32 else
33 *list = isl_constraint_list_add(*list, constraint);
35 return 0;
38 /* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
41 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
42 __isl_take isl_basic_set *bset)
44 int n;
45 isl_ctx *ctx;
46 isl_constraint_list *list;
48 if (!bset)
49 return NULL;
51 ctx = isl_basic_set_get_ctx(bset);
53 n = isl_basic_set_n_constraint(bset);
54 list = isl_constraint_list_alloc(ctx, n);
55 if (isl_basic_set_foreach_constraint(bset,
56 &collect_constraint, &list) < 0)
57 list = isl_constraint_list_free(list);
59 isl_basic_set_free(bset);
60 return list;
63 /* Data used in generate_domain.
65 * "build" is the input build.
66 * "list" collects the results.
68 struct isl_generate_domain_data {
69 isl_ast_build *build;
71 isl_ast_graft_list *list;
74 static __isl_give isl_ast_graft_list *generate_next_level(
75 __isl_take isl_union_map *executed,
76 __isl_take isl_ast_build *build);
77 static __isl_give isl_ast_graft_list *generate_code(
78 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
79 int internal);
81 /* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
87 * In particular, if executed has the form
89 * S -> D
91 * then we continue generating code on
93 * [S -> D] -> D
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
100 static int generate_non_single_valued(__isl_take isl_map *executed,
101 struct isl_generate_domain_data *data)
103 isl_map *identity;
104 isl_ast_build *build;
105 isl_ast_graft_list *list;
107 build = isl_ast_build_copy(data->build);
109 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
110 executed = isl_map_domain_product(executed, identity);
112 list = generate_code(isl_union_map_from_map(executed), build, 1);
114 data->list = isl_ast_graft_list_concat(data->list, list);
116 return 0;
119 /* Call the at_each_domain callback, if requested by the user,
120 * after recording the current inverse schedule in the build.
122 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
123 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
125 if (!graft || !build)
126 return isl_ast_graft_free(graft);
127 if (!build->at_each_domain)
128 return graft;
130 build = isl_ast_build_copy(build);
131 build = isl_ast_build_set_executed(build,
132 isl_union_map_from_map(isl_map_copy(executed)));
133 if (!build)
134 return isl_ast_graft_free(graft);
136 graft->node = build->at_each_domain(graft->node,
137 build, build->at_each_domain_user);
138 isl_ast_build_free(build);
140 if (!graft->node)
141 graft = isl_ast_graft_free(graft);
143 return graft;
146 /* Generate an AST for a single domain based on
147 * the inverse schedule "executed".
149 * If there is more than one domain element associated to the current
150 * schedule "time", then we need to continue the generation process
151 * in generate_non_single_valued.
152 * Note that the inverse schedule being single-valued may depend
153 * on constraints that are only available in the original context
154 * domain specified by the user. We therefore first introduce
155 * the constraints from data->build->domain.
156 * On the other hand, we only perform the test after having taken the gist
157 * of the domain as the resulting map is the one from which the call
158 * expression is constructed.
160 * Otherwise, we generate a call expression for the single executed
161 * domain element and put a guard around it based on the (simplified)
162 * domain of "executed".
164 * If the user has set an at_each_domain callback, it is called
165 * on the constructed call expression node.
167 static int generate_domain(__isl_take isl_map *executed, void *user)
169 struct isl_generate_domain_data *data = user;
170 isl_ast_graft *graft;
171 isl_ast_graft_list *list;
172 isl_set *guard;
173 isl_map *map;
174 int sv;
176 executed = isl_map_intersect_domain(executed,
177 isl_set_copy(data->build->domain));
179 executed = isl_map_coalesce(executed);
180 map = isl_map_copy(executed);
181 map = isl_ast_build_compute_gist_map_domain(data->build, map);
182 sv = isl_map_is_single_valued(map);
183 if (sv < 0)
184 goto error;
185 if (!sv) {
186 isl_map_free(map);
187 return generate_non_single_valued(executed, data);
189 guard = isl_map_domain(isl_map_copy(map));
190 guard = isl_set_coalesce(guard);
191 guard = isl_ast_build_compute_gist(data->build, guard);
192 graft = isl_ast_graft_alloc_domain(map, data->build);
193 graft = at_each_domain(graft, executed, data->build);
195 isl_map_free(executed);
196 graft = isl_ast_graft_add_guard(graft, guard, data->build);
198 list = isl_ast_graft_list_from_ast_graft(graft);
199 data->list = isl_ast_graft_list_concat(data->list, list);
201 return 0;
202 error:
203 isl_map_free(map);
204 isl_map_free(executed);
205 return -1;
208 /* Call build->create_leaf to a create "leaf" node in the AST,
209 * encapsulate the result in an isl_ast_graft and return the result
210 * as a 1-element list.
212 * Note that the node returned by the user may be an entire tree.
214 * Before we pass control to the user, we first clear some information
215 * from the build that is (presumbably) only meaningful
216 * for the current code generation.
217 * This includes the create_leaf callback itself, so we make a copy
218 * of the build first.
220 static __isl_give isl_ast_graft_list *call_create_leaf(
221 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
223 isl_ast_node *node;
224 isl_ast_graft *graft;
225 isl_ast_build *user_build;
227 user_build = isl_ast_build_copy(build);
228 user_build = isl_ast_build_set_executed(user_build, executed);
229 user_build = isl_ast_build_clear_local_info(user_build);
230 if (!user_build)
231 node = NULL;
232 else
233 node = build->create_leaf(user_build, build->create_leaf_user);
234 graft = isl_ast_graft_alloc(node, build);
235 isl_ast_build_free(build);
236 return isl_ast_graft_list_from_ast_graft(graft);
239 /* Generate an AST after having handled the complete schedule
240 * of this call to the code generator.
242 * If the user has specified a create_leaf callback, control
243 * is passed to the user in call_create_leaf.
245 * Otherwise, we generate one or more calls for each individual
246 * domain in generate_domain.
248 static __isl_give isl_ast_graft_list *generate_inner_level(
249 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
251 isl_ctx *ctx;
252 struct isl_generate_domain_data data = { build };
254 if (!build || !executed)
255 goto error;
257 if (build->create_leaf)
258 return call_create_leaf(executed, build);
260 ctx = isl_union_map_get_ctx(executed);
261 data.list = isl_ast_graft_list_alloc(ctx, 0);
262 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
263 data.list = isl_ast_graft_list_free(data.list);
265 if (0)
266 error: data.list = NULL;
267 isl_ast_build_free(build);
268 isl_union_map_free(executed);
269 return data.list;
272 /* Eliminate the schedule dimension "pos" from "executed" and return
273 * the result.
275 static __isl_give isl_union_map *eliminate(__isl_take isl_union_map *executed,
276 int pos, __isl_keep isl_ast_build *build)
278 isl_space *space;
279 isl_map *elim;
281 space = isl_ast_build_get_space(build, 1);
282 space = isl_space_map_from_set(space);
283 elim = isl_map_identity(space);
284 elim = isl_map_eliminate(elim, isl_dim_in, pos, 1);
286 executed = isl_union_map_apply_domain(executed,
287 isl_union_map_from_map(elim));
289 return executed;
292 /* Check if the constraint "c" is a lower bound on dimension "pos",
293 * an upper bound, or independent of dimension "pos".
295 static int constraint_type(isl_constraint *c, int pos)
297 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
298 return 1;
299 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
300 return 2;
301 return 0;
304 /* Compare the types of the constraints "a" and "b",
305 * resulting in constraints that are independent of "depth"
306 * to be sorted before the lower bounds on "depth", which in
307 * turn are sorted before the upper bounds on "depth".
309 static int cmp_constraint(const void *a, const void *b, void *user)
311 int *depth = user;
312 isl_constraint * const *c1 = a;
313 isl_constraint * const *c2 = b;
314 int t1 = constraint_type(*c1, *depth);
315 int t2 = constraint_type(*c2, *depth);
317 return t1 - t2;
320 /* Extract a lower bound on dimension "pos" from constraint "c".
322 * If the constraint is of the form
324 * a x + f(...) >= 0
326 * then we essentially return
328 * l = ceil(-f(...)/a)
330 * However, if the current dimension is strided, then we need to make
331 * sure that the lower bound we construct is of the form
333 * f + s a
335 * with f the offset and s the stride.
336 * We therefore compute
338 * f + s * ceil((l - f)/s)
340 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
341 int pos, __isl_keep isl_ast_build *build)
343 isl_aff *aff;
345 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
346 aff = isl_aff_ceil(aff);
348 if (isl_ast_build_has_stride(build, pos)) {
349 isl_aff *offset;
350 isl_int stride;
352 isl_int_init(stride);
354 offset = isl_ast_build_get_offset(build, pos);
355 isl_ast_build_get_stride(build, pos, &stride);
357 aff = isl_aff_sub(aff, isl_aff_copy(offset));
358 aff = isl_aff_scale_down(aff, stride);
359 aff = isl_aff_ceil(aff);
360 aff = isl_aff_scale(aff, stride);
361 aff = isl_aff_add(aff, offset);
363 isl_int_clear(stride);
366 aff = isl_ast_build_compute_gist_aff(build, aff);
368 return aff;
371 /* Return the exact lower bound (or upper bound if "upper" is set)
372 * of "domain" as a piecewise affine expression.
374 * If we are computing a lower bound (of a strided dimension), then
375 * we need to make sure it is of the form
377 * f + s a
379 * where f is the offset and s is the stride.
380 * We therefore need to include the stride constraint before computing
381 * the minimum.
383 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
384 __isl_keep isl_ast_build *build, int upper)
386 isl_set *stride;
387 isl_map *it_map;
388 isl_pw_aff *pa;
389 isl_pw_multi_aff *pma;
391 domain = isl_set_copy(domain);
392 if (!upper) {
393 stride = isl_ast_build_get_stride_constraint(build);
394 domain = isl_set_intersect(domain, stride);
396 it_map = isl_ast_build_map_to_iterator(build, domain);
397 if (upper)
398 pma = isl_map_lexmax_pw_multi_aff(it_map);
399 else
400 pma = isl_map_lexmin_pw_multi_aff(it_map);
401 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
402 isl_pw_multi_aff_free(pma);
403 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
404 pa = isl_pw_aff_coalesce(pa);
406 return pa;
409 /* Return a list of "n" lower bounds on dimension "pos"
410 * extracted from the "n" constraints starting at "constraint".
411 * If "n" is zero, then we extract a lower bound from "domain" instead.
413 static __isl_give isl_pw_aff_list *lower_bounds(
414 __isl_keep isl_constraint **constraint, int n, int pos,
415 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
417 isl_ctx *ctx;
418 isl_pw_aff_list *list;
419 int i;
421 if (!build)
422 return NULL;
424 if (n == 0) {
425 isl_pw_aff *pa;
426 pa = exact_bound(domain, build, 0);
427 return isl_pw_aff_list_from_pw_aff(pa);
430 ctx = isl_ast_build_get_ctx(build);
431 list = isl_pw_aff_list_alloc(ctx,n);
433 for (i = 0; i < n; ++i) {
434 isl_aff *aff;
436 aff = lower_bound(constraint[i], pos, build);
437 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
440 return list;
443 /* Return a list of "n" upper bounds on dimension "pos"
444 * extracted from the "n" constraints starting at "constraint".
445 * If "n" is zero, then we extract an upper bound from "domain" instead.
447 static __isl_give isl_pw_aff_list *upper_bounds(
448 __isl_keep isl_constraint **constraint, int n, int pos,
449 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
451 isl_ctx *ctx;
452 isl_pw_aff_list *list;
453 int i;
455 if (n == 0) {
456 isl_pw_aff *pa;
457 pa = exact_bound(domain, build, 1);
458 return isl_pw_aff_list_from_pw_aff(pa);
461 ctx = isl_ast_build_get_ctx(build);
462 list = isl_pw_aff_list_alloc(ctx,n);
464 for (i = 0; i < n; ++i) {
465 isl_aff *aff;
467 aff = isl_constraint_get_bound(constraint[i], isl_dim_set, pos);
468 aff = isl_aff_floor(aff);
469 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
472 return list;
475 /* Return an isl_ast_expr that performs the reduction of type "type"
476 * on AST expressions corresponding to the elements in "list".
478 * The list is assumed to contain at least one element.
479 * If the list contains exactly one element, then the returned isl_ast_expr
480 * simply computes that affine expression.
482 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
483 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
485 int i, n;
486 isl_ctx *ctx;
487 isl_ast_expr *expr;
489 if (!list)
490 return NULL;
492 n = isl_pw_aff_list_n_pw_aff(list);
494 if (n == 1)
495 return isl_ast_build_expr_from_pw_aff_internal(build,
496 isl_pw_aff_list_get_pw_aff(list, 0));
498 ctx = isl_pw_aff_list_get_ctx(list);
499 expr = isl_ast_expr_alloc_op(ctx, type, n);
500 if (!expr)
501 return NULL;
503 for (i = 0; i < n; ++i) {
504 isl_ast_expr *expr_i;
506 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
507 isl_pw_aff_list_get_pw_aff(list, i));
508 if (!expr_i)
509 return isl_ast_expr_free(expr);
510 expr->u.op.args[i] = expr_i;
513 return expr;
516 /* Add a guard to "graft" based on "bound" in the case of a degenerate
517 * level (including the special case of an eliminated level).
519 * We eliminate the current dimension, simplify the result in the current
520 * build and add the result as guards to the graft.
522 * Note that we cannot simply drop the constraints on the current dimension
523 * even in the eliminated case, because the single affine expression may
524 * not be explicitly available in "bounds". Moreover, the single affine
525 * expression may only be defined on a subset of the build domain,
526 * so we do in some cases need to insert a guard even in the eliminated case.
528 static __isl_give isl_ast_graft *add_degenerate_guard(
529 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
530 __isl_keep isl_ast_build *build)
532 int depth;
533 isl_set *dom;
535 depth = isl_ast_build_get_depth(build);
537 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
538 if (isl_ast_build_has_stride(build, depth)) {
539 isl_set *stride;
541 stride = isl_ast_build_get_stride_constraint(build);
542 dom = isl_set_intersect(dom, stride);
544 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
545 dom = isl_ast_build_compute_gist(build, dom);
547 graft = isl_ast_graft_add_guard(graft, dom, build);
549 return graft;
552 /* Update "graft" based on "bounds" for the eliminated case.
554 * In the eliminated case, no for node is created, so we only need
555 * to check if "bounds" imply any guards that need to be inserted.
557 static __isl_give isl_ast_graft *refine_eliminated(
558 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
559 __isl_keep isl_ast_build *build)
561 return add_degenerate_guard(graft, bounds, build);
564 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
566 * "build" is the build in which graft->node was created
567 * "sub_build" contains information about the current level itself,
568 * including the single value attained.
570 * We first set the initialization part of the for loop to the single
571 * value attained by the current dimension.
572 * The increment and condition are not strictly needed as the are known
573 * to be "1" and "iterator <= value" respectively.
574 * Then we set the size of the iterator and
575 * check if "bounds" imply any guards that need to be inserted.
577 static __isl_give isl_ast_graft *refine_degenerate(
578 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
579 __isl_keep isl_ast_build *build,
580 __isl_keep isl_ast_build *sub_build)
582 isl_pw_aff *value;
584 if (!graft || !sub_build)
585 return isl_ast_graft_free(graft);
587 value = isl_pw_aff_copy(sub_build->value);
589 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
590 value);
591 if (!graft->node->u.f.init)
592 return isl_ast_graft_free(graft);
594 graft = add_degenerate_guard(graft, bounds, build);
596 return graft;
599 /* Return the intersection of the "n" constraints starting at "constraint"
600 * as a set.
602 static __isl_give isl_set *intersect_constraints(isl_ctx *ctx,
603 __isl_keep isl_constraint **constraint, int n)
605 int i;
606 isl_basic_set *bset;
608 if (n < 1)
609 isl_die(ctx, isl_error_internal,
610 "expecting at least one constraint", return NULL);
612 bset = isl_basic_set_from_constraint(
613 isl_constraint_copy(constraint[0]));
614 for (i = 1; i < n; ++i) {
615 isl_basic_set *bset_i;
617 bset_i = isl_basic_set_from_constraint(
618 isl_constraint_copy(constraint[i]));
619 bset = isl_basic_set_intersect(bset, bset_i);
622 return isl_set_from_basic_set(bset);
625 /* Compute the constraints on the outer dimensions enforced by
626 * graft->node and add those constraints to graft->enforced,
627 * in case the upper bound is expressed as a set "upper".
629 * In particular, if l(...) is a lower bound in "lower", and
631 * -a i + f(...) >= 0 or a i <= f(...)
633 * is an upper bound ocnstraint on the current dimension i,
634 * then the for loop enforces the constraint
636 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
638 * We therefore simply take each lower bound in turn, plug it into
639 * the upper bounds and compute the intersection over all lower bounds.
641 * If a lower bound is a rational expression, then
642 * isl_basic_set_preimage_multi_aff will force this rational
643 * expression to have only integer values. However, the loop
644 * itself does not enforce this integrality constraint. We therefore
645 * use the ceil of the lower bounds instead of the lower bounds themselves.
646 * Other constraints will make sure that the for loop is only executed
647 * when each of the lower bounds attains an integral value.
648 * In particular, potentially rational values only occur in
649 * lower_bound if the offset is a (seemingly) rational expression,
650 * but then outer conditions will make sure that this rational expression
651 * only attains integer values.
653 static __isl_give isl_ast_graft *set_enforced_from_set(
654 __isl_take isl_ast_graft *graft,
655 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
657 isl_space *space;
658 isl_basic_set *enforced;
659 isl_pw_multi_aff *pma;
660 int i, n;
662 if (!graft || !lower)
663 return isl_ast_graft_free(graft);
665 space = isl_set_get_space(upper);
666 enforced = isl_basic_set_universe(isl_space_copy(space));
668 space = isl_space_map_from_set(space);
669 pma = isl_pw_multi_aff_identity(space);
671 n = isl_pw_aff_list_n_pw_aff(lower);
672 for (i = 0; i < n; ++i) {
673 isl_pw_aff *pa;
674 isl_set *enforced_i;
675 isl_basic_set *hull;
676 isl_pw_multi_aff *pma_i;
678 pa = isl_pw_aff_list_get_pw_aff(lower, i);
679 pa = isl_pw_aff_ceil(pa);
680 pma_i = isl_pw_multi_aff_copy(pma);
681 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
682 enforced_i = isl_set_copy(upper);
683 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
684 hull = isl_set_simple_hull(enforced_i);
685 enforced = isl_basic_set_intersect(enforced, hull);
688 isl_pw_multi_aff_free(pma);
690 graft = isl_ast_graft_enforce(graft, enforced);
692 return graft;
695 /* Compute the constraints on the outer dimensions enforced by
696 * graft->node and add those constraints to graft->enforced,
697 * in case the upper bound is expressed as
698 * a list of affine expressions "upper".
700 * The enforced condition is that each lower bound expression is less
701 * than or equal to each upper bound expression.
703 static __isl_give isl_ast_graft *set_enforced_from_list(
704 __isl_take isl_ast_graft *graft,
705 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
707 isl_set *cond;
708 isl_basic_set *enforced;
710 lower = isl_pw_aff_list_copy(lower);
711 upper = isl_pw_aff_list_copy(upper);
712 cond = isl_pw_aff_list_le_set(lower, upper);
713 enforced = isl_set_simple_hull(cond);
714 graft = isl_ast_graft_enforce(graft, enforced);
716 return graft;
719 /* Does "aff" have a negative constant term?
721 static int aff_constant_is_negative(__isl_take isl_set *set,
722 __isl_take isl_aff *aff, void *user)
724 int *neg = user;
725 isl_int v;
727 isl_int_init(v);
728 isl_aff_get_constant(aff, &v);
729 *neg = isl_int_is_neg(v);
730 isl_int_clear(v);
731 isl_set_free(set);
732 isl_aff_free(aff);
734 return *neg ? 0 : -1;
737 /* Does "pa" have a negative constant term over its entire domain?
739 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
741 int r;
742 int *neg = user;
744 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
745 isl_pw_aff_free(pa);
747 return *neg ? 0 : -1;
750 /* Does each element in "list" have a negative constant term?
752 * The callback terminates the iteration as soon an element has been
753 * found that does not have a negative constant term.
755 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
757 int neg = 1;
759 if (isl_pw_aff_list_foreach(list,
760 &pw_aff_constant_is_negative, &neg) < 0 && neg)
761 return -1;
763 return neg;
766 /* Add 1 to each of the elements in "list", where each of these elements
767 * is defined over the internal schedule space of "build".
769 static __isl_give isl_pw_aff_list *list_add_one(
770 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
772 int i, n;
773 isl_space *space;
774 isl_aff *aff;
775 isl_pw_aff *one;
777 space = isl_ast_build_get_space(build, 1);
778 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
779 aff = isl_aff_add_constant_si(aff, 1);
780 one = isl_pw_aff_from_aff(aff);
782 n = isl_pw_aff_list_n_pw_aff(list);
783 for (i = 0; i < n; ++i) {
784 isl_pw_aff *pa;
785 pa = isl_pw_aff_list_get_pw_aff(list, i);
786 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
787 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
790 isl_pw_aff_free(one);
792 return list;
795 /* Set the condition part of the for node graft->node in case
796 * the upper bound is represented as a list of piecewise affine expressions.
798 * In particular, set the condition to
800 * iterator <= min(list of upper bounds)
802 * If each of the upper bounds has a negative constant term, then
803 * set the condition to
805 * iterator < min(list of (upper bound + 1)s)
808 static __isl_give isl_ast_graft *set_for_cond_from_list(
809 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
810 __isl_keep isl_ast_build *build)
812 int neg;
813 isl_ast_expr *bound, *iterator, *cond;
814 enum isl_ast_op_type type = isl_ast_op_le;
816 if (!graft || !list)
817 return isl_ast_graft_free(graft);
819 neg = list_constant_is_negative(list);
820 if (neg < 0)
821 return isl_ast_graft_free(graft);
822 list = isl_pw_aff_list_copy(list);
823 if (neg) {
824 list = list_add_one(list, build);
825 type = isl_ast_op_lt;
828 bound = reduce_list(isl_ast_op_min, list, build);
829 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
830 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
831 graft->node->u.f.cond = cond;
833 isl_pw_aff_list_free(list);
834 if (!graft->node->u.f.cond)
835 return isl_ast_graft_free(graft);
836 return graft;
839 /* Set the condition part of the for node graft->node in case
840 * the upper bound is represented as a set.
842 static __isl_give isl_ast_graft *set_for_cond_from_set(
843 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
844 __isl_keep isl_ast_build *build)
846 isl_ast_expr *cond;
848 if (!graft)
849 return NULL;
851 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
852 graft->node->u.f.cond = cond;
853 if (!graft->node->u.f.cond)
854 return isl_ast_graft_free(graft);
855 return graft;
858 /* Construct an isl_ast_expr for the increment (i.e., stride) of
859 * the current dimension.
861 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
863 int depth;
864 isl_int v;
865 isl_ctx *ctx;
866 isl_ast_expr *inc;
868 ctx = isl_ast_build_get_ctx(build);
869 depth = isl_ast_build_get_depth(build);
871 if (!isl_ast_build_has_stride(build, depth))
872 return isl_ast_expr_alloc_int_si(ctx, 1);
874 isl_int_init(v);
875 isl_ast_build_get_stride(build, depth, &v);
876 inc = isl_ast_expr_alloc_int(ctx, v);
877 isl_int_clear(v);
879 return inc;
882 /* Should we express the loop condition as
884 * iterator <= min(list of upper bounds)
886 * or as a conjunction of constraints?
888 * The first is constructed from a list of upper bounds.
889 * The second is constructed from a set.
891 * If there are no upper bounds in "constraints", then this could mean
892 * that "domain" simply doesn't have an upper bound or that we didn't
893 * pick any upper bound. In the first case, we want to generate the
894 * loop condition as a(n empty) conjunction of constraints
895 * In the second case, we will compute
896 * a single upper bound from "domain" and so we use the list form.
898 * If there are upper bounds in "constraints",
899 * then we use the list form iff the atomic_upper_bound option is set.
901 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
902 __isl_keep isl_set *domain, int depth)
904 if (n_upper > 0)
905 return isl_options_get_ast_build_atomic_upper_bound(ctx);
906 else
907 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
910 /* Fill in the expressions of the for node in graft->node.
912 * In particular,
913 * - set the initialization part of the loop to the maximum of the lower bounds
914 * - set the size of the iterator based on the values attained by the iterator
915 * - extract the increment from the stride of the current dimension
916 * - construct the for condition either based on a list of upper bounds
917 * or on a set of upper bound constraints.
919 static __isl_give isl_ast_graft *set_for_node_expressions(
920 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
921 int use_list, __isl_keep isl_pw_aff_list *upper_list,
922 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
924 isl_ast_node *node;
926 if (!graft)
927 return NULL;
929 build = isl_ast_build_copy(build);
930 build = isl_ast_build_set_enforced(build,
931 isl_ast_graft_get_enforced(graft));
933 node = graft->node;
934 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
935 node->u.f.inc = for_inc(build);
937 if (use_list)
938 graft = set_for_cond_from_list(graft, upper_list, build);
939 else
940 graft = set_for_cond_from_set(graft, upper_set, build);
942 isl_ast_build_free(build);
944 if (!node->u.f.iterator || !node->u.f.init ||
945 !node->u.f.cond || !node->u.f.inc)
946 return isl_ast_graft_free(graft);
948 return graft;
951 /* Update "graft" based on "bounds" and "domain" for the generic,
952 * non-degenerate, case.
954 * "constraints" contains the "n_lower" lower and "n_upper" upper bounds
955 * that the loop node should express.
956 * "domain" is the subset of the intersection of the constraints
957 * for which some code is executed.
959 * There may be zero lower bounds or zero upper bounds in "constraints"
960 * in case the list of constraints was created
961 * based on the atomic option or based on separation with explicit bounds.
962 * In that case, we use "domain" to derive lower and/or upper bounds.
964 * We first compute a list of one or more lower bounds.
966 * Then we decide if we want to express the condition as
968 * iterator <= min(list of upper bounds)
970 * or as a conjunction of constraints.
972 * The set of enforced constraints is then computed either based on
973 * a list of upper bounds or on a set of upper bound constraints.
974 * We do not compute any enforced constraints if we were forced
975 * to compute a lower or upper bound using exact_bound. The domains
976 * of the resulting expressions may imply some bounds on outer dimensions
977 * that we do not want to appear in the enforced constraints since
978 * they are not actually enforced by the corresponding code.
980 * Finally, we fill in the expressions of the for node.
982 static __isl_give isl_ast_graft *refine_generic_bounds(
983 __isl_take isl_ast_graft *graft,
984 __isl_keep isl_constraint **constraint, int n_lower, int n_upper,
985 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
987 int depth;
988 isl_ctx *ctx;
989 isl_pw_aff_list *lower;
990 int use_list;
991 isl_set *upper_set = NULL;
992 isl_pw_aff_list *upper_list = NULL;
994 if (!graft || !build)
995 return isl_ast_graft_free(graft);
997 depth = isl_ast_build_get_depth(build);
998 ctx = isl_ast_graft_get_ctx(graft);
1000 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1002 lower = lower_bounds(constraint, n_lower, depth, domain, build);
1004 if (use_list)
1005 upper_list = upper_bounds(constraint + n_lower, n_upper, depth,
1006 domain, build);
1007 else if (n_upper > 0)
1008 upper_set = intersect_constraints(ctx, constraint + n_lower,
1009 n_upper);
1010 else
1011 upper_set = isl_set_universe(isl_set_get_space(domain));
1013 if (n_lower == 0 || n_upper == 0)
1015 else if (use_list)
1016 graft = set_enforced_from_list(graft, lower, upper_list);
1017 else
1018 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1020 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1021 upper_set, build);
1023 isl_pw_aff_list_free(lower);
1024 isl_pw_aff_list_free(upper_list);
1025 isl_set_free(upper_set);
1027 return graft;
1030 /* How many constraints in the "constraint" array, starting at position "first"
1031 * are of the give type? "n" represents the total number of elements
1032 * in the array.
1034 static int count_constraints(isl_constraint **constraint, int n, int first,
1035 int pos, int type)
1037 int i;
1039 constraint += first;
1041 for (i = 0; first + i < n; i++)
1042 if (constraint_type(constraint[i], pos) != type)
1043 break;
1045 return i;
1048 /* Update "graft" based on "bounds" and "domain" for the generic,
1049 * non-degenerate, case.
1051 * "list" respresent the list of bounds that need to be encoded by
1052 * the for loop (or a guard around the for loop).
1053 * "domain" is the subset of the intersection of the constraints
1054 * for which some code is executed.
1055 * "build" is the build in which graft->node was created.
1057 * We separate lower bounds, upper bounds and constraints that
1058 * are independent of the loop iterator.
1060 * The actual for loop bounds are generated in refine_generic_bounds.
1061 * If there are any constraints that are independent of the loop iterator,
1062 * we need to put a guard around the for loop (which may get hoisted up
1063 * to higher levels) and we call refine_generic_bounds in a build
1064 * where this guard is enforced.
1066 static __isl_give isl_ast_graft *refine_generic_split(
1067 __isl_take isl_ast_graft *graft, __isl_keep isl_constraint_list *list,
1068 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1070 isl_ctx *ctx;
1071 isl_ast_build *for_build;
1072 isl_set *guard;
1073 int n_indep, n_lower, n_upper;
1074 int pos;
1075 int n;
1077 if (!list)
1078 return isl_ast_graft_free(graft);
1080 pos = isl_ast_build_get_depth(build);
1082 if (isl_sort(list->p, list->n, sizeof(isl_constraint *),
1083 &cmp_constraint, &pos) < 0)
1084 return isl_ast_graft_free(graft);
1086 n = list->n;
1087 n_indep = count_constraints(list->p, n, 0, pos, 0);
1088 n_lower = count_constraints(list->p, n, n_indep, pos, 1);
1089 n_upper = count_constraints(list->p, n, n_indep + n_lower, pos, 2);
1091 if (n_indep == 0)
1092 return refine_generic_bounds(graft,
1093 list->p + n_indep, n_lower, n_upper, domain, build);
1095 ctx = isl_ast_graft_get_ctx(graft);
1096 guard = intersect_constraints(ctx, list->p, n_indep);
1098 for_build = isl_ast_build_copy(build);
1099 for_build = isl_ast_build_restrict_pending(for_build,
1100 isl_set_copy(guard));
1101 graft = refine_generic_bounds(graft,
1102 list->p + n_indep, n_lower, n_upper, domain, for_build);
1103 isl_ast_build_free(for_build);
1105 graft = isl_ast_graft_add_guard(graft, guard, build);
1107 return graft;
1110 /* Update "graft" based on "bounds" and "domain" for the generic,
1111 * non-degenerate, case.
1113 * "bounds" respresent the bounds that need to be encoded by
1114 * the for loop (or a guard around the for loop).
1115 * "domain" is the subset of "bounds" for which some code is executed.
1116 * "build" is the build in which graft->node was created.
1118 * We break up "bounds" into a list of constraints and continue with
1119 * refine_generic_split.
1121 static __isl_give isl_ast_graft *refine_generic(
1122 __isl_take isl_ast_graft *graft,
1123 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1124 __isl_keep isl_ast_build *build)
1126 isl_constraint_list *list;
1128 if (!build || !graft)
1129 return isl_ast_graft_free(graft);
1131 bounds = isl_basic_set_copy(bounds);
1132 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1133 list = isl_constraint_list_from_basic_set(bounds);
1135 graft = refine_generic_split(graft, list, domain, build);
1137 isl_constraint_list_free(list);
1138 return graft;
1141 /* Create a for node for the current level.
1143 * Mark the for node degenerate if "degenerate" is set.
1145 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1146 int degenerate)
1148 int depth;
1149 isl_id *id;
1150 isl_ast_node *node;
1152 if (!build)
1153 return NULL;
1155 depth = isl_ast_build_get_depth(build);
1156 id = isl_ast_build_get_iterator_id(build, depth);
1157 node = isl_ast_node_alloc_for(id);
1158 if (degenerate)
1159 node = isl_ast_node_for_mark_degenerate(node);
1161 return node;
1164 /* Create an AST node for the current dimension based on
1165 * the schedule domain "bounds" and return the node encapsulated
1166 * in an isl_ast_graft.
1168 * "executed" is the current inverse schedule, taking into account
1169 * the bounds in "bounds"
1170 * "domain" is the domain of "executed", with inner dimensions projected out.
1171 * It may be a strict subset of "bounds" in case "bounds" was created
1172 * based on the atomic option or based on separation with explicit bounds.
1174 * "domain" may satisfy additional equalities that result
1175 * from intersecting "executed" with "bounds" in add_node.
1176 * It may also satisfy some global constraints that were dropped out because
1177 * we performed separation with explicit bounds.
1178 * The very first step is then to copy these constraints to "bounds".
1180 * We consider three builds,
1181 * "build" is the one in which the current level is created,
1182 * "body_build" is the build in which the next level is created,
1183 * "sub_build" is essentially the same as "body_build", except that
1184 * the depth has not been increased yet.
1186 * "build" already contains information (in strides and offsets)
1187 * about the strides at the current level, but this information is not
1188 * reflected in the build->domain.
1189 * We first add this information and the "bounds" to the sub_build->domain.
1190 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1191 * only a single value and whether this single value can be represented using
1192 * a single affine expression.
1193 * In the first case, the current level is considered "degenerate".
1194 * In the second, sub-case, the current level is considered "eliminated".
1195 * Eliminated level don't need to be reflected in the AST since we can
1196 * simply plug in the affine expression. For degenerate, but non-eliminated,
1197 * levels, we do introduce a for node, but mark is as degenerate so that
1198 * it can be printed as an assignment of the single value to the loop
1199 * "iterator".
1201 * If the current level is eliminated, we eliminate the current dimension
1202 * from the inverse schedule to make sure no inner dimensions depend
1203 * on the current dimension. Otherwise, we create a for node, marking
1204 * it degenerate if appropriate. The initial for node is still incomplete
1205 * and will be completed in either refine_degenerate or refine_generic.
1207 * We then generate a sequence of grafts for the next level,
1208 * create a surrounding graft for the current level and insert
1209 * the for node we created (if the current level is not eliminated).
1211 * Finally, we set the bounds of the for loop and insert guards
1212 * (either in the AST or in the graft) in one of
1213 * refine_eliminated, refine_degenerate or refine_generic.
1215 static __isl_give isl_ast_graft *create_node_scaled(
1216 __isl_take isl_union_map *executed,
1217 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1218 __isl_take isl_ast_build *build)
1220 int depth;
1221 int degenerate, eliminated;
1222 isl_basic_set *hull;
1223 isl_ast_node *node = NULL;
1224 isl_ast_graft *graft;
1225 isl_ast_graft_list *children;
1226 isl_ast_build *sub_build;
1227 isl_ast_build *body_build;
1229 domain = isl_ast_build_eliminate_divs(build, domain);
1230 domain = isl_set_detect_equalities(domain);
1231 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1232 bounds = isl_basic_set_intersect(bounds, hull);
1234 depth = isl_ast_build_get_depth(build);
1235 sub_build = isl_ast_build_copy(build);
1236 sub_build = isl_ast_build_include_stride(sub_build);
1237 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1238 isl_basic_set_copy(bounds));
1239 degenerate = isl_ast_build_has_value(sub_build);
1240 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1241 if (degenerate < 0 || eliminated < 0)
1242 executed = isl_union_map_free(executed);
1243 if (eliminated)
1244 executed = eliminate(executed, depth, build);
1245 else
1246 node = create_for(build, degenerate);
1248 body_build = isl_ast_build_copy(sub_build);
1249 body_build = isl_ast_build_increase_depth(body_build);
1250 children = generate_next_level(executed,
1251 isl_ast_build_copy(body_build));
1253 graft = isl_ast_graft_alloc_level(children, sub_build);
1254 if (!eliminated)
1255 graft = isl_ast_graft_insert_for(graft, node);
1256 if (eliminated)
1257 graft = refine_eliminated(graft, bounds, build);
1258 else if (degenerate)
1259 graft = refine_degenerate(graft, bounds, build, sub_build);
1260 else
1261 graft = refine_generic(graft, bounds, domain, build);
1263 isl_ast_build_free(body_build);
1264 isl_ast_build_free(sub_build);
1265 isl_ast_build_free(build);
1266 isl_basic_set_free(bounds);
1267 isl_set_free(domain);
1269 return graft;
1272 /* Internal data structure for checking if all constraints involving
1273 * the input dimension "depth" are such that the other coefficients
1274 * are multiples of "m", reducing "m" if they are not.
1275 * If "m" is reduced all the way down to "1", then the check has failed
1276 * and we break out of the iteration.
1277 * "d" is an initialized isl_int that can be used internally.
1279 struct isl_check_scaled_data {
1280 int depth;
1281 isl_int m, d;
1284 /* If constraint "c" involves the input dimension data->depth,
1285 * then make sure that all the other coefficients are multiples of data->m,
1286 * reducing data->m if needed.
1287 * Break out of the iteration if data->m has become equal to "1".
1289 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1291 struct isl_check_scaled_data *data = user;
1292 int i, j, n;
1293 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1294 isl_dim_div };
1296 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1297 isl_constraint_free(c);
1298 return 0;
1301 for (i = 0; i < 4; ++i) {
1302 n = isl_constraint_dim(c, t[i]);
1303 for (j = 0; j < n; ++j) {
1304 if (t[i] == isl_dim_in && j == data->depth)
1305 continue;
1306 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1307 continue;
1308 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1309 isl_int_gcd(data->m, data->m, data->d);
1310 if (isl_int_is_one(data->m))
1311 break;
1313 if (j < n)
1314 break;
1317 isl_constraint_free(c);
1319 return i < 4 ? -1 : 0;
1322 /* For each constraint of "bmap" that involves the input dimension data->depth,
1323 * make sure that all the other coefficients are multiples of data->m,
1324 * reducing data->m if needed.
1325 * Break out of the iteration if data->m has become equal to "1".
1327 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1329 int r;
1331 r = isl_basic_map_foreach_constraint(bmap,
1332 &constraint_check_scaled, user);
1333 isl_basic_map_free(bmap);
1335 return r;
1338 /* For each constraint of "map" that involves the input dimension data->depth,
1339 * make sure that all the other coefficients are multiples of data->m,
1340 * reducing data->m if needed.
1341 * Break out of the iteration if data->m has become equal to "1".
1343 static int map_check_scaled(__isl_take isl_map *map, void *user)
1345 int r;
1347 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1348 isl_map_free(map);
1350 return r;
1353 /* Create an AST node for the current dimension based on
1354 * the schedule domain "bounds" and return the node encapsulated
1355 * in an isl_ast_graft.
1357 * "executed" is the current inverse schedule, taking into account
1358 * the bounds in "bounds"
1359 * "domain" is the domain of "executed", with inner dimensions projected out.
1362 * Before moving on to the actual AST node construction in create_node_scaled,
1363 * we first check if the current dimension is strided and if we can scale
1364 * down this stride. Note that we only do this if the ast_build_scale_strides
1365 * option is set.
1367 * In particular, let the current dimension take on values
1369 * f + s a
1371 * with a an integer. We check if we can find an integer m that (obviouly)
1372 * divides both f and s.
1374 * If so, we check if the current dimension only appears in constraints
1375 * where the coefficients of the other variables are multiples of m.
1376 * We perform this extra check to avoid the risk of introducing
1377 * divisions by scaling down the current dimension.
1379 * If so, we scale the current dimension down by a factor of m.
1380 * That is, we plug in
1382 * i = m i' (1)
1384 * Note that in principle we could always scale down strided loops
1385 * by plugging in
1387 * i = f + s i'
1389 * but this may result in i' taking on larger values than the original i,
1390 * due to the shift by "f".
1391 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1393 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1394 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1395 __isl_take isl_ast_build *build)
1397 struct isl_check_scaled_data data;
1398 isl_ctx *ctx;
1399 isl_aff *offset;
1401 ctx = isl_ast_build_get_ctx(build);
1402 if (!isl_options_get_ast_build_scale_strides(ctx))
1403 return create_node_scaled(executed, bounds, domain, build);
1405 data.depth = isl_ast_build_get_depth(build);
1406 if (!isl_ast_build_has_stride(build, data.depth))
1407 return create_node_scaled(executed, bounds, domain, build);
1409 isl_int_init(data.m);
1410 isl_int_init(data.d);
1412 offset = isl_ast_build_get_offset(build, data.depth);
1413 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1414 offset = isl_aff_free(offset);
1415 offset = isl_aff_scale_down(offset, data.m);
1416 if (isl_aff_get_denominator(offset, &data.d) < 0)
1417 executed = isl_union_map_free(executed);
1419 if (isl_int_is_divisible_by(data.m, data.d))
1420 isl_int_divexact(data.m, data.m, data.d);
1421 else
1422 isl_int_set_si(data.m, 1);
1424 if (!isl_int_is_one(data.m)) {
1425 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1426 &data) < 0 &&
1427 !isl_int_is_one(data.m))
1428 executed = isl_union_map_free(executed);
1431 if (!isl_int_is_one(data.m)) {
1432 isl_space *space;
1433 isl_multi_aff *ma;
1434 isl_aff *aff;
1435 isl_map *map;
1436 isl_union_map *umap;
1438 space = isl_ast_build_get_space(build, 1);
1439 space = isl_space_map_from_set(space);
1440 ma = isl_multi_aff_identity(space);
1441 aff = isl_multi_aff_get_aff(ma, data.depth);
1442 aff = isl_aff_scale(aff, data.m);
1443 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1445 bounds = isl_basic_set_preimage_multi_aff(bounds,
1446 isl_multi_aff_copy(ma));
1447 domain = isl_set_preimage_multi_aff(domain,
1448 isl_multi_aff_copy(ma));
1449 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1450 umap = isl_union_map_from_map(map);
1451 executed = isl_union_map_apply_domain(executed,
1452 isl_union_map_copy(umap));
1453 build = isl_ast_build_scale_down(build, data.m, umap);
1455 isl_aff_free(offset);
1457 isl_int_clear(data.d);
1458 isl_int_clear(data.m);
1460 return create_node_scaled(executed, bounds, domain, build);
1463 /* Add the basic set to the list that "user" points to.
1465 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1467 isl_basic_set_list **list = user;
1469 *list = isl_basic_set_list_add(*list, bset);
1471 return 0;
1474 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1476 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1477 __isl_take isl_set *set)
1479 int n;
1480 isl_ctx *ctx;
1481 isl_basic_set_list *list;
1483 if (!set)
1484 return NULL;
1486 ctx = isl_set_get_ctx(set);
1488 n = isl_set_n_basic_set(set);
1489 list = isl_basic_set_list_alloc(ctx, n);
1490 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1491 list = isl_basic_set_list_free(list);
1493 isl_set_free(set);
1494 return list;
1497 /* Generate code for the schedule domain "bounds"
1498 * and add the result to "list".
1500 * We mainly detect strides and additional equalities here
1501 * and then pass over control to create_node.
1503 * "bounds" reflects the bounds on the current dimension and possibly
1504 * some extra conditions on outer dimensions.
1505 * It does not, however, include any divs involving the current dimension,
1506 * so it does not capture any stride constraints.
1507 * We therefore need to compute that part of the schedule domain that
1508 * intersects with "bounds" and derive the strides from the result.
1510 static __isl_give isl_ast_graft_list *add_node(
1511 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1512 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1514 isl_ast_graft *graft;
1515 isl_set *domain = NULL;
1516 isl_union_set *uset;
1517 int empty;
1519 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1520 executed = isl_union_map_intersect_domain(executed, uset);
1521 empty = isl_union_map_is_empty(executed);
1522 if (empty < 0)
1523 goto error;
1524 if (empty)
1525 goto done;
1527 uset = isl_union_map_domain(isl_union_map_copy(executed));
1528 domain = isl_set_from_union_set(uset);
1529 domain = isl_ast_build_compute_gist(build, domain);
1530 empty = isl_set_is_empty(domain);
1531 if (empty < 0)
1532 goto error;
1533 if (empty)
1534 goto done;
1536 domain = isl_ast_build_eliminate_inner(build, domain);
1537 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1539 graft = create_node(executed, bounds, domain,
1540 isl_ast_build_copy(build));
1541 list = isl_ast_graft_list_add(list, graft);
1542 isl_ast_build_free(build);
1543 return list;
1544 error:
1545 list = isl_ast_graft_list_free(list);
1546 done:
1547 isl_set_free(domain);
1548 isl_basic_set_free(bounds);
1549 isl_union_map_free(executed);
1550 isl_ast_build_free(build);
1551 return list;
1554 struct isl_domain_follows_at_depth_data {
1555 int depth;
1556 isl_basic_set **piece;
1559 /* Does any element of i follow or coincide with any element of j
1560 * at the current depth (data->depth) for equal values of the outer
1561 * dimensions?
1563 static int domain_follows_at_depth(int i, int j, void *user)
1565 struct isl_domain_follows_at_depth_data *data = user;
1566 isl_basic_map *test;
1567 int empty;
1568 int l;
1570 test = isl_basic_map_from_domain_and_range(
1571 isl_basic_set_copy(data->piece[i]),
1572 isl_basic_set_copy(data->piece[j]));
1573 for (l = 0; l < data->depth; ++l)
1574 test = isl_basic_map_equate(test, isl_dim_in, l,
1575 isl_dim_out, l);
1576 test = isl_basic_map_order_ge(test, isl_dim_in, data->depth,
1577 isl_dim_out, data->depth);
1578 empty = isl_basic_map_is_empty(test);
1579 isl_basic_map_free(test);
1581 return empty < 0 ? -1 : !empty;
1584 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1585 __isl_keep isl_basic_set_list *domain_list,
1586 __isl_keep isl_union_map *executed,
1587 __isl_keep isl_ast_build *build);
1589 /* Generate code for the "n" schedule domains in "domain_list"
1590 * with positions specified by the entries of the "pos" array
1591 * and add the results to "list".
1593 * The "n" domains form a strongly connected component in the ordering.
1594 * If n is larger than 1, then this means that we cannot determine a valid
1595 * ordering for the n domains in the component. This should be fairly
1596 * rare because the individual domains have been made disjoint first.
1597 * The problem is that the domains may be integrally disjoint but not
1598 * rationally disjoint. For example, we may have domains
1600 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1602 * These two domains have an empty intersection, but their rational
1603 * relaxations do intersect. It is impossible to order these domains
1604 * in the second dimension because the first should be ordered before
1605 * the second for outer dimension equal to 0, while it should be ordered
1606 * after for outer dimension equal to 1.
1608 * This may happen in particular in case of unrolling since the domain
1609 * of each slice is replaced by its simple hull.
1611 * We collect the basic sets in the component, call isl_set_make_disjoint
1612 * and try again. Note that we rely here on isl_set_make_disjoint also
1613 * making the basic sets rationally disjoint. If the basic sets
1614 * are rationally disjoint, then the ordering problem does not occur.
1615 * To see this, there can only be a problem if there are points
1616 * (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
1617 * a < c and b > d. This means that either the interval spanned
1618 * by a en b lies inside that spanned by c and or the other way around.
1619 * In either case, there is a point inside both intervals with the
1620 * convex combination in terms of a and b and in terms of c and d.
1621 * Taking the same combination of i and j gives a point in the intersection.
1623 static __isl_give isl_ast_graft_list *add_nodes(
1624 __isl_take isl_ast_graft_list *list, int *pos, int n,
1625 __isl_keep isl_basic_set_list *domain_list,
1626 __isl_keep isl_union_map *executed,
1627 __isl_keep isl_ast_build *build)
1629 int i;
1630 isl_basic_set *bset;
1631 isl_set *set;
1633 bset = isl_basic_set_list_get_basic_set(domain_list, pos[0]);
1634 if (n == 1)
1635 return add_node(list, isl_union_map_copy(executed), bset,
1636 isl_ast_build_copy(build));
1638 set = isl_set_from_basic_set(bset);
1639 for (i = 1; i < n; ++i) {
1640 bset = isl_basic_set_list_get_basic_set(domain_list, pos[i]);
1641 set = isl_set_union(set, isl_set_from_basic_set(bset));
1644 set = isl_set_make_disjoint(set);
1645 if (isl_set_n_basic_set(set) == n)
1646 isl_die(isl_ast_graft_list_get_ctx(list), isl_error_internal,
1647 "unable to separate loop parts", goto error);
1648 domain_list = isl_basic_set_list_from_set(set);
1649 list = isl_ast_graft_list_concat(list,
1650 generate_sorted_domains(domain_list, executed, build));
1651 isl_basic_set_list_free(domain_list);
1653 return list;
1654 error:
1655 isl_set_free(set);
1656 return isl_ast_graft_list_free(list);
1659 /* Sort the domains in "domain_list" according to the execution order
1660 * at the current depth (for equal values of the outer dimensions),
1661 * generate code for each of them, collecting the results in a list.
1662 * If no code is generated (because the intersection of the inverse schedule
1663 * with the domains turns out to be empty), then an empty list is returned.
1665 * The caller is responsible for ensuring that the basic sets in "domain_list"
1666 * are pair-wise disjoint. It can, however, in principle happen that
1667 * two basic sets should be ordered one way for one value of the outer
1668 * dimensions and the other way for some other value of the outer dimensions.
1669 * We therefore play safe and look for strongly connected components.
1670 * The function add_nodes takes care of handling non-trivial components.
1672 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1673 __isl_keep isl_basic_set_list *domain_list,
1674 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1676 isl_ctx *ctx;
1677 isl_ast_graft_list *list;
1678 struct isl_domain_follows_at_depth_data data;
1679 struct isl_tarjan_graph *g;
1680 int i, n;
1682 if (!domain_list)
1683 return NULL;
1685 ctx = isl_basic_set_list_get_ctx(domain_list);
1686 n = isl_basic_set_list_n_basic_set(domain_list);
1687 list = isl_ast_graft_list_alloc(ctx, n);
1688 if (n == 0)
1689 return list;
1690 if (n == 1)
1691 return add_node(list, isl_union_map_copy(executed),
1692 isl_basic_set_list_get_basic_set(domain_list, 0),
1693 isl_ast_build_copy(build));
1695 data.depth = isl_ast_build_get_depth(build);
1696 data.piece = domain_list->p;
1697 g = isl_tarjan_graph_init(ctx, n, &domain_follows_at_depth, &data);
1699 i = 0;
1700 while (list && n) {
1701 int first;
1703 if (g->order[i] == -1)
1704 isl_die(ctx, isl_error_internal, "cannot happen",
1705 goto error);
1706 first = i;
1707 while (g->order[i] != -1) {
1708 ++i; --n;
1710 list = add_nodes(list, g->order + first, i - first,
1711 domain_list, executed, build);
1712 ++i;
1715 if (0)
1716 error: list = isl_ast_graft_list_free(list);
1717 isl_tarjan_graph_free(g);
1719 return list;
1722 struct isl_shared_outer_data {
1723 int depth;
1724 isl_basic_set **piece;
1727 /* Do elements i and j share any values for the outer dimensions?
1729 static int shared_outer(int i, int j, void *user)
1731 struct isl_shared_outer_data *data = user;
1732 isl_basic_map *test;
1733 int empty;
1734 int l;
1736 test = isl_basic_map_from_domain_and_range(
1737 isl_basic_set_copy(data->piece[i]),
1738 isl_basic_set_copy(data->piece[j]));
1739 for (l = 0; l < data->depth; ++l)
1740 test = isl_basic_map_equate(test, isl_dim_in, l,
1741 isl_dim_out, l);
1742 empty = isl_basic_map_is_empty(test);
1743 isl_basic_map_free(test);
1745 return empty < 0 ? -1 : !empty;
1748 /* Call generate_sorted_domains on a list containing the elements
1749 * of "domain_list indexed by the first "n" elements of "pos".
1751 static __isl_give isl_ast_graft_list *generate_sorted_domains_part(
1752 __isl_keep isl_basic_set_list *domain_list, int *pos, int n,
1753 __isl_keep isl_union_map *executed,
1754 __isl_keep isl_ast_build *build)
1756 int i;
1757 isl_ctx *ctx;
1758 isl_basic_set_list *slice;
1759 isl_ast_graft_list *list;
1761 ctx = isl_ast_build_get_ctx(build);
1762 slice = isl_basic_set_list_alloc(ctx, n);
1763 for (i = 0; i < n; ++i) {
1764 isl_basic_set *bset;
1766 bset = isl_basic_set_copy(domain_list->p[pos[i]]);
1767 slice = isl_basic_set_list_add(slice, bset);
1770 list = generate_sorted_domains(slice, executed, build);
1771 isl_basic_set_list_free(slice);
1773 return list;
1776 /* Look for any (weakly connected) components in the "domain_list"
1777 * of domains that share some values of the outer dimensions.
1778 * That is, domains in different components do not share any values
1779 * of the outer dimensions. This means that these components
1780 * can be freely reorderd.
1781 * Within each of the components, we sort the domains according
1782 * to the execution order at the current depth.
1784 * We fuse the result of each call to generate_sorted_domains_part
1785 * into a list with either zero or one graft and collect these (at most)
1786 * single element lists into a bigger list. This means that the elements of the
1787 * final list can be freely reordered. In particular, we sort them
1788 * according to an arbitrary but fixed ordering to ease merging of
1789 * graft lists from different components.
1791 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1792 __isl_keep isl_basic_set_list *domain_list,
1793 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1795 int i, n;
1796 isl_ctx *ctx;
1797 isl_ast_graft_list *list;
1798 struct isl_shared_outer_data data;
1799 struct isl_tarjan_graph *g;
1801 if (!domain_list)
1802 return NULL;
1804 n = isl_basic_set_list_n_basic_set(domain_list);
1805 if (n <= 1)
1806 return generate_sorted_domains(domain_list, executed, build);
1808 ctx = isl_basic_set_list_get_ctx(domain_list);
1810 data.depth = isl_ast_build_get_depth(build);
1811 data.piece = domain_list->p;
1812 g = isl_tarjan_graph_init(ctx, n, &shared_outer, &data);
1813 if (!g)
1814 return NULL;
1816 i = 0;
1817 do {
1818 int first;
1819 isl_ast_graft_list *list_c;
1821 if (g->order[i] == -1)
1822 isl_die(ctx, isl_error_internal, "cannot happen",
1823 break);
1824 first = i;
1825 while (g->order[i] != -1) {
1826 ++i; --n;
1828 if (first == 0 && n == 0) {
1829 isl_tarjan_graph_free(g);
1830 return generate_sorted_domains(domain_list,
1831 executed, build);
1833 list_c = generate_sorted_domains_part(domain_list,
1834 g->order + first, i - first, executed, build);
1835 list_c = isl_ast_graft_list_fuse(list_c, build);
1836 if (first == 0)
1837 list = list_c;
1838 else
1839 list = isl_ast_graft_list_concat(list, list_c);
1840 ++i;
1841 } while (list && n);
1843 if (n > 0)
1844 list = isl_ast_graft_list_free(list);
1846 list = isl_ast_graft_list_sort(list);
1848 isl_tarjan_graph_free(g);
1850 return list;
1853 /* Internal data for separate_domain.
1855 * "explicit" is set if we only want to use explicit bounds.
1857 * "domain" collects the separated domains.
1859 struct isl_separate_domain_data {
1860 isl_ast_build *build;
1861 int explicit;
1862 isl_set *domain;
1865 /* Extract implicit bounds on the current dimension for the executed "map".
1867 * The domain of "map" may involve inner dimensions, so we
1868 * need to eliminate them.
1870 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
1871 __isl_keep isl_ast_build *build)
1873 isl_set *domain;
1875 domain = isl_map_domain(map);
1876 domain = isl_ast_build_eliminate(build, domain);
1878 return domain;
1881 /* Extract explicit bounds on the current dimension for the executed "map".
1883 * Rather than eliminating the inner dimensions as in implicit_bounds,
1884 * we simply drop any constraints involving those inner dimensions.
1885 * The idea is that most bounds that are implied by constraints on the
1886 * inner dimensions will be enforced by for loops and not by explicit guards.
1887 * There is then no need to separate along those bounds.
1889 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
1890 __isl_keep isl_ast_build *build)
1892 isl_set *domain;
1893 int depth, dim;
1895 dim = isl_map_dim(map, isl_dim_out);
1896 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
1898 domain = isl_map_domain(map);
1899 depth = isl_ast_build_get_depth(build);
1900 dim = isl_set_dim(domain, isl_dim_set);
1901 domain = isl_set_detect_equalities(domain);
1902 domain = isl_set_drop_constraints_involving_dims(domain,
1903 isl_dim_set, depth + 1, dim - (depth + 1));
1904 domain = isl_set_remove_divs_involving_dims(domain,
1905 isl_dim_set, depth, 1);
1906 domain = isl_set_remove_unknown_divs(domain);
1908 return domain;
1911 /* Split data->domain into pieces that intersect with the range of "map"
1912 * and pieces that do not intersect with the range of "map"
1913 * and then add that part of the range of "map" that does not intersect
1914 * with data->domain.
1916 static int separate_domain(__isl_take isl_map *map, void *user)
1918 struct isl_separate_domain_data *data = user;
1919 isl_set *domain;
1920 isl_set *d1, *d2;
1922 if (data->explicit)
1923 domain = explicit_bounds(map, data->build);
1924 else
1925 domain = implicit_bounds(map, data->build);
1927 domain = isl_set_coalesce(domain);
1928 domain = isl_set_make_disjoint(domain);
1929 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
1930 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
1931 data->domain = isl_set_intersect(data->domain, domain);
1932 data->domain = isl_set_union(data->domain, d1);
1933 data->domain = isl_set_union(data->domain, d2);
1935 return 0;
1938 /* Separate the schedule domains of "executed".
1940 * That is, break up the domain of "executed" into basic sets,
1941 * such that for each basic set S, every element in S is associated with
1942 * the same domain spaces.
1944 * "space" is the (single) domain space of "executed".
1946 static __isl_give isl_set *separate_schedule_domains(
1947 __isl_take isl_space *space, __isl_take isl_union_map *executed,
1948 __isl_keep isl_ast_build *build)
1950 struct isl_separate_domain_data data = { build };
1951 isl_ctx *ctx;
1953 ctx = isl_ast_build_get_ctx(build);
1954 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
1955 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
1956 data.domain = isl_set_empty(space);
1957 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
1958 data.domain = isl_set_free(data.domain);
1960 isl_union_map_free(executed);
1961 return data.domain;
1964 /* Temporary data used during the search for a lower bound for unrolling.
1966 * "domain" is the original set for which to find a lower bound
1967 * "depth" is the dimension for which to find a lower boudn
1969 * "lower" is the best lower bound found so far. It is NULL if we have not
1970 * found any yet.
1971 * "n" is the corresponding size. If lower is NULL, then the value of n
1972 * is undefined.
1974 * "tmp" is a temporary initialized isl_int.
1976 struct isl_find_unroll_data {
1977 isl_set *domain;
1978 int depth;
1980 isl_aff *lower;
1981 int *n;
1982 isl_int tmp;
1985 /* Check if we can use "c" as a lower bound and if it is better than
1986 * any previously found lower bound.
1988 * If "c" does not involve the dimension at the current depth,
1989 * then we cannot use it.
1990 * Otherwise, let "c" be of the form
1992 * i >= f(j)/a
1994 * We compute the maximal value of
1996 * -ceil(f(j)/a)) + i + 1
1998 * over the domain. If there is such a value "n", then we know
2000 * -ceil(f(j)/a)) + i + 1 <= n
2002 * or
2004 * i < ceil(f(j)/a)) + n
2006 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2007 * We just need to check if we have found any lower bound before and
2008 * if the new lower bound is better (smaller n) than the previously found
2009 * lower bounds.
2011 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2012 __isl_keep isl_constraint *c)
2014 isl_aff *aff, *lower;
2015 enum isl_lp_result res;
2017 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2018 return 0;
2020 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2021 lower = isl_aff_ceil(lower);
2022 aff = isl_aff_copy(lower);
2023 aff = isl_aff_neg(aff);
2024 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2025 aff = isl_aff_add_constant_si(aff, 1);
2026 res = isl_set_max(data->domain, aff, &data->tmp);
2027 isl_aff_free(aff);
2029 if (res == isl_lp_error)
2030 goto error;
2031 if (res == isl_lp_unbounded) {
2032 isl_aff_free(lower);
2033 return 0;
2036 if (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0) {
2037 isl_aff_free(data->lower);
2038 data->lower = lower;
2039 *data->n = isl_int_get_si(data->tmp);
2040 } else
2041 isl_aff_free(lower);
2043 return 1;
2044 error:
2045 isl_aff_free(lower);
2046 return -1;
2049 /* Check if we can use "c" as a lower bound and if it is better than
2050 * any previously found lower bound.
2052 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2054 struct isl_find_unroll_data *data;
2055 int r;
2057 data = (struct isl_find_unroll_data *) user;
2058 r = update_unrolling_lower_bound(data, c);
2059 isl_constraint_free(c);
2061 return r;
2064 /* Look for a lower bound l(i) on the dimension at "depth"
2065 * and a size n such that "domain" is a subset of
2067 * { [i] : l(i) <= i_d < l(i) + n }
2069 * where d is "depth" and l(i) depends only on earlier dimensions.
2070 * Furthermore, try and find a lower bound such that n is as small as possible.
2071 * In particular, "n" needs to be finite.
2073 * Inner dimensions have been eliminated from "domain" by the caller.
2075 * We first construct a collection of lower bounds on the input set
2076 * by computing its simple hull. We then iterate through them,
2077 * discarding those that we cannot use (either because they do not
2078 * involve the dimension at "depth" or because they have no corresponding
2079 * upper bound, meaning that "n" would be unbounded) and pick out the
2080 * best from the remaining ones.
2082 * If we cannot find a suitable lower bound, then we consider that
2083 * to be an error.
2085 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2086 int depth, int *n)
2088 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2089 isl_basic_set *hull;
2091 isl_int_init(data.tmp);
2092 hull = isl_set_simple_hull(isl_set_copy(domain));
2094 if (isl_basic_set_foreach_constraint(hull,
2095 &constraint_find_unroll, &data) < 0)
2096 goto error;
2098 isl_basic_set_free(hull);
2099 isl_int_clear(data.tmp);
2101 if (!data.lower)
2102 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2103 "cannot find lower bound for unrolling", return NULL);
2105 return data.lower;
2106 error:
2107 isl_basic_set_free(hull);
2108 isl_int_clear(data.tmp);
2109 return isl_aff_free(data.lower);
2112 /* Intersect "set" with the constraint
2114 * i_"depth" = aff + offset
2116 static __isl_give isl_set *at_offset(__isl_take isl_set *set, int depth,
2117 __isl_keep isl_aff *aff, int offset)
2119 isl_constraint *eq;
2121 aff = isl_aff_copy(aff);
2122 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2123 aff = isl_aff_add_constant_si(aff, offset);
2124 eq = isl_equality_from_aff(aff);
2125 set = isl_set_add_constraint(set, eq);
2127 return set;
2130 /* Return a list of basic sets, one for each value of the current dimension
2131 * in "domain".
2132 * The divs that involve the current dimension have not been projected out
2133 * from this domain.
2135 * Since we are going to be iterating over the individual values,
2136 * we first check if there are any strides on the current dimension.
2137 * If there is, we rewrite the current dimension i as
2139 * i = stride i' + offset
2141 * and then iterate over individual values of i' instead.
2143 * We then look for a lower bound on i' and a size such that the domain
2144 * is a subset of
2146 * { [j,i'] : l(j) <= i' < l(j) + n }
2148 * and then take slices of the domain at values of i'
2149 * between l(j) and l(j) + n - 1.
2151 * We compute the unshifted simple hull of each slice to ensure that
2152 * we have a single basic set per offset. The slicing constraint
2153 * is preserved by taking the unshifted simple hull, so these basic sets
2154 * remain disjoint. The constraints that are dropped by taking the hull
2155 * will be taken into account at the next level, as in the case of the
2156 * atomic option.
2158 * Finally, we map i' back to i and add each basic set to the list.
2160 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2161 __isl_keep isl_ast_build *build)
2163 int i, n;
2164 int depth;
2165 isl_ctx *ctx;
2166 isl_aff *lower;
2167 isl_basic_set_list *list;
2168 isl_multi_aff *expansion;
2169 isl_basic_map *bmap;
2171 if (!domain)
2172 return NULL;
2174 ctx = isl_set_get_ctx(domain);
2175 depth = isl_ast_build_get_depth(build);
2176 build = isl_ast_build_copy(build);
2177 domain = isl_ast_build_eliminate_inner(build, domain);
2178 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2179 expansion = isl_ast_build_get_stride_expansion(build);
2181 domain = isl_set_preimage_multi_aff(domain,
2182 isl_multi_aff_copy(expansion));
2183 domain = isl_ast_build_eliminate_divs(build, domain);
2185 isl_ast_build_free(build);
2187 list = isl_basic_set_list_alloc(ctx, 0);
2189 lower = find_unroll_lower_bound(domain, depth, &n);
2190 if (!lower)
2191 list = isl_basic_set_list_free(list);
2193 bmap = isl_basic_map_from_multi_aff(expansion);
2195 for (i = 0; list && i < n; ++i) {
2196 isl_set *set;
2197 isl_basic_set *bset;
2199 set = at_offset(isl_set_copy(domain), depth, lower, i);
2200 bset = isl_set_unshifted_simple_hull(set);
2201 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2202 list = isl_basic_set_list_add(list, bset);
2205 isl_aff_free(lower);
2206 isl_set_free(domain);
2207 isl_basic_map_free(bmap);
2209 return list;
2212 /* Data structure for storing the results and the intermediate objects
2213 * of compute_domains.
2215 * "list" is the main result of the function and contains a list
2216 * of disjoint basic sets for which code should be generated.
2218 * "executed" and "build" are inputs to compute_domains.
2219 * "schedule_domain" is the domain of "executed".
2221 * "option" constains the domains at the current depth that should by
2222 * atomic, separated or unrolled. These domains are as specified by
2223 * the user, except that inner dimensions have been eliminated and
2224 * that they have been made pair-wise disjoint.
2226 * "sep_class" contains the user-specified split into separation classes
2227 * specialized to the current depth.
2228 * "done" contains the union of th separation domains that have already
2229 * been handled.
2231 struct isl_codegen_domains {
2232 isl_basic_set_list *list;
2234 isl_union_map *executed;
2235 isl_ast_build *build;
2236 isl_set *schedule_domain;
2238 isl_set *option[3];
2240 isl_map *sep_class;
2241 isl_set *done;
2244 /* Add domains to domains->list for each individual value of the current
2245 * dimension, for that part of the schedule domain that lies in the
2246 * intersection of the option domain and the class domain.
2248 * "domain" is the intersection of the class domain and the schedule domain.
2249 * The divs that involve the current dimension have not been projected out
2250 * from this domain.
2252 * We first break up the unroll option domain into individual pieces
2253 * and then handle each of them separately. The unroll option domain
2254 * has been made disjoint in compute_domains_init_options,
2256 * Note that we actively want to combine different pieces of the
2257 * schedule domain that have the same value at the current dimension.
2258 * We therefore need to break up the unroll option domain before
2259 * intersecting with class and schedule domain, hoping that the
2260 * unroll option domain specified by the user is relatively simple.
2262 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2263 __isl_keep isl_set *domain)
2265 isl_set *unroll_domain;
2266 isl_basic_set_list *unroll_list;
2267 int i, n;
2268 int empty;
2270 empty = isl_set_is_empty(domains->option[unroll]);
2271 if (empty < 0)
2272 return -1;
2273 if (empty)
2274 return 0;
2276 unroll_domain = isl_set_copy(domains->option[unroll]);
2277 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2279 n = isl_basic_set_list_n_basic_set(unroll_list);
2280 for (i = 0; i < n; ++i) {
2281 isl_basic_set *bset;
2282 isl_basic_set_list *list;
2284 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2285 unroll_domain = isl_set_from_basic_set(bset);
2286 unroll_domain = isl_set_intersect(unroll_domain,
2287 isl_set_copy(domain));
2289 empty = isl_set_is_empty(unroll_domain);
2290 if (empty >= 0 && empty) {
2291 isl_set_free(unroll_domain);
2292 continue;
2295 list = do_unroll(unroll_domain, domains->build);
2296 domains->list = isl_basic_set_list_concat(domains->list, list);
2299 isl_basic_set_list_free(unroll_list);
2301 return 0;
2304 /* Construct a single basic set that includes the intersection of
2305 * the schedule domain, the atomic option domain and the class domain.
2306 * Add the resulting basic set to domains->list.
2308 * We construct a single domain rather than trying to combine
2309 * the schedule domains of individual domains because we are working
2310 * within a single component so that non-overlapping schedule domains
2311 * should already have been separated.
2312 * Note, though, that this does not take into account the class domain.
2313 * So, it is possible for a class domain to carve out a piece of the
2314 * schedule domain with independent pieces and then we would only
2315 * generate a single domain for them. If this proves to be problematic
2316 * for some users, then this function will have to be adjusted.
2318 * "domain" is the intersection of the schedule domain and the class domain,
2319 * with inner dimensions projected out.
2321 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2322 __isl_keep isl_set *domain)
2324 isl_basic_set *bset;
2325 isl_set *atomic_domain;
2326 int empty;
2328 atomic_domain = isl_set_copy(domains->option[atomic]);
2329 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2330 empty = isl_set_is_empty(atomic_domain);
2331 if (empty < 0 || empty) {
2332 isl_set_free(atomic_domain);
2333 return empty < 0 ? -1 : 0;
2336 atomic_domain = isl_set_coalesce(atomic_domain);
2337 bset = isl_set_unshifted_simple_hull(atomic_domain);
2338 domains->list = isl_basic_set_list_add(domains->list, bset);
2340 return 0;
2343 /* Split up the schedule domain into uniform basic sets,
2344 * in the sense that each element in a basic set is associated to
2345 * elements of the same domains, and add the result to domains->list.
2346 * Do this for that part of the schedule domain that lies in the
2347 * intersection of "class_domain" and the separate option domain.
2349 * "class_domain" may or may not include the constraints
2350 * of the schedule domain, but this does not make a difference
2351 * since we are going to intersect it with the domain of the inverse schedule.
2352 * If it includes schedule domain constraints, then they may involve
2353 * inner dimensions, but we will eliminate them in separation_domain.
2355 static int compute_separate_domain(struct isl_codegen_domains *domains,
2356 __isl_keep isl_set *class_domain)
2358 isl_space *space;
2359 isl_set *domain;
2360 isl_union_map *executed;
2361 isl_basic_set_list *list;
2362 int empty;
2364 domain = isl_set_copy(domains->option[separate]);
2365 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2366 executed = isl_union_map_copy(domains->executed);
2367 executed = isl_union_map_intersect_domain(executed,
2368 isl_union_set_from_set(domain));
2369 empty = isl_union_map_is_empty(executed);
2370 if (empty < 0 || empty) {
2371 isl_union_map_free(executed);
2372 return empty < 0 ? -1 : 0;
2375 space = isl_set_get_space(class_domain);
2376 domain = separate_schedule_domains(space, executed, domains->build);
2378 list = isl_basic_set_list_from_set(domain);
2379 domains->list = isl_basic_set_list_concat(domains->list, list);
2381 return 0;
2384 /* Split up the domain at the current depth into disjoint
2385 * basic sets for which code should be generated separately
2386 * for the given separation class domain.
2388 * If any separation classes have been defined, then "class_domain"
2389 * is the domain of the current class and does not refer to inner dimensions.
2390 * Otherwise, "class_domain" is the universe domain.
2392 * We first make sure that the class domain is disjoint from
2393 * previously considered class domains.
2395 * The separate domains can be computed directly from the "class_domain".
2397 * The unroll, atomic and remainder domains need the constraints
2398 * from the schedule domain.
2400 * For unrolling, the actual schedule domain is needed (with divs that
2401 * may refer to the current dimension) so that stride detection can be
2402 * performed.
2404 * For atomic and remainder domains, inner dimensions and divs involving
2405 * the current dimensions should be eliminated.
2406 * In case we are working within a separation class, we need to intersect
2407 * the result with the current "class_domain" to ensure that the domains
2408 * are disjoint from those generated from other class domains.
2410 * If anything is left after handling separate, unroll and atomic,
2411 * we split it up into basic sets and append the basic sets to domains->list.
2413 static int compute_partial_domains(struct isl_codegen_domains *domains,
2414 __isl_take isl_set *class_domain)
2416 isl_basic_set_list *list;
2417 isl_set *domain;
2419 class_domain = isl_set_subtract(class_domain,
2420 isl_set_copy(domains->done));
2421 domains->done = isl_set_union(domains->done,
2422 isl_set_copy(class_domain));
2424 domain = isl_set_copy(class_domain);
2426 if (compute_separate_domain(domains, domain) < 0)
2427 goto error;
2428 domain = isl_set_subtract(domain,
2429 isl_set_copy(domains->option[separate]));
2431 domain = isl_set_intersect(domain,
2432 isl_set_copy(domains->schedule_domain));
2434 if (compute_unroll_domains(domains, domain) < 0)
2435 goto error;
2436 domain = isl_set_subtract(domain,
2437 isl_set_copy(domains->option[unroll]));
2439 domain = isl_ast_build_eliminate(domains->build, domain);
2440 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2442 if (compute_atomic_domain(domains, domain) < 0)
2443 goto error;
2444 domain = isl_set_subtract(domain,
2445 isl_set_copy(domains->option[atomic]));
2447 domain = isl_set_coalesce(domain);
2448 domain = isl_set_make_disjoint(domain);
2450 list = isl_basic_set_list_from_set(domain);
2451 domains->list = isl_basic_set_list_concat(domains->list, list);
2453 isl_set_free(class_domain);
2455 return 0;
2456 error:
2457 isl_set_free(domain);
2458 isl_set_free(class_domain);
2459 return -1;
2462 /* Split up the domain at the current depth into disjoint
2463 * basic sets for which code should be generated separately
2464 * for the separation class identified by "pnt".
2466 * We extract the corresponding class domain from domains->sep_class,
2467 * eliminate inner dimensions and pass control to compute_partial_domains.
2469 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2471 struct isl_codegen_domains *domains = user;
2472 isl_set *class_set;
2473 isl_set *domain;
2474 int disjoint;
2476 class_set = isl_set_from_point(pnt);
2477 domain = isl_map_domain(isl_map_intersect_range(
2478 isl_map_copy(domains->sep_class), class_set));
2479 domain = isl_ast_build_eliminate(domains->build, domain);
2481 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2482 if (disjoint < 0)
2483 return -1;
2484 if (disjoint) {
2485 isl_set_free(domain);
2486 return 0;
2489 return compute_partial_domains(domains, domain);
2492 /* Extract the domains at the current depth that should be atomic,
2493 * separated or unrolled and store them in option.
2495 * The domains specified by the user might overlap, so we make
2496 * them disjoint by subtracting earlier domains from later domains.
2498 static void compute_domains_init_options(isl_set *option[3],
2499 __isl_keep isl_ast_build *build)
2501 enum isl_ast_build_domain_type type, type2;
2503 for (type = atomic; type <= separate; ++type) {
2504 option[type] = isl_ast_build_get_option_domain(build, type);
2505 for (type2 = atomic; type2 < type; ++type2)
2506 option[type] = isl_set_subtract(option[type],
2507 isl_set_copy(option[type2]));
2510 option[unroll] = isl_set_coalesce(option[unroll]);
2511 option[unroll] = isl_set_make_disjoint(option[unroll]);
2514 /* Split up the domain at the current depth into disjoint
2515 * basic sets for which code should be generated separately,
2516 * based on the user-specified options.
2517 * Return the list of disjoint basic sets.
2519 * There are three kinds of domains that we need to keep track of.
2520 * - the "schedule domain" is the domain of "executed"
2521 * - the "class domain" is the domain corresponding to the currrent
2522 * separation class
2523 * - the "option domain" is the domain corresponding to one of the options
2524 * atomic, unroll or separate
2526 * We first consider the individial values of the separation classes
2527 * and split up the domain for each of them separately.
2528 * Finally, we consider the remainder. If no separation classes were
2529 * specified, then we call compute_partial_domains with the universe
2530 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2531 * with inner dimensions removed. We do this because we want to
2532 * avoid computing the complement of the class domains (i.e., the difference
2533 * between the universe and domains->done).
2535 static __isl_give isl_basic_set_list *compute_domains(
2536 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2538 struct isl_codegen_domains domains;
2539 isl_ctx *ctx;
2540 isl_set *domain;
2541 isl_union_set *schedule_domain;
2542 isl_set *classes;
2543 isl_space *space;
2544 int n_param;
2545 enum isl_ast_build_domain_type type;
2546 int empty;
2548 ctx = isl_union_map_get_ctx(executed);
2549 domains.list = isl_basic_set_list_alloc(ctx, 0);
2551 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2552 domain = isl_set_from_union_set(schedule_domain);
2554 compute_domains_init_options(domains.option, build);
2556 domains.sep_class = isl_ast_build_get_separation_class(build);
2557 classes = isl_map_range(isl_map_copy(domains.sep_class));
2558 n_param = isl_set_dim(classes, isl_dim_param);
2559 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2561 space = isl_set_get_space(domain);
2562 domains.build = build;
2563 domains.schedule_domain = isl_set_copy(domain);
2564 domains.executed = executed;
2565 domains.done = isl_set_empty(space);
2567 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2568 domains.list = isl_basic_set_list_free(domains.list);
2569 isl_set_free(classes);
2571 empty = isl_set_is_empty(domains.done);
2572 if (empty < 0) {
2573 domains.list = isl_basic_set_list_free(domains.list);
2574 domain = isl_set_free(domain);
2575 } else if (empty) {
2576 isl_set_free(domain);
2577 domain = isl_set_universe(isl_set_get_space(domains.done));
2578 } else {
2579 domain = isl_ast_build_eliminate(build, domain);
2581 if (compute_partial_domains(&domains, domain) < 0)
2582 domains.list = isl_basic_set_list_free(domains.list);
2584 isl_set_free(domains.schedule_domain);
2585 isl_set_free(domains.done);
2586 isl_map_free(domains.sep_class);
2587 for (type = atomic; type <= separate; ++type)
2588 isl_set_free(domains.option[type]);
2590 return domains.list;
2593 /* Generate code for a single component, after shifting (if any)
2594 * has been applied.
2596 * We first split up the domain at the current depth into disjoint
2597 * basic sets based on the user-specified options.
2598 * Then we generated code for each of them and concatenate the results.
2600 static __isl_give isl_ast_graft_list *generate_shifted_component(
2601 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2603 isl_basic_set_list *domain_list;
2604 isl_ast_graft_list *list = NULL;
2606 domain_list = compute_domains(executed, build);
2607 list = generate_parallel_domains(domain_list, executed, build);
2609 isl_basic_set_list_free(domain_list);
2610 isl_union_map_free(executed);
2611 isl_ast_build_free(build);
2613 return list;
2616 struct isl_set_map_pair {
2617 isl_set *set;
2618 isl_map *map;
2621 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2622 * of indices into the "domain" array,
2623 * return the union of the "map" fields of the elements
2624 * indexed by the first "n" elements of "order".
2626 static __isl_give isl_union_map *construct_component_executed(
2627 struct isl_set_map_pair *domain, int *order, int n)
2629 int i;
2630 isl_map *map;
2631 isl_union_map *executed;
2633 map = isl_map_copy(domain[order[0]].map);
2634 executed = isl_union_map_from_map(map);
2635 for (i = 1; i < n; ++i) {
2636 map = isl_map_copy(domain[order[i]].map);
2637 executed = isl_union_map_add_map(executed, map);
2640 return executed;
2643 /* Generate code for a single component, after shifting (if any)
2644 * has been applied.
2646 * The component inverse schedule is specified as the "map" fields
2647 * of the elements of "domain" indexed by the first "n" elements of "order".
2649 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2650 struct isl_set_map_pair *domain, int *order, int n,
2651 __isl_take isl_ast_build *build)
2653 isl_union_map *executed;
2655 executed = construct_component_executed(domain, order, n);
2656 return generate_shifted_component(executed, build);
2659 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2660 * of indices into the "domain" array,
2661 * do all (except for at most one) of the "set" field of the elements
2662 * indexed by the first "n" elements of "order" have a fixed value
2663 * at position "depth"?
2665 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2666 int *order, int n, int depth)
2668 int i;
2669 int non_fixed = -1;
2671 for (i = 0; i < n; ++i) {
2672 int f;
2674 f = isl_set_plain_is_fixed(domain[order[i]].set,
2675 isl_dim_set, depth, NULL);
2676 if (f < 0)
2677 return -1;
2678 if (f)
2679 continue;
2680 if (non_fixed >= 0)
2681 return 0;
2682 non_fixed = i;
2685 return 1;
2688 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2689 * of indices into the "domain" array,
2690 * eliminate the inner dimensions from the "set" field of the elements
2691 * indexed by the first "n" elements of "order", provided the current
2692 * dimension does not have a fixed value.
2694 * Return the index of the first element in "order" with a corresponding
2695 * "set" field that does not have an (obviously) fixed value.
2697 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2698 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2700 int i;
2701 int base = -1;
2703 for (i = n - 1; i >= 0; --i) {
2704 int f;
2705 f = isl_set_plain_is_fixed(domain[order[i]].set,
2706 isl_dim_set, depth, NULL);
2707 if (f < 0)
2708 return -1;
2709 if (f)
2710 continue;
2711 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2712 domain[order[i]].set);
2713 base = i;
2716 return base;
2719 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2720 * of indices into the "domain" array,
2721 * find the element of "domain" (amongst those indexed by the first "n"
2722 * elements of "order") with the "set" field that has the smallest
2723 * value for the current iterator.
2725 * Note that the domain with the smallest value may depend on the parameters
2726 * and/or outer loop dimension. Since the result of this function is only
2727 * used as heuristic, we only make a reasonable attempt at finding the best
2728 * domain, one that should work in case a single domain provides the smallest
2729 * value for the current dimension over all values of the parameters
2730 * and outer dimensions.
2732 * In particular, we compute the smallest value of the first domain
2733 * and replace it by that of any later domain if that later domain
2734 * has a smallest value that is smaller for at least some value
2735 * of the parameters and outer dimensions.
2737 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2738 __isl_keep isl_ast_build *build)
2740 int i;
2741 isl_map *min_first;
2742 int first = 0;
2744 min_first = isl_ast_build_map_to_iterator(build,
2745 isl_set_copy(domain[order[0]].set));
2746 min_first = isl_map_lexmin(min_first);
2748 for (i = 1; i < n; ++i) {
2749 isl_map *min, *test;
2750 int empty;
2752 min = isl_ast_build_map_to_iterator(build,
2753 isl_set_copy(domain[order[i]].set));
2754 min = isl_map_lexmin(min);
2755 test = isl_map_copy(min);
2756 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2757 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2758 empty = isl_map_is_empty(test);
2759 isl_map_free(test);
2760 if (empty >= 0 && !empty) {
2761 isl_map_free(min_first);
2762 first = i;
2763 min_first = min;
2764 } else
2765 isl_map_free(min);
2767 if (empty < 0)
2768 break;
2771 isl_map_free(min_first);
2773 return i < n ? -1 : first;
2776 /* Construct a shifted inverse schedule based on the original inverse schedule,
2777 * the stride and the offset.
2779 * The original inverse schedule is specified as the "map" fields
2780 * of the elements of "domain" indexed by the first "n" elements of "order".
2782 * "stride" and "offset" are such that the difference
2783 * between the values of the current dimension of domain "i"
2784 * and the values of the current dimension for some reference domain are
2785 * equal to
2787 * stride * integer + offset[i]
2789 * Moreover, 0 <= offset[i] < stride.
2791 * For each domain, we create a map
2793 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2795 * where j refers to the current dimension and the other dimensions are
2796 * unchanged, and apply this map to the original schedule domain.
2798 * For example, for the original schedule
2800 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2802 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2803 * we apply the mapping
2805 * { [j] -> [j, 0] }
2807 * to the schedule of the "A" domain and the mapping
2809 * { [j - 1] -> [j, 1] }
2811 * to the schedule of the "B" domain.
2814 * Note that after the transformation, the differences between pairs
2815 * of values of the current dimension over all domains are multiples
2816 * of stride and that we have therefore exposed the stride.
2819 * To see that the mapping preserves the lexicographic order,
2820 * first note that each of the individual maps above preserves the order.
2821 * If the value of the current iterator is j1 in one domain and j2 in another,
2822 * then if j1 = j2, we know that the same map is applied to both domains
2823 * and the order is preserved.
2824 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2825 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2827 * j1 - c1 < j2 - c2
2829 * and the order is preserved.
2830 * If c1 < c2, then we know
2832 * 0 <= c2 - c1 < s
2834 * We also have
2836 * j2 - j1 = n * s + r
2838 * with n >= 0 and 0 <= r < s.
2839 * In other words, r = c2 - c1.
2840 * If n > 0, then
2842 * j1 - c1 < j2 - c2
2844 * If n = 0, then
2846 * j1 - c1 = j2 - c2
2848 * and so
2850 * (j1 - c1, c1) << (j2 - c2, c2)
2852 * with "<<" the lexicographic order, proving that the order is preserved
2853 * in all cases.
2855 static __isl_give isl_union_map *contruct_shifted_executed(
2856 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2857 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
2859 int i;
2860 isl_int v;
2861 isl_union_map *executed;
2862 isl_space *space;
2863 isl_map *map;
2864 int depth;
2865 isl_constraint *c;
2867 depth = isl_ast_build_get_depth(build);
2868 space = isl_ast_build_get_space(build, 1);
2869 executed = isl_union_map_empty(isl_space_copy(space));
2870 space = isl_space_map_from_set(space);
2871 map = isl_map_identity(isl_space_copy(space));
2872 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
2873 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
2874 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
2876 c = isl_equality_alloc(isl_local_space_from_space(space));
2877 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
2878 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
2880 isl_int_init(v);
2882 for (i = 0; i < n; ++i) {
2883 isl_map *map_i;
2885 if (isl_vec_get_element(offset, i, &v) < 0)
2886 break;
2887 map_i = isl_map_copy(map);
2888 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
2889 isl_int_neg(v, v);
2890 c = isl_constraint_set_constant(c, v);
2891 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
2893 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
2894 map_i);
2895 executed = isl_union_map_add_map(executed, map_i);
2898 isl_constraint_free(c);
2899 isl_map_free(map);
2901 isl_int_clear(v);
2903 if (i < n)
2904 executed = isl_union_map_free(executed);
2906 return executed;
2909 /* Generate code for a single component, after exposing the stride,
2910 * given that the schedule domain is "shifted strided".
2912 * The component inverse schedule is specified as the "map" fields
2913 * of the elements of "domain" indexed by the first "n" elements of "order".
2915 * The schedule domain being "shifted strided" means that the differences
2916 * between the values of the current dimension of domain "i"
2917 * and the values of the current dimension for some reference domain are
2918 * equal to
2920 * stride * integer + offset[i]
2922 * We first look for the domain with the "smallest" value for the current
2923 * dimension and adjust the offsets such that the offset of the "smallest"
2924 * domain is equal to zero. The other offsets are reduced modulo stride.
2926 * Based on this information, we construct a new inverse schedule in
2927 * contruct_shifted_executed that exposes the stride.
2928 * Since this involves the introduction of a new schedule dimension,
2929 * the build needs to be changed accodingly.
2930 * After computing the AST, the newly introduced dimension needs
2931 * to be removed again from the list of grafts. We do this by plugging
2932 * in a mapping that represents the new schedule domain in terms of the
2933 * old schedule domain.
2935 static __isl_give isl_ast_graft_list *generate_shift_component(
2936 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2937 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
2939 isl_ast_graft_list *list;
2940 int first;
2941 int depth;
2942 isl_ctx *ctx;
2943 isl_int val;
2944 isl_vec *v;
2945 isl_space *space;
2946 isl_multi_aff *ma, *zero;
2947 isl_union_map *executed;
2949 ctx = isl_ast_build_get_ctx(build);
2950 depth = isl_ast_build_get_depth(build);
2952 first = first_offset(domain, order, n, build);
2953 if (first < 0)
2954 return isl_ast_build_free(build);
2956 isl_int_init(val);
2957 v = isl_vec_alloc(ctx, n);
2958 if (isl_vec_get_element(offset, first, &val) < 0)
2959 v = isl_vec_free(v);
2960 isl_int_neg(val, val);
2961 v = isl_vec_set(v, val);
2962 v = isl_vec_add(v, isl_vec_copy(offset));
2963 v = isl_vec_fdiv_r(v, stride);
2965 executed = contruct_shifted_executed(domain, order, n, stride, v,
2966 build);
2967 space = isl_ast_build_get_space(build, 1);
2968 space = isl_space_map_from_set(space);
2969 ma = isl_multi_aff_identity(isl_space_copy(space));
2970 space = isl_space_from_domain(isl_space_domain(space));
2971 space = isl_space_add_dims(space, isl_dim_out, 1);
2972 zero = isl_multi_aff_zero(space);
2973 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
2974 build = isl_ast_build_insert_dim(build, depth + 1);
2975 list = generate_shifted_component(executed, build);
2977 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
2979 isl_vec_free(v);
2980 isl_int_clear(val);
2982 return list;
2985 /* Generate code for a single component.
2987 * The component inverse schedule is specified as the "map" fields
2988 * of the elements of "domain" indexed by the first "n" elements of "order".
2990 * This function may modify the "set" fields of "domain".
2992 * Before proceeding with the actual code generation for the component,
2993 * we first check if there are any "shifted" strides, meaning that
2994 * the schedule domains of the individual domains are all strided,
2995 * but that they have different offsets, resulting in the union
2996 * of schedule domains not being strided anymore.
2998 * The simplest example is the schedule
3000 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3002 * Both schedule domains are strided, but their union is not.
3003 * This function detects such cases and then rewrites the schedule to
3005 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3007 * In the new schedule, the schedule domains have the same offset (modulo
3008 * the stride), ensuring that the union of schedule domains is also strided.
3011 * If there is only a single domain in the component, then there is
3012 * nothing to do. Similarly, if the current schedule dimension has
3013 * a fixed value for almost all domains then there is nothing to be done.
3014 * In particular, we need at least two domains where the current schedule
3015 * dimension does not have a fixed value.
3016 * Finally, if any of the options refer to the current schedule dimension,
3017 * then we bail out as well. It would be possible to reformulate the options
3018 * in terms of the new schedule domain, but that would introduce constraints
3019 * that separate the domains in the options and that is something we would
3020 * like to avoid.
3023 * To see if there is any shifted stride, we look at the differences
3024 * between the values of the current dimension in pairs of domains
3025 * for equal values of outer dimensions. These differences should be
3026 * of the form
3028 * m x + r
3030 * with "m" the stride and "r" a constant. Note that we cannot perform
3031 * this analysis on individual domains as the lower bound in each domain
3032 * may depend on parameters or outer dimensions and so the current dimension
3033 * itself may not have a fixed remainder on division by the stride.
3035 * In particular, we compare the first domain that does not have an
3036 * obviously fixed value for the current dimension to itself and all
3037 * other domains and collect the offsets and the gcd of the strides.
3038 * If the gcd becomes one, then we failed to find shifted strides.
3039 * If all the offsets are the same (for those domains that do not have
3040 * an obviously fixed value for the current dimension), then we do not
3041 * apply the transformation.
3042 * If none of the domains were skipped, then there is nothing to do.
3043 * If some of them were skipped, then if we apply separation, the schedule
3044 * domain should get split in pieces with a (non-shifted) stride.
3046 * Otherwise, we apply a shift to expose the stride in
3047 * generate_shift_component.
3049 static __isl_give isl_ast_graft_list *generate_component(
3050 struct isl_set_map_pair *domain, int *order, int n,
3051 __isl_take isl_ast_build *build)
3053 int i, d;
3054 int depth;
3055 isl_ctx *ctx;
3056 isl_map *map;
3057 isl_set *deltas;
3058 isl_int m, r, gcd;
3059 isl_vec *v;
3060 int fixed, skip;
3061 int base;
3062 isl_ast_graft_list *list;
3063 int res = 0;
3065 depth = isl_ast_build_get_depth(build);
3067 skip = n == 1;
3068 if (skip >= 0 && !skip)
3069 skip = at_most_one_non_fixed(domain, order, n, depth);
3070 if (skip >= 0 && !skip)
3071 skip = isl_ast_build_options_involve_depth(build);
3072 if (skip < 0)
3073 return isl_ast_build_free(build);
3074 if (skip)
3075 return generate_shifted_component_from_list(domain,
3076 order, n, build);
3078 base = eliminate_non_fixed(domain, order, n, depth, build);
3079 if (base < 0)
3080 return isl_ast_build_free(build);
3082 ctx = isl_ast_build_get_ctx(build);
3084 isl_int_init(m);
3085 isl_int_init(r);
3086 isl_int_init(gcd);
3087 v = isl_vec_alloc(ctx, n);
3089 fixed = 1;
3090 for (i = 0; i < n; ++i) {
3091 map = isl_map_from_domain_and_range(
3092 isl_set_copy(domain[order[base]].set),
3093 isl_set_copy(domain[order[i]].set));
3094 for (d = 0; d < depth; ++d)
3095 map = isl_map_equate(map, isl_dim_in, d,
3096 isl_dim_out, d);
3097 deltas = isl_map_deltas(map);
3098 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
3099 isl_set_free(deltas);
3100 if (res < 0)
3101 break;
3103 if (i == 0)
3104 isl_int_set(gcd, m);
3105 else
3106 isl_int_gcd(gcd, gcd, m);
3107 if (isl_int_is_one(gcd))
3108 break;
3109 v = isl_vec_set_element(v, i, r);
3111 res = isl_set_plain_is_fixed(domain[order[i]].set,
3112 isl_dim_set, depth, NULL);
3113 if (res < 0)
3114 break;
3115 if (res)
3116 continue;
3118 if (fixed && i > base) {
3119 isl_vec_get_element(v, base, &m);
3120 if (isl_int_ne(m, r))
3121 fixed = 0;
3125 if (res < 0) {
3126 isl_ast_build_free(build);
3127 list = NULL;
3128 } else if (i < n || fixed) {
3129 list = generate_shifted_component_from_list(domain,
3130 order, n, build);
3131 } else {
3132 list = generate_shift_component(domain, order, n, gcd, v,
3133 build);
3136 isl_vec_free(v);
3137 isl_int_clear(gcd);
3138 isl_int_clear(r);
3139 isl_int_clear(m);
3141 return list;
3144 /* Store both "map" itself and its domain in the
3145 * structure pointed to by *next and advance to the next array element.
3147 static int extract_domain(__isl_take isl_map *map, void *user)
3149 struct isl_set_map_pair **next = user;
3151 (*next)->map = isl_map_copy(map);
3152 (*next)->set = isl_map_domain(map);
3153 (*next)++;
3155 return 0;
3158 /* Internal data for any_scheduled_after.
3160 * "depth" is the number of loops that have already been generated
3161 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3162 * "domain" is an array of set-map pairs corresponding to the different
3163 * iteration domains. The set is the schedule domain, i.e., the domain
3164 * of the inverse schedule, while the map is the inverse schedule itself.
3166 struct isl_any_scheduled_after_data {
3167 int depth;
3168 int group_coscheduled;
3169 struct isl_set_map_pair *domain;
3172 /* Is any element of domain "i" scheduled after any element of domain "j"
3173 * (for a common iteration of the first data->depth loops)?
3175 * data->domain[i].set contains the domain of the inverse schedule
3176 * for domain "i", i.e., elements in the schedule domain.
3178 * If data->group_coscheduled is set, then we also return 1 if there
3179 * is any pair of elements in the two domains that are scheduled together.
3181 static int any_scheduled_after(int i, int j, void *user)
3183 struct isl_any_scheduled_after_data *data = user;
3184 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3185 int pos;
3187 for (pos = data->depth; pos < dim; ++pos) {
3188 int follows;
3190 follows = isl_set_follows_at(data->domain[i].set,
3191 data->domain[j].set, pos);
3193 if (follows < -1)
3194 return -1;
3195 if (follows > 0)
3196 return 1;
3197 if (follows < 0)
3198 return 0;
3201 return data->group_coscheduled;
3204 /* Look for independent components at the current depth and generate code
3205 * for each component separately. The resulting lists of grafts are
3206 * merged in an attempt to combine grafts with identical guards.
3208 * Code for two domains can be generated separately if all the elements
3209 * of one domain are scheduled before (or together with) all the elements
3210 * of the other domain. We therefore consider the graph with as nodes
3211 * the domains and an edge between two nodes if any element of the first
3212 * node is scheduled after any element of the second node.
3213 * If the ast_build_group_coscheduled is set, then we also add an edge if
3214 * there is any pair of elements in the two domains that are scheduled
3215 * together.
3216 * Code is then generated (by generate_component)
3217 * for each of the strongly connected components in this graph
3218 * in their topological order.
3220 * Since the test is performed on the domain of the inverse schedules of
3221 * the different domains, we precompute these domains and store
3222 * them in data.domain.
3224 static __isl_give isl_ast_graft_list *generate_components(
3225 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3227 int i;
3228 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3229 int n = isl_union_map_n_map(executed);
3230 struct isl_any_scheduled_after_data data;
3231 struct isl_set_map_pair *next;
3232 struct isl_tarjan_graph *g = NULL;
3233 isl_ast_graft_list *list = NULL;
3234 int n_domain = 0;
3236 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3237 if (!data.domain)
3238 goto error;
3239 n_domain = n;
3241 next = data.domain;
3242 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3243 goto error;
3245 if (!build)
3246 goto error;
3247 data.depth = isl_ast_build_get_depth(build);
3248 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3249 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3251 list = isl_ast_graft_list_alloc(ctx, 0);
3253 i = 0;
3254 while (list && n) {
3255 isl_ast_graft_list *list_c;
3256 int first = i;
3258 if (g->order[i] == -1)
3259 isl_die(ctx, isl_error_internal, "cannot happen",
3260 goto error);
3261 ++i; --n;
3262 while (g->order[i] != -1) {
3263 ++i; --n;
3266 list_c = generate_component(data.domain,
3267 g->order + first, i - first,
3268 isl_ast_build_copy(build));
3269 list = isl_ast_graft_list_merge(list, list_c, build);
3271 ++i;
3274 if (0)
3275 error: list = isl_ast_graft_list_free(list);
3276 isl_tarjan_graph_free(g);
3277 for (i = 0; i < n_domain; ++i) {
3278 isl_map_free(data.domain[i].map);
3279 isl_set_free(data.domain[i].set);
3281 free(data.domain);
3282 isl_union_map_free(executed);
3283 isl_ast_build_free(build);
3285 return list;
3288 /* Generate code for the next level (and all inner levels).
3290 * If "executed" is empty, i.e., no code needs to be generated,
3291 * then we return an empty list.
3293 * If we have already generated code for all loop levels, then we pass
3294 * control to generate_inner_level.
3296 * If "executed" lives in a single space, i.e., if code needs to be
3297 * generated for a single domain, then there can only be a single
3298 * component and we go directly to generate_shifted_component.
3299 * Otherwise, we call generate_components to detect the components
3300 * and to call generate_component on each of them separately.
3302 static __isl_give isl_ast_graft_list *generate_next_level(
3303 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3305 int depth;
3307 if (!build || !executed)
3308 goto error;
3310 if (isl_union_map_is_empty(executed)) {
3311 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3312 isl_union_map_free(executed);
3313 isl_ast_build_free(build);
3314 return isl_ast_graft_list_alloc(ctx, 0);
3317 depth = isl_ast_build_get_depth(build);
3318 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3319 return generate_inner_level(executed, build);
3321 if (isl_union_map_n_map(executed) == 1)
3322 return generate_shifted_component(executed, build);
3324 return generate_components(executed, build);
3325 error:
3326 isl_union_map_free(executed);
3327 isl_ast_build_free(build);
3328 return NULL;
3331 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3332 * internal, executed and build are the inputs to generate_code.
3333 * list collects the output.
3335 struct isl_generate_code_data {
3336 int internal;
3337 isl_union_map *executed;
3338 isl_ast_build *build;
3340 isl_ast_graft_list *list;
3343 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3345 * [E -> S] -> D
3347 * with E the external build schedule and S the additional schedule "space",
3348 * reformulate the inverse schedule in terms of the internal schedule domain,
3349 * i.e., return
3351 * [I -> S] -> D
3353 * We first obtain a mapping
3355 * I -> E
3357 * take the inverse and the product with S -> S, resulting in
3359 * [I -> S] -> [E -> S]
3361 * Applying the map to the input produces the desired result.
3363 static __isl_give isl_union_map *internal_executed(
3364 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3365 __isl_keep isl_ast_build *build)
3367 isl_map *id, *proj;
3369 proj = isl_ast_build_get_schedule_map(build);
3370 proj = isl_map_reverse(proj);
3371 space = isl_space_map_from_set(isl_space_copy(space));
3372 id = isl_map_identity(space);
3373 proj = isl_map_product(proj, id);
3374 executed = isl_union_map_apply_domain(executed,
3375 isl_union_map_from_map(proj));
3376 return executed;
3379 /* Generate an AST that visits the elements in the range of data->executed
3380 * in the relative order specified by the corresponding image element(s)
3381 * for those image elements that belong to "set".
3382 * Add the result to data->list.
3384 * The caller ensures that "set" is a universe domain.
3385 * "space" is the space of the additional part of the schedule.
3386 * It is equal to the space of "set" if build->domain is parametric.
3387 * Otherwise, it is equal to the range of the wrapped space of "set".
3389 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3390 * was called from an outside user (data->internal not set), then
3391 * the (inverse) schedule refers to the external build domain and needs to
3392 * be transformed to refer to the internal build domain.
3394 * The build is extended to include the additional part of the schedule.
3395 * If the original build space was not parametric, then the options
3396 * in data->build refer only to the additional part of the schedule
3397 * and they need to be adjusted to refer to the complete AST build
3398 * domain.
3400 * After having adjusted inverse schedule and build, we start generating
3401 * code with the outer loop of the current code generation
3402 * in generate_next_level.
3404 * If the original build space was not parametric, we undo the embedding
3405 * on the resulting isl_ast_node_list so that it can be used within
3406 * the outer AST build.
3408 static int generate_code_in_space(struct isl_generate_code_data *data,
3409 __isl_take isl_set *set, __isl_take isl_space *space)
3411 isl_union_map *executed;
3412 isl_ast_build *build;
3413 isl_ast_graft_list *list;
3414 int embed;
3416 executed = isl_union_map_copy(data->executed);
3417 executed = isl_union_map_intersect_domain(executed,
3418 isl_union_set_from_set(set));
3420 embed = !isl_set_is_params(data->build->domain);
3421 if (embed && !data->internal)
3422 executed = internal_executed(executed, space, data->build);
3424 build = isl_ast_build_copy(data->build);
3425 build = isl_ast_build_product(build, space);
3427 list = generate_next_level(executed, build);
3429 list = isl_ast_graft_list_unembed(list, embed);
3431 data->list = isl_ast_graft_list_concat(data->list, list);
3433 return 0;
3436 /* Generate an AST that visits the elements in the range of data->executed
3437 * in the relative order specified by the corresponding domain element(s)
3438 * for those domain elements that belong to "set".
3439 * Add the result to data->list.
3441 * The caller ensures that "set" is a universe domain.
3443 * If the build space S is not parametric, then the space of "set"
3444 * need to be a wrapped relation with S as domain. That is, it needs
3445 * to be of the form
3447 * [S -> T]
3449 * Check this property and pass control to generate_code_in_space
3450 * passing along T.
3451 * If the build space is not parametric, then T is the space of "set".
3453 static int generate_code_set(__isl_take isl_set *set, void *user)
3455 struct isl_generate_code_data *data = user;
3456 isl_space *space, *build_space;
3457 int is_domain;
3459 space = isl_set_get_space(set);
3461 if (isl_set_is_params(data->build->domain))
3462 return generate_code_in_space(data, set, space);
3464 build_space = isl_ast_build_get_space(data->build, data->internal);
3465 space = isl_space_unwrap(space);
3466 is_domain = isl_space_is_domain(build_space, space);
3467 isl_space_free(build_space);
3468 space = isl_space_range(space);
3470 if (is_domain < 0)
3471 goto error;
3472 if (!is_domain)
3473 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3474 "invalid nested schedule space", goto error);
3476 return generate_code_in_space(data, set, space);
3477 error:
3478 isl_set_free(set);
3479 isl_space_free(space);
3480 return -1;
3483 /* Generate an AST that visits the elements in the range of "executed"
3484 * in the relative order specified by the corresponding domain element(s).
3486 * "build" is an isl_ast_build that has either been constructed by
3487 * isl_ast_build_from_context or passed to a callback set by
3488 * isl_ast_build_set_create_leaf.
3489 * In the first case, the space of the isl_ast_build is typically
3490 * a parametric space, although this is currently not enforced.
3491 * In the second case, the space is never a parametric space.
3492 * If the space S is not parametric, then the domain space(s) of "executed"
3493 * need to be wrapped relations with S as domain.
3495 * If the domain of "executed" consists of several spaces, then an AST
3496 * is generated for each of them (in arbitrary order) and the results
3497 * are concatenated.
3499 * If "internal" is set, then the domain "S" above refers to the internal
3500 * schedule domain representation. Otherwise, it refers to the external
3501 * representation, as returned by isl_ast_build_get_schedule_space.
3503 * We essentially run over all the spaces in the domain of "executed"
3504 * and call generate_code_set on each of them.
3506 static __isl_give isl_ast_graft_list *generate_code(
3507 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3508 int internal)
3510 isl_ctx *ctx;
3511 struct isl_generate_code_data data = { 0 };
3512 isl_space *space;
3513 isl_union_set *schedule_domain;
3514 isl_union_map *universe;
3516 if (!build)
3517 goto error;
3518 space = isl_ast_build_get_space(build, 1);
3519 space = isl_space_align_params(space,
3520 isl_union_map_get_space(executed));
3521 space = isl_space_align_params(space,
3522 isl_union_map_get_space(build->options));
3523 build = isl_ast_build_align_params(build, isl_space_copy(space));
3524 executed = isl_union_map_align_params(executed, space);
3525 if (!executed || !build)
3526 goto error;
3528 ctx = isl_ast_build_get_ctx(build);
3530 data.internal = internal;
3531 data.executed = executed;
3532 data.build = build;
3533 data.list = isl_ast_graft_list_alloc(ctx, 0);
3535 universe = isl_union_map_universe(isl_union_map_copy(executed));
3536 schedule_domain = isl_union_map_domain(universe);
3537 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3538 &data) < 0)
3539 data.list = isl_ast_graft_list_free(data.list);
3541 isl_union_set_free(schedule_domain);
3542 isl_union_map_free(executed);
3544 isl_ast_build_free(build);
3545 return data.list;
3546 error:
3547 isl_union_map_free(executed);
3548 isl_ast_build_free(build);
3549 return NULL;
3552 /* Generate an AST that visits the elements in the domain of "schedule"
3553 * in the relative order specified by the corresponding image element(s).
3555 * "build" is an isl_ast_build that has either been constructed by
3556 * isl_ast_build_from_context or passed to a callback set by
3557 * isl_ast_build_set_create_leaf.
3558 * In the first case, the space of the isl_ast_build is typically
3559 * a parametric space, although this is currently not enforced.
3560 * In the second case, the space is never a parametric space.
3561 * If the space S is not parametric, then the range space(s) of "schedule"
3562 * need to be wrapped relations with S as domain.
3564 * If the range of "schedule" consists of several spaces, then an AST
3565 * is generated for each of them (in arbitrary order) and the results
3566 * are concatenated.
3568 * We first initialize the local copies of the relevant options.
3569 * We do this here rather than when the isl_ast_build is created
3570 * because the options may have changed between the construction
3571 * of the isl_ast_build and the call to isl_generate_code.
3573 * The main computation is performed on an inverse schedule (with
3574 * the schedule domain in the domain and the elements to be executed
3575 * in the range) called "executed".
3577 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3578 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3580 isl_ast_graft_list *list;
3581 isl_ast_node *node;
3582 isl_union_map *executed;
3584 executed = isl_union_map_reverse(schedule);
3585 list = generate_code(executed, isl_ast_build_copy(build), 0);
3586 node = isl_ast_node_from_graft_list(list, build);
3588 return node;