add isl_union_map_uncurry
[isl.git] / isl_ast_codegen.c
blobe0e217dc52b38ebceb8b9aa3f9b31c6a3a627ded
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <isl/aff.h>
11 #include <isl/set.h>
12 #include <isl/ilp.h>
13 #include <isl/union_map.h>
14 #include <isl_sort.h>
15 #include <isl_tarjan.h>
16 #include <isl_ast_private.h>
17 #include <isl_ast_build_expr.h>
18 #include <isl_ast_build_private.h>
19 #include <isl_ast_graft_private.h>
20 #include <isl_list_private.h>
22 /* Add the constraint to the list that "user" points to, if it is not
23 * a div constraint.
25 static int collect_constraint(__isl_take isl_constraint *constraint,
26 void *user)
28 isl_constraint_list **list = user;
30 if (isl_constraint_is_div_constraint(constraint))
31 isl_constraint_free(constraint);
32 else
33 *list = isl_constraint_list_add(*list, constraint);
35 return 0;
38 /* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
41 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
42 __isl_take isl_basic_set *bset)
44 int n;
45 isl_ctx *ctx;
46 isl_constraint_list *list;
48 if (!bset)
49 return NULL;
51 ctx = isl_basic_set_get_ctx(bset);
53 n = isl_basic_set_n_constraint(bset);
54 list = isl_constraint_list_alloc(ctx, n);
55 if (isl_basic_set_foreach_constraint(bset,
56 &collect_constraint, &list) < 0)
57 list = isl_constraint_list_free(list);
59 isl_basic_set_free(bset);
60 return list;
63 /* Data used in generate_domain.
65 * "build" is the input build.
66 * "list" collects the results.
68 struct isl_generate_domain_data {
69 isl_ast_build *build;
71 isl_ast_graft_list *list;
74 static __isl_give isl_ast_graft_list *generate_next_level(
75 __isl_take isl_union_map *executed,
76 __isl_take isl_ast_build *build);
77 static __isl_give isl_ast_graft_list *generate_code(
78 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
79 int internal);
81 /* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
87 * In particular, if executed has the form
89 * S -> D
91 * then we continue generating code on
93 * [S -> D] -> D
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
100 static int generate_non_single_valued(__isl_take isl_map *executed,
101 struct isl_generate_domain_data *data)
103 isl_map *identity;
104 isl_ast_build *build;
105 isl_ast_graft_list *list;
107 build = isl_ast_build_copy(data->build);
109 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
110 executed = isl_map_domain_product(executed, identity);
112 list = generate_code(isl_union_map_from_map(executed), build, 1);
114 data->list = isl_ast_graft_list_concat(data->list, list);
116 return 0;
119 /* Call the at_each_domain callback, if requested by the user,
120 * after recording the current inverse schedule in the build.
122 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
123 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
125 if (!graft || !build)
126 return isl_ast_graft_free(graft);
127 if (!build->at_each_domain)
128 return graft;
130 build = isl_ast_build_copy(build);
131 build = isl_ast_build_set_executed(build,
132 isl_union_map_from_map(isl_map_copy(executed)));
133 if (!build)
134 return isl_ast_graft_free(graft);
136 graft->node = build->at_each_domain(graft->node,
137 build, build->at_each_domain_user);
138 isl_ast_build_free(build);
140 if (!graft->node)
141 graft = isl_ast_graft_free(graft);
143 return graft;
146 /* Generate an AST for a single domain based on
147 * the inverse schedule "executed".
149 * If there is more than one domain element associated to the current
150 * schedule "time", then we need to continue the generation process
151 * in generate_non_single_valued.
152 * Note that the inverse schedule being single-valued may depend
153 * on constraints that are only available in the original context
154 * domain specified by the user. We therefore first introduce
155 * the constraints from data->build->domain.
156 * On the other hand, we only perform the test after having taken the gist
157 * of the domain as the resulting map is the one from which the call
158 * expression is constructed.
160 * Otherwise, we generate a call expression for the single executed
161 * domain element and put a guard around it based on the (simplified)
162 * domain of "executed".
164 * If the user has set an at_each_domain callback, it is called
165 * on the constructed call expression node.
167 static int generate_domain(__isl_take isl_map *executed, void *user)
169 struct isl_generate_domain_data *data = user;
170 isl_ast_graft *graft;
171 isl_ast_graft_list *list;
172 isl_set *guard;
173 isl_map *map;
174 int sv;
176 executed = isl_map_intersect_domain(executed,
177 isl_set_copy(data->build->domain));
179 executed = isl_map_coalesce(executed);
180 map = isl_map_copy(executed);
181 map = isl_ast_build_compute_gist_map_domain(data->build, map);
182 sv = isl_map_is_single_valued(map);
183 if (sv < 0)
184 goto error;
185 if (!sv) {
186 isl_map_free(map);
187 return generate_non_single_valued(executed, data);
189 guard = isl_map_domain(isl_map_copy(map));
190 guard = isl_set_coalesce(guard);
191 guard = isl_ast_build_compute_gist(data->build, guard);
192 graft = isl_ast_graft_alloc_domain(map, data->build);
193 graft = at_each_domain(graft, executed, data->build);
195 isl_map_free(executed);
196 graft = isl_ast_graft_add_guard(graft, guard, data->build);
198 list = isl_ast_graft_list_from_ast_graft(graft);
199 data->list = isl_ast_graft_list_concat(data->list, list);
201 return 0;
202 error:
203 isl_map_free(map);
204 isl_map_free(executed);
205 return -1;
208 /* Call build->create_leaf to a create "leaf" node in the AST,
209 * encapsulate the result in an isl_ast_graft and return the result
210 * as a 1-element list.
212 * Note that the node returned by the user may be an entire tree.
214 * Before we pass control to the user, we first clear some information
215 * from the build that is (presumbably) only meaningful
216 * for the current code generation.
217 * This includes the create_leaf callback itself, so we make a copy
218 * of the build first.
220 static __isl_give isl_ast_graft_list *call_create_leaf(
221 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
223 isl_ast_node *node;
224 isl_ast_graft *graft;
225 isl_ast_build *user_build;
227 user_build = isl_ast_build_copy(build);
228 user_build = isl_ast_build_set_executed(user_build, executed);
229 user_build = isl_ast_build_clear_local_info(user_build);
230 if (!user_build)
231 node = NULL;
232 else
233 node = build->create_leaf(user_build, build->create_leaf_user);
234 graft = isl_ast_graft_alloc(node, build);
235 isl_ast_build_free(build);
236 return isl_ast_graft_list_from_ast_graft(graft);
239 /* Generate an AST after having handled the complete schedule
240 * of this call to the code generator.
242 * If the user has specified a create_leaf callback, control
243 * is passed to the user in call_create_leaf.
245 * Otherwise, we generate one or more calls for each individual
246 * domain in generate_domain.
248 static __isl_give isl_ast_graft_list *generate_inner_level(
249 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
251 isl_ctx *ctx;
252 struct isl_generate_domain_data data = { build };
254 if (!build || !executed)
255 goto error;
257 if (build->create_leaf)
258 return call_create_leaf(executed, build);
260 ctx = isl_union_map_get_ctx(executed);
261 data.list = isl_ast_graft_list_alloc(ctx, 0);
262 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
263 data.list = isl_ast_graft_list_free(data.list);
265 if (0)
266 error: data.list = NULL;
267 isl_ast_build_free(build);
268 isl_union_map_free(executed);
269 return data.list;
272 /* Call the before_each_for callback, if requested by the user.
274 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
275 __isl_keep isl_ast_build *build)
277 isl_id *id;
279 if (!node || !build)
280 return isl_ast_node_free(node);
281 if (!build->before_each_for)
282 return node;
283 id = build->before_each_for(build, build->before_each_for_user);
284 node = isl_ast_node_set_annotation(node, id);
285 return node;
288 /* Call the after_each_for callback, if requested by the user.
290 static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
291 __isl_keep isl_ast_build *build)
293 if (!graft || !build)
294 isl_ast_graft_free(graft);
295 if (!build->after_each_for)
296 return graft;
297 graft->node = build->after_each_for(graft->node, build,
298 build->after_each_for_user);
299 if (!graft->node)
300 return isl_ast_graft_free(graft);
301 return graft;
304 /* Eliminate the schedule dimension "pos" from "executed" and return
305 * the result.
307 static __isl_give isl_union_map *eliminate(__isl_take isl_union_map *executed,
308 int pos, __isl_keep isl_ast_build *build)
310 isl_space *space;
311 isl_map *elim;
313 space = isl_ast_build_get_space(build, 1);
314 space = isl_space_map_from_set(space);
315 elim = isl_map_identity(space);
316 elim = isl_map_eliminate(elim, isl_dim_in, pos, 1);
318 executed = isl_union_map_apply_domain(executed,
319 isl_union_map_from_map(elim));
321 return executed;
324 /* Check if the constraint "c" is a lower bound on dimension "pos",
325 * an upper bound, or independent of dimension "pos".
327 static int constraint_type(isl_constraint *c, int pos)
329 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
330 return 1;
331 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
332 return 2;
333 return 0;
336 /* Compare the types of the constraints "a" and "b",
337 * resulting in constraints that are independent of "depth"
338 * to be sorted before the lower bounds on "depth", which in
339 * turn are sorted before the upper bounds on "depth".
341 static int cmp_constraint(const void *a, const void *b, void *user)
343 int *depth = user;
344 isl_constraint * const *c1 = a;
345 isl_constraint * const *c2 = b;
346 int t1 = constraint_type(*c1, *depth);
347 int t2 = constraint_type(*c2, *depth);
349 return t1 - t2;
352 /* Extract a lower bound on dimension "pos" from constraint "c".
354 * If the constraint is of the form
356 * a x + f(...) >= 0
358 * then we essentially return
360 * l = ceil(-f(...)/a)
362 * However, if the current dimension is strided, then we need to make
363 * sure that the lower bound we construct is of the form
365 * f + s a
367 * with f the offset and s the stride.
368 * We therefore compute
370 * f + s * ceil((l - f)/s)
372 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
373 int pos, __isl_keep isl_ast_build *build)
375 isl_aff *aff;
377 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
378 aff = isl_aff_ceil(aff);
380 if (isl_ast_build_has_stride(build, pos)) {
381 isl_aff *offset;
382 isl_int stride;
384 isl_int_init(stride);
386 offset = isl_ast_build_get_offset(build, pos);
387 isl_ast_build_get_stride(build, pos, &stride);
389 aff = isl_aff_sub(aff, isl_aff_copy(offset));
390 aff = isl_aff_scale_down(aff, stride);
391 aff = isl_aff_ceil(aff);
392 aff = isl_aff_scale(aff, stride);
393 aff = isl_aff_add(aff, offset);
395 isl_int_clear(stride);
398 aff = isl_ast_build_compute_gist_aff(build, aff);
400 return aff;
403 /* Return the exact lower bound (or upper bound if "upper" is set)
404 * of "domain" as a piecewise affine expression.
406 * If we are computing a lower bound (of a strided dimension), then
407 * we need to make sure it is of the form
409 * f + s a
411 * where f is the offset and s is the stride.
412 * We therefore need to include the stride constraint before computing
413 * the minimum.
415 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
416 __isl_keep isl_ast_build *build, int upper)
418 isl_set *stride;
419 isl_map *it_map;
420 isl_pw_aff *pa;
421 isl_pw_multi_aff *pma;
423 domain = isl_set_copy(domain);
424 if (!upper) {
425 stride = isl_ast_build_get_stride_constraint(build);
426 domain = isl_set_intersect(domain, stride);
428 it_map = isl_ast_build_map_to_iterator(build, domain);
429 if (upper)
430 pma = isl_map_lexmax_pw_multi_aff(it_map);
431 else
432 pma = isl_map_lexmin_pw_multi_aff(it_map);
433 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
434 isl_pw_multi_aff_free(pma);
435 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
436 pa = isl_pw_aff_coalesce(pa);
438 return pa;
441 /* Return a list of "n" lower bounds on dimension "pos"
442 * extracted from the "n" constraints starting at "constraint".
443 * If "n" is zero, then we extract a lower bound from "domain" instead.
445 static __isl_give isl_pw_aff_list *lower_bounds(
446 __isl_keep isl_constraint **constraint, int n, int pos,
447 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
449 isl_ctx *ctx;
450 isl_pw_aff_list *list;
451 int i;
453 if (!build)
454 return NULL;
456 if (n == 0) {
457 isl_pw_aff *pa;
458 pa = exact_bound(domain, build, 0);
459 return isl_pw_aff_list_from_pw_aff(pa);
462 ctx = isl_ast_build_get_ctx(build);
463 list = isl_pw_aff_list_alloc(ctx,n);
465 for (i = 0; i < n; ++i) {
466 isl_aff *aff;
468 aff = lower_bound(constraint[i], pos, build);
469 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
472 return list;
475 /* Return a list of "n" upper bounds on dimension "pos"
476 * extracted from the "n" constraints starting at "constraint".
477 * If "n" is zero, then we extract an upper bound from "domain" instead.
479 static __isl_give isl_pw_aff_list *upper_bounds(
480 __isl_keep isl_constraint **constraint, int n, int pos,
481 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
483 isl_ctx *ctx;
484 isl_pw_aff_list *list;
485 int i;
487 if (n == 0) {
488 isl_pw_aff *pa;
489 pa = exact_bound(domain, build, 1);
490 return isl_pw_aff_list_from_pw_aff(pa);
493 ctx = isl_ast_build_get_ctx(build);
494 list = isl_pw_aff_list_alloc(ctx,n);
496 for (i = 0; i < n; ++i) {
497 isl_aff *aff;
499 aff = isl_constraint_get_bound(constraint[i], isl_dim_set, pos);
500 aff = isl_aff_floor(aff);
501 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
504 return list;
507 /* Return an isl_ast_expr that performs the reduction of type "type"
508 * on AST expressions corresponding to the elements in "list".
510 * The list is assumed to contain at least one element.
511 * If the list contains exactly one element, then the returned isl_ast_expr
512 * simply computes that affine expression.
514 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
515 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
517 int i, n;
518 isl_ctx *ctx;
519 isl_ast_expr *expr;
521 if (!list)
522 return NULL;
524 n = isl_pw_aff_list_n_pw_aff(list);
526 if (n == 1)
527 return isl_ast_build_expr_from_pw_aff_internal(build,
528 isl_pw_aff_list_get_pw_aff(list, 0));
530 ctx = isl_pw_aff_list_get_ctx(list);
531 expr = isl_ast_expr_alloc_op(ctx, type, n);
532 if (!expr)
533 return NULL;
535 for (i = 0; i < n; ++i) {
536 isl_ast_expr *expr_i;
538 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
539 isl_pw_aff_list_get_pw_aff(list, i));
540 if (!expr_i)
541 return isl_ast_expr_free(expr);
542 expr->u.op.args[i] = expr_i;
545 return expr;
548 /* Add a guard to "graft" based on "bound" in the case of a degenerate
549 * level (including the special case of an eliminated level).
551 * We eliminate the current dimension, simplify the result in the current
552 * build and add the result as guards to the graft.
554 * Note that we cannot simply drop the constraints on the current dimension
555 * even in the eliminated case, because the single affine expression may
556 * not be explicitly available in "bounds". Moreover, the single affine
557 * expression may only be defined on a subset of the build domain,
558 * so we do in some cases need to insert a guard even in the eliminated case.
560 static __isl_give isl_ast_graft *add_degenerate_guard(
561 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
562 __isl_keep isl_ast_build *build)
564 int depth;
565 isl_set *dom;
567 depth = isl_ast_build_get_depth(build);
569 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
570 if (isl_ast_build_has_stride(build, depth)) {
571 isl_set *stride;
573 stride = isl_ast_build_get_stride_constraint(build);
574 dom = isl_set_intersect(dom, stride);
576 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
577 dom = isl_ast_build_compute_gist(build, dom);
579 graft = isl_ast_graft_add_guard(graft, dom, build);
581 return graft;
584 /* Update "graft" based on "bounds" for the eliminated case.
586 * In the eliminated case, no for node is created, so we only need
587 * to check if "bounds" imply any guards that need to be inserted.
589 static __isl_give isl_ast_graft *refine_eliminated(
590 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
591 __isl_keep isl_ast_build *build)
593 return add_degenerate_guard(graft, bounds, build);
596 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
598 * "build" is the build in which graft->node was created
599 * "sub_build" contains information about the current level itself,
600 * including the single value attained.
602 * We first set the initialization part of the for loop to the single
603 * value attained by the current dimension.
604 * The increment and condition are not strictly needed as the are known
605 * to be "1" and "iterator <= value" respectively.
606 * Then we set the size of the iterator and
607 * check if "bounds" imply any guards that need to be inserted.
609 static __isl_give isl_ast_graft *refine_degenerate(
610 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
611 __isl_keep isl_ast_build *build,
612 __isl_keep isl_ast_build *sub_build)
614 isl_pw_aff *value;
616 if (!graft || !sub_build)
617 return isl_ast_graft_free(graft);
619 value = isl_pw_aff_copy(sub_build->value);
621 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
622 value);
623 if (!graft->node->u.f.init)
624 return isl_ast_graft_free(graft);
626 graft = add_degenerate_guard(graft, bounds, build);
628 return graft;
631 /* Return the intersection of the "n" constraints starting at "constraint"
632 * as a set.
634 static __isl_give isl_set *intersect_constraints(isl_ctx *ctx,
635 __isl_keep isl_constraint **constraint, int n)
637 int i;
638 isl_basic_set *bset;
640 if (n < 1)
641 isl_die(ctx, isl_error_internal,
642 "expecting at least one constraint", return NULL);
644 bset = isl_basic_set_from_constraint(
645 isl_constraint_copy(constraint[0]));
646 for (i = 1; i < n; ++i) {
647 isl_basic_set *bset_i;
649 bset_i = isl_basic_set_from_constraint(
650 isl_constraint_copy(constraint[i]));
651 bset = isl_basic_set_intersect(bset, bset_i);
654 return isl_set_from_basic_set(bset);
657 /* Compute the constraints on the outer dimensions enforced by
658 * graft->node and add those constraints to graft->enforced,
659 * in case the upper bound is expressed as a set "upper".
661 * In particular, if l(...) is a lower bound in "lower", and
663 * -a i + f(...) >= 0 or a i <= f(...)
665 * is an upper bound ocnstraint on the current dimension i,
666 * then the for loop enforces the constraint
668 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
670 * We therefore simply take each lower bound in turn, plug it into
671 * the upper bounds and compute the intersection over all lower bounds.
673 * If a lower bound is a rational expression, then
674 * isl_basic_set_preimage_multi_aff will force this rational
675 * expression to have only integer values. However, the loop
676 * itself does not enforce this integrality constraint. We therefore
677 * use the ceil of the lower bounds instead of the lower bounds themselves.
678 * Other constraints will make sure that the for loop is only executed
679 * when each of the lower bounds attains an integral value.
680 * In particular, potentially rational values only occur in
681 * lower_bound if the offset is a (seemingly) rational expression,
682 * but then outer conditions will make sure that this rational expression
683 * only attains integer values.
685 static __isl_give isl_ast_graft *set_enforced_from_set(
686 __isl_take isl_ast_graft *graft,
687 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
689 isl_space *space;
690 isl_basic_set *enforced;
691 isl_pw_multi_aff *pma;
692 int i, n;
694 if (!graft || !lower)
695 return isl_ast_graft_free(graft);
697 space = isl_set_get_space(upper);
698 enforced = isl_basic_set_universe(isl_space_copy(space));
700 space = isl_space_map_from_set(space);
701 pma = isl_pw_multi_aff_identity(space);
703 n = isl_pw_aff_list_n_pw_aff(lower);
704 for (i = 0; i < n; ++i) {
705 isl_pw_aff *pa;
706 isl_set *enforced_i;
707 isl_basic_set *hull;
708 isl_pw_multi_aff *pma_i;
710 pa = isl_pw_aff_list_get_pw_aff(lower, i);
711 pa = isl_pw_aff_ceil(pa);
712 pma_i = isl_pw_multi_aff_copy(pma);
713 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
714 enforced_i = isl_set_copy(upper);
715 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
716 hull = isl_set_simple_hull(enforced_i);
717 enforced = isl_basic_set_intersect(enforced, hull);
720 isl_pw_multi_aff_free(pma);
722 graft = isl_ast_graft_enforce(graft, enforced);
724 return graft;
727 /* Compute the constraints on the outer dimensions enforced by
728 * graft->node and add those constraints to graft->enforced,
729 * in case the upper bound is expressed as
730 * a list of affine expressions "upper".
732 * The enforced condition is that each lower bound expression is less
733 * than or equal to each upper bound expression.
735 static __isl_give isl_ast_graft *set_enforced_from_list(
736 __isl_take isl_ast_graft *graft,
737 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
739 isl_set *cond;
740 isl_basic_set *enforced;
742 lower = isl_pw_aff_list_copy(lower);
743 upper = isl_pw_aff_list_copy(upper);
744 cond = isl_pw_aff_list_le_set(lower, upper);
745 enforced = isl_set_simple_hull(cond);
746 graft = isl_ast_graft_enforce(graft, enforced);
748 return graft;
751 /* Does "aff" have a negative constant term?
753 static int aff_constant_is_negative(__isl_take isl_set *set,
754 __isl_take isl_aff *aff, void *user)
756 int *neg = user;
757 isl_int v;
759 isl_int_init(v);
760 isl_aff_get_constant(aff, &v);
761 *neg = isl_int_is_neg(v);
762 isl_int_clear(v);
763 isl_set_free(set);
764 isl_aff_free(aff);
766 return *neg ? 0 : -1;
769 /* Does "pa" have a negative constant term over its entire domain?
771 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
773 int r;
774 int *neg = user;
776 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
777 isl_pw_aff_free(pa);
779 return *neg ? 0 : -1;
782 /* Does each element in "list" have a negative constant term?
784 * The callback terminates the iteration as soon an element has been
785 * found that does not have a negative constant term.
787 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
789 int neg = 1;
791 if (isl_pw_aff_list_foreach(list,
792 &pw_aff_constant_is_negative, &neg) < 0 && neg)
793 return -1;
795 return neg;
798 /* Add 1 to each of the elements in "list", where each of these elements
799 * is defined over the internal schedule space of "build".
801 static __isl_give isl_pw_aff_list *list_add_one(
802 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
804 int i, n;
805 isl_space *space;
806 isl_aff *aff;
807 isl_pw_aff *one;
809 space = isl_ast_build_get_space(build, 1);
810 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
811 aff = isl_aff_add_constant_si(aff, 1);
812 one = isl_pw_aff_from_aff(aff);
814 n = isl_pw_aff_list_n_pw_aff(list);
815 for (i = 0; i < n; ++i) {
816 isl_pw_aff *pa;
817 pa = isl_pw_aff_list_get_pw_aff(list, i);
818 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
819 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
822 isl_pw_aff_free(one);
824 return list;
827 /* Set the condition part of the for node graft->node in case
828 * the upper bound is represented as a list of piecewise affine expressions.
830 * In particular, set the condition to
832 * iterator <= min(list of upper bounds)
834 * If each of the upper bounds has a negative constant term, then
835 * set the condition to
837 * iterator < min(list of (upper bound + 1)s)
840 static __isl_give isl_ast_graft *set_for_cond_from_list(
841 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
842 __isl_keep isl_ast_build *build)
844 int neg;
845 isl_ast_expr *bound, *iterator, *cond;
846 enum isl_ast_op_type type = isl_ast_op_le;
848 if (!graft || !list)
849 return isl_ast_graft_free(graft);
851 neg = list_constant_is_negative(list);
852 if (neg < 0)
853 return isl_ast_graft_free(graft);
854 list = isl_pw_aff_list_copy(list);
855 if (neg) {
856 list = list_add_one(list, build);
857 type = isl_ast_op_lt;
860 bound = reduce_list(isl_ast_op_min, list, build);
861 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
862 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
863 graft->node->u.f.cond = cond;
865 isl_pw_aff_list_free(list);
866 if (!graft->node->u.f.cond)
867 return isl_ast_graft_free(graft);
868 return graft;
871 /* Set the condition part of the for node graft->node in case
872 * the upper bound is represented as a set.
874 static __isl_give isl_ast_graft *set_for_cond_from_set(
875 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
876 __isl_keep isl_ast_build *build)
878 isl_ast_expr *cond;
880 if (!graft)
881 return NULL;
883 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
884 graft->node->u.f.cond = cond;
885 if (!graft->node->u.f.cond)
886 return isl_ast_graft_free(graft);
887 return graft;
890 /* Construct an isl_ast_expr for the increment (i.e., stride) of
891 * the current dimension.
893 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
895 int depth;
896 isl_int v;
897 isl_ctx *ctx;
898 isl_ast_expr *inc;
900 ctx = isl_ast_build_get_ctx(build);
901 depth = isl_ast_build_get_depth(build);
903 if (!isl_ast_build_has_stride(build, depth))
904 return isl_ast_expr_alloc_int_si(ctx, 1);
906 isl_int_init(v);
907 isl_ast_build_get_stride(build, depth, &v);
908 inc = isl_ast_expr_alloc_int(ctx, v);
909 isl_int_clear(v);
911 return inc;
914 /* Should we express the loop condition as
916 * iterator <= min(list of upper bounds)
918 * or as a conjunction of constraints?
920 * The first is constructed from a list of upper bounds.
921 * The second is constructed from a set.
923 * If there are no upper bounds in "constraints", then this could mean
924 * that "domain" simply doesn't have an upper bound or that we didn't
925 * pick any upper bound. In the first case, we want to generate the
926 * loop condition as a(n empty) conjunction of constraints
927 * In the second case, we will compute
928 * a single upper bound from "domain" and so we use the list form.
930 * If there are upper bounds in "constraints",
931 * then we use the list form iff the atomic_upper_bound option is set.
933 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
934 __isl_keep isl_set *domain, int depth)
936 if (n_upper > 0)
937 return isl_options_get_ast_build_atomic_upper_bound(ctx);
938 else
939 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
942 /* Fill in the expressions of the for node in graft->node.
944 * In particular,
945 * - set the initialization part of the loop to the maximum of the lower bounds
946 * - set the size of the iterator based on the values attained by the iterator
947 * - extract the increment from the stride of the current dimension
948 * - construct the for condition either based on a list of upper bounds
949 * or on a set of upper bound constraints.
951 static __isl_give isl_ast_graft *set_for_node_expressions(
952 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
953 int use_list, __isl_keep isl_pw_aff_list *upper_list,
954 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
956 isl_ast_node *node;
958 if (!graft)
959 return NULL;
961 build = isl_ast_build_copy(build);
962 build = isl_ast_build_set_enforced(build,
963 isl_ast_graft_get_enforced(graft));
965 node = graft->node;
966 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
967 node->u.f.inc = for_inc(build);
969 if (use_list)
970 graft = set_for_cond_from_list(graft, upper_list, build);
971 else
972 graft = set_for_cond_from_set(graft, upper_set, build);
974 isl_ast_build_free(build);
976 if (!node->u.f.iterator || !node->u.f.init ||
977 !node->u.f.cond || !node->u.f.inc)
978 return isl_ast_graft_free(graft);
980 return graft;
983 /* Update "graft" based on "bounds" and "domain" for the generic,
984 * non-degenerate, case.
986 * "constraints" contains the "n_lower" lower and "n_upper" upper bounds
987 * that the loop node should express.
988 * "domain" is the subset of the intersection of the constraints
989 * for which some code is executed.
991 * There may be zero lower bounds or zero upper bounds in "constraints"
992 * in case the list of constraints was created
993 * based on the atomic option or based on separation with explicit bounds.
994 * In that case, we use "domain" to derive lower and/or upper bounds.
996 * We first compute a list of one or more lower bounds.
998 * Then we decide if we want to express the condition as
1000 * iterator <= min(list of upper bounds)
1002 * or as a conjunction of constraints.
1004 * The set of enforced constraints is then computed either based on
1005 * a list of upper bounds or on a set of upper bound constraints.
1006 * We do not compute any enforced constraints if we were forced
1007 * to compute a lower or upper bound using exact_bound. The domains
1008 * of the resulting expressions may imply some bounds on outer dimensions
1009 * that we do not want to appear in the enforced constraints since
1010 * they are not actually enforced by the corresponding code.
1012 * Finally, we fill in the expressions of the for node.
1014 static __isl_give isl_ast_graft *refine_generic_bounds(
1015 __isl_take isl_ast_graft *graft,
1016 __isl_keep isl_constraint **constraint, int n_lower, int n_upper,
1017 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1019 int depth;
1020 isl_ctx *ctx;
1021 isl_pw_aff_list *lower;
1022 int use_list;
1023 isl_set *upper_set = NULL;
1024 isl_pw_aff_list *upper_list = NULL;
1026 if (!graft || !build)
1027 return isl_ast_graft_free(graft);
1029 depth = isl_ast_build_get_depth(build);
1030 ctx = isl_ast_graft_get_ctx(graft);
1032 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1034 lower = lower_bounds(constraint, n_lower, depth, domain, build);
1036 if (use_list)
1037 upper_list = upper_bounds(constraint + n_lower, n_upper, depth,
1038 domain, build);
1039 else if (n_upper > 0)
1040 upper_set = intersect_constraints(ctx, constraint + n_lower,
1041 n_upper);
1042 else
1043 upper_set = isl_set_universe(isl_set_get_space(domain));
1045 if (n_lower == 0 || n_upper == 0)
1047 else if (use_list)
1048 graft = set_enforced_from_list(graft, lower, upper_list);
1049 else
1050 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1052 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1053 upper_set, build);
1055 isl_pw_aff_list_free(lower);
1056 isl_pw_aff_list_free(upper_list);
1057 isl_set_free(upper_set);
1059 return graft;
1062 /* How many constraints in the "constraint" array, starting at position "first"
1063 * are of the give type? "n" represents the total number of elements
1064 * in the array.
1066 static int count_constraints(isl_constraint **constraint, int n, int first,
1067 int pos, int type)
1069 int i;
1071 constraint += first;
1073 for (i = 0; first + i < n; i++)
1074 if (constraint_type(constraint[i], pos) != type)
1075 break;
1077 return i;
1080 /* Update "graft" based on "bounds" and "domain" for the generic,
1081 * non-degenerate, case.
1083 * "list" respresent the list of bounds that need to be encoded by
1084 * the for loop (or a guard around the for loop).
1085 * "domain" is the subset of the intersection of the constraints
1086 * for which some code is executed.
1087 * "build" is the build in which graft->node was created.
1089 * We separate lower bounds, upper bounds and constraints that
1090 * are independent of the loop iterator.
1092 * The actual for loop bounds are generated in refine_generic_bounds.
1093 * If there are any constraints that are independent of the loop iterator,
1094 * we need to put a guard around the for loop (which may get hoisted up
1095 * to higher levels) and we call refine_generic_bounds in a build
1096 * where this guard is enforced.
1098 static __isl_give isl_ast_graft *refine_generic_split(
1099 __isl_take isl_ast_graft *graft, __isl_keep isl_constraint_list *list,
1100 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1102 isl_ctx *ctx;
1103 isl_ast_build *for_build;
1104 isl_set *guard;
1105 int n_indep, n_lower, n_upper;
1106 int pos;
1107 int n;
1109 if (!list)
1110 return isl_ast_graft_free(graft);
1112 pos = isl_ast_build_get_depth(build);
1114 if (isl_sort(list->p, list->n, sizeof(isl_constraint *),
1115 &cmp_constraint, &pos) < 0)
1116 return isl_ast_graft_free(graft);
1118 n = list->n;
1119 n_indep = count_constraints(list->p, n, 0, pos, 0);
1120 n_lower = count_constraints(list->p, n, n_indep, pos, 1);
1121 n_upper = count_constraints(list->p, n, n_indep + n_lower, pos, 2);
1123 if (n_indep == 0)
1124 return refine_generic_bounds(graft,
1125 list->p + n_indep, n_lower, n_upper, domain, build);
1127 ctx = isl_ast_graft_get_ctx(graft);
1128 guard = intersect_constraints(ctx, list->p, n_indep);
1130 for_build = isl_ast_build_copy(build);
1131 for_build = isl_ast_build_restrict_pending(for_build,
1132 isl_set_copy(guard));
1133 graft = refine_generic_bounds(graft,
1134 list->p + n_indep, n_lower, n_upper, domain, for_build);
1135 isl_ast_build_free(for_build);
1137 graft = isl_ast_graft_add_guard(graft, guard, build);
1139 return graft;
1142 /* Update "graft" based on "bounds" and "domain" for the generic,
1143 * non-degenerate, case.
1145 * "bounds" respresent the bounds that need to be encoded by
1146 * the for loop (or a guard around the for loop).
1147 * "domain" is the subset of "bounds" for which some code is executed.
1148 * "build" is the build in which graft->node was created.
1150 * We break up "bounds" into a list of constraints and continue with
1151 * refine_generic_split.
1153 static __isl_give isl_ast_graft *refine_generic(
1154 __isl_take isl_ast_graft *graft,
1155 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1156 __isl_keep isl_ast_build *build)
1158 isl_constraint_list *list;
1160 if (!build || !graft)
1161 return isl_ast_graft_free(graft);
1163 bounds = isl_basic_set_copy(bounds);
1164 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1165 list = isl_constraint_list_from_basic_set(bounds);
1167 graft = refine_generic_split(graft, list, domain, build);
1169 isl_constraint_list_free(list);
1170 return graft;
1173 /* Create a for node for the current level.
1175 * Mark the for node degenerate if "degenerate" is set.
1177 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1178 int degenerate)
1180 int depth;
1181 isl_id *id;
1182 isl_ast_node *node;
1184 if (!build)
1185 return NULL;
1187 depth = isl_ast_build_get_depth(build);
1188 id = isl_ast_build_get_iterator_id(build, depth);
1189 node = isl_ast_node_alloc_for(id);
1190 if (degenerate)
1191 node = isl_ast_node_for_mark_degenerate(node);
1193 return node;
1196 /* Create an AST node for the current dimension based on
1197 * the schedule domain "bounds" and return the node encapsulated
1198 * in an isl_ast_graft.
1200 * "executed" is the current inverse schedule, taking into account
1201 * the bounds in "bounds"
1202 * "domain" is the domain of "executed", with inner dimensions projected out.
1203 * It may be a strict subset of "bounds" in case "bounds" was created
1204 * based on the atomic option or based on separation with explicit bounds.
1206 * "domain" may satisfy additional equalities that result
1207 * from intersecting "executed" with "bounds" in add_node.
1208 * It may also satisfy some global constraints that were dropped out because
1209 * we performed separation with explicit bounds.
1210 * The very first step is then to copy these constraints to "bounds".
1212 * Since we may be calling before_each_for and after_each_for
1213 * callbacks, we record the current inverse schedule in the build.
1215 * We consider three builds,
1216 * "build" is the one in which the current level is created,
1217 * "body_build" is the build in which the next level is created,
1218 * "sub_build" is essentially the same as "body_build", except that
1219 * the depth has not been increased yet.
1221 * "build" already contains information (in strides and offsets)
1222 * about the strides at the current level, but this information is not
1223 * reflected in the build->domain.
1224 * We first add this information and the "bounds" to the sub_build->domain.
1225 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1226 * only a single value and whether this single value can be represented using
1227 * a single affine expression.
1228 * In the first case, the current level is considered "degenerate".
1229 * In the second, sub-case, the current level is considered "eliminated".
1230 * Eliminated level don't need to be reflected in the AST since we can
1231 * simply plug in the affine expression. For degenerate, but non-eliminated,
1232 * levels, we do introduce a for node, but mark is as degenerate so that
1233 * it can be printed as an assignment of the single value to the loop
1234 * "iterator".
1236 * If the current level is eliminated, we eliminate the current dimension
1237 * from the inverse schedule to make sure no inner dimensions depend
1238 * on the current dimension. Otherwise, we create a for node, marking
1239 * it degenerate if appropriate. The initial for node is still incomplete
1240 * and will be completed in either refine_degenerate or refine_generic.
1242 * We then generate a sequence of grafts for the next level,
1243 * create a surrounding graft for the current level and insert
1244 * the for node we created (if the current level is not eliminated).
1246 * Finally, we set the bounds of the for loop and insert guards
1247 * (either in the AST or in the graft) in one of
1248 * refine_eliminated, refine_degenerate or refine_generic.
1250 static __isl_give isl_ast_graft *create_node_scaled(
1251 __isl_take isl_union_map *executed,
1252 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1253 __isl_take isl_ast_build *build)
1255 int depth;
1256 int degenerate, eliminated;
1257 isl_basic_set *hull;
1258 isl_ast_node *node = NULL;
1259 isl_ast_graft *graft;
1260 isl_ast_graft_list *children;
1261 isl_ast_build *sub_build;
1262 isl_ast_build *body_build;
1264 domain = isl_ast_build_eliminate_divs(build, domain);
1265 domain = isl_set_detect_equalities(domain);
1266 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1267 bounds = isl_basic_set_intersect(bounds, hull);
1268 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1270 depth = isl_ast_build_get_depth(build);
1271 sub_build = isl_ast_build_copy(build);
1272 sub_build = isl_ast_build_include_stride(sub_build);
1273 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1274 isl_basic_set_copy(bounds));
1275 degenerate = isl_ast_build_has_value(sub_build);
1276 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1277 if (degenerate < 0 || eliminated < 0)
1278 executed = isl_union_map_free(executed);
1279 if (eliminated)
1280 executed = eliminate(executed, depth, build);
1281 else
1282 node = create_for(build, degenerate);
1284 body_build = isl_ast_build_copy(sub_build);
1285 body_build = isl_ast_build_increase_depth(body_build);
1286 if (!eliminated)
1287 node = before_each_for(node, body_build);
1288 children = generate_next_level(executed,
1289 isl_ast_build_copy(body_build));
1291 graft = isl_ast_graft_alloc_level(children, sub_build);
1292 if (!eliminated)
1293 graft = isl_ast_graft_insert_for(graft, node);
1294 if (eliminated)
1295 graft = refine_eliminated(graft, bounds, build);
1296 else if (degenerate)
1297 graft = refine_degenerate(graft, bounds, build, sub_build);
1298 else
1299 graft = refine_generic(graft, bounds, domain, build);
1300 if (!eliminated)
1301 graft = after_each_for(graft, body_build);
1303 isl_ast_build_free(body_build);
1304 isl_ast_build_free(sub_build);
1305 isl_ast_build_free(build);
1306 isl_basic_set_free(bounds);
1307 isl_set_free(domain);
1309 return graft;
1312 /* Internal data structure for checking if all constraints involving
1313 * the input dimension "depth" are such that the other coefficients
1314 * are multiples of "m", reducing "m" if they are not.
1315 * If "m" is reduced all the way down to "1", then the check has failed
1316 * and we break out of the iteration.
1317 * "d" is an initialized isl_int that can be used internally.
1319 struct isl_check_scaled_data {
1320 int depth;
1321 isl_int m, d;
1324 /* If constraint "c" involves the input dimension data->depth,
1325 * then make sure that all the other coefficients are multiples of data->m,
1326 * reducing data->m if needed.
1327 * Break out of the iteration if data->m has become equal to "1".
1329 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1331 struct isl_check_scaled_data *data = user;
1332 int i, j, n;
1333 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1334 isl_dim_div };
1336 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1337 isl_constraint_free(c);
1338 return 0;
1341 for (i = 0; i < 4; ++i) {
1342 n = isl_constraint_dim(c, t[i]);
1343 for (j = 0; j < n; ++j) {
1344 if (t[i] == isl_dim_in && j == data->depth)
1345 continue;
1346 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1347 continue;
1348 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1349 isl_int_gcd(data->m, data->m, data->d);
1350 if (isl_int_is_one(data->m))
1351 break;
1353 if (j < n)
1354 break;
1357 isl_constraint_free(c);
1359 return i < 4 ? -1 : 0;
1362 /* For each constraint of "bmap" that involves the input dimension data->depth,
1363 * make sure that all the other coefficients are multiples of data->m,
1364 * reducing data->m if needed.
1365 * Break out of the iteration if data->m has become equal to "1".
1367 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1369 int r;
1371 r = isl_basic_map_foreach_constraint(bmap,
1372 &constraint_check_scaled, user);
1373 isl_basic_map_free(bmap);
1375 return r;
1378 /* For each constraint of "map" that involves the input dimension data->depth,
1379 * make sure that all the other coefficients are multiples of data->m,
1380 * reducing data->m if needed.
1381 * Break out of the iteration if data->m has become equal to "1".
1383 static int map_check_scaled(__isl_take isl_map *map, void *user)
1385 int r;
1387 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1388 isl_map_free(map);
1390 return r;
1393 /* Create an AST node for the current dimension based on
1394 * the schedule domain "bounds" and return the node encapsulated
1395 * in an isl_ast_graft.
1397 * "executed" is the current inverse schedule, taking into account
1398 * the bounds in "bounds"
1399 * "domain" is the domain of "executed", with inner dimensions projected out.
1402 * Before moving on to the actual AST node construction in create_node_scaled,
1403 * we first check if the current dimension is strided and if we can scale
1404 * down this stride. Note that we only do this if the ast_build_scale_strides
1405 * option is set.
1407 * In particular, let the current dimension take on values
1409 * f + s a
1411 * with a an integer. We check if we can find an integer m that (obviouly)
1412 * divides both f and s.
1414 * If so, we check if the current dimension only appears in constraints
1415 * where the coefficients of the other variables are multiples of m.
1416 * We perform this extra check to avoid the risk of introducing
1417 * divisions by scaling down the current dimension.
1419 * If so, we scale the current dimension down by a factor of m.
1420 * That is, we plug in
1422 * i = m i' (1)
1424 * Note that in principle we could always scale down strided loops
1425 * by plugging in
1427 * i = f + s i'
1429 * but this may result in i' taking on larger values than the original i,
1430 * due to the shift by "f".
1431 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1433 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1434 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1435 __isl_take isl_ast_build *build)
1437 struct isl_check_scaled_data data;
1438 isl_ctx *ctx;
1439 isl_aff *offset;
1441 ctx = isl_ast_build_get_ctx(build);
1442 if (!isl_options_get_ast_build_scale_strides(ctx))
1443 return create_node_scaled(executed, bounds, domain, build);
1445 data.depth = isl_ast_build_get_depth(build);
1446 if (!isl_ast_build_has_stride(build, data.depth))
1447 return create_node_scaled(executed, bounds, domain, build);
1449 isl_int_init(data.m);
1450 isl_int_init(data.d);
1452 offset = isl_ast_build_get_offset(build, data.depth);
1453 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1454 offset = isl_aff_free(offset);
1455 offset = isl_aff_scale_down(offset, data.m);
1456 if (isl_aff_get_denominator(offset, &data.d) < 0)
1457 executed = isl_union_map_free(executed);
1459 if (isl_int_is_divisible_by(data.m, data.d))
1460 isl_int_divexact(data.m, data.m, data.d);
1461 else
1462 isl_int_set_si(data.m, 1);
1464 if (!isl_int_is_one(data.m)) {
1465 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1466 &data) < 0 &&
1467 !isl_int_is_one(data.m))
1468 executed = isl_union_map_free(executed);
1471 if (!isl_int_is_one(data.m)) {
1472 isl_space *space;
1473 isl_multi_aff *ma;
1474 isl_aff *aff;
1475 isl_map *map;
1476 isl_union_map *umap;
1478 space = isl_ast_build_get_space(build, 1);
1479 space = isl_space_map_from_set(space);
1480 ma = isl_multi_aff_identity(space);
1481 aff = isl_multi_aff_get_aff(ma, data.depth);
1482 aff = isl_aff_scale(aff, data.m);
1483 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1485 bounds = isl_basic_set_preimage_multi_aff(bounds,
1486 isl_multi_aff_copy(ma));
1487 domain = isl_set_preimage_multi_aff(domain,
1488 isl_multi_aff_copy(ma));
1489 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1490 umap = isl_union_map_from_map(map);
1491 executed = isl_union_map_apply_domain(executed,
1492 isl_union_map_copy(umap));
1493 build = isl_ast_build_scale_down(build, data.m, umap);
1495 isl_aff_free(offset);
1497 isl_int_clear(data.d);
1498 isl_int_clear(data.m);
1500 return create_node_scaled(executed, bounds, domain, build);
1503 /* Add the basic set to the list that "user" points to.
1505 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1507 isl_basic_set_list **list = user;
1509 *list = isl_basic_set_list_add(*list, bset);
1511 return 0;
1514 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1516 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1517 __isl_take isl_set *set)
1519 int n;
1520 isl_ctx *ctx;
1521 isl_basic_set_list *list;
1523 if (!set)
1524 return NULL;
1526 ctx = isl_set_get_ctx(set);
1528 n = isl_set_n_basic_set(set);
1529 list = isl_basic_set_list_alloc(ctx, n);
1530 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1531 list = isl_basic_set_list_free(list);
1533 isl_set_free(set);
1534 return list;
1537 /* Generate code for the schedule domain "bounds"
1538 * and add the result to "list".
1540 * We mainly detect strides and additional equalities here
1541 * and then pass over control to create_node.
1543 * "bounds" reflects the bounds on the current dimension and possibly
1544 * some extra conditions on outer dimensions.
1545 * It does not, however, include any divs involving the current dimension,
1546 * so it does not capture any stride constraints.
1547 * We therefore need to compute that part of the schedule domain that
1548 * intersects with "bounds" and derive the strides from the result.
1550 static __isl_give isl_ast_graft_list *add_node(
1551 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1552 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1554 isl_ast_graft *graft;
1555 isl_set *domain = NULL;
1556 isl_union_set *uset;
1557 int empty;
1559 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1560 executed = isl_union_map_intersect_domain(executed, uset);
1561 empty = isl_union_map_is_empty(executed);
1562 if (empty < 0)
1563 goto error;
1564 if (empty)
1565 goto done;
1567 uset = isl_union_map_domain(isl_union_map_copy(executed));
1568 domain = isl_set_from_union_set(uset);
1569 domain = isl_ast_build_compute_gist(build, domain);
1570 empty = isl_set_is_empty(domain);
1571 if (empty < 0)
1572 goto error;
1573 if (empty)
1574 goto done;
1576 domain = isl_ast_build_eliminate_inner(build, domain);
1577 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1579 graft = create_node(executed, bounds, domain,
1580 isl_ast_build_copy(build));
1581 list = isl_ast_graft_list_add(list, graft);
1582 isl_ast_build_free(build);
1583 return list;
1584 error:
1585 list = isl_ast_graft_list_free(list);
1586 done:
1587 isl_set_free(domain);
1588 isl_basic_set_free(bounds);
1589 isl_union_map_free(executed);
1590 isl_ast_build_free(build);
1591 return list;
1594 struct isl_domain_follows_at_depth_data {
1595 int depth;
1596 isl_basic_set **piece;
1599 /* Does any element of i follow or coincide with any element of j
1600 * at the current depth (data->depth) for equal values of the outer
1601 * dimensions?
1603 static int domain_follows_at_depth(int i, int j, void *user)
1605 struct isl_domain_follows_at_depth_data *data = user;
1606 isl_basic_map *test;
1607 int empty;
1608 int l;
1610 test = isl_basic_map_from_domain_and_range(
1611 isl_basic_set_copy(data->piece[i]),
1612 isl_basic_set_copy(data->piece[j]));
1613 for (l = 0; l < data->depth; ++l)
1614 test = isl_basic_map_equate(test, isl_dim_in, l,
1615 isl_dim_out, l);
1616 test = isl_basic_map_order_ge(test, isl_dim_in, data->depth,
1617 isl_dim_out, data->depth);
1618 empty = isl_basic_map_is_empty(test);
1619 isl_basic_map_free(test);
1621 return empty < 0 ? -1 : !empty;
1624 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1625 __isl_keep isl_basic_set_list *domain_list,
1626 __isl_keep isl_union_map *executed,
1627 __isl_keep isl_ast_build *build);
1629 /* Generate code for the "n" schedule domains in "domain_list"
1630 * with positions specified by the entries of the "pos" array
1631 * and add the results to "list".
1633 * The "n" domains form a strongly connected component in the ordering.
1634 * If n is larger than 1, then this means that we cannot determine a valid
1635 * ordering for the n domains in the component. This should be fairly
1636 * rare because the individual domains have been made disjoint first.
1637 * The problem is that the domains may be integrally disjoint but not
1638 * rationally disjoint. For example, we may have domains
1640 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1642 * These two domains have an empty intersection, but their rational
1643 * relaxations do intersect. It is impossible to order these domains
1644 * in the second dimension because the first should be ordered before
1645 * the second for outer dimension equal to 0, while it should be ordered
1646 * after for outer dimension equal to 1.
1648 * This may happen in particular in case of unrolling since the domain
1649 * of each slice is replaced by its simple hull.
1651 * We collect the basic sets in the component, call isl_set_make_disjoint
1652 * and try again. Note that we rely here on isl_set_make_disjoint also
1653 * making the basic sets rationally disjoint. If the basic sets
1654 * are rationally disjoint, then the ordering problem does not occur.
1655 * To see this, there can only be a problem if there are points
1656 * (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
1657 * a < c and b > d. This means that either the interval spanned
1658 * by a en b lies inside that spanned by c and or the other way around.
1659 * In either case, there is a point inside both intervals with the
1660 * convex combination in terms of a and b and in terms of c and d.
1661 * Taking the same combination of i and j gives a point in the intersection.
1663 static __isl_give isl_ast_graft_list *add_nodes(
1664 __isl_take isl_ast_graft_list *list, int *pos, int n,
1665 __isl_keep isl_basic_set_list *domain_list,
1666 __isl_keep isl_union_map *executed,
1667 __isl_keep isl_ast_build *build)
1669 int i;
1670 isl_basic_set *bset;
1671 isl_set *set;
1673 bset = isl_basic_set_list_get_basic_set(domain_list, pos[0]);
1674 if (n == 1)
1675 return add_node(list, isl_union_map_copy(executed), bset,
1676 isl_ast_build_copy(build));
1678 set = isl_set_from_basic_set(bset);
1679 for (i = 1; i < n; ++i) {
1680 bset = isl_basic_set_list_get_basic_set(domain_list, pos[i]);
1681 set = isl_set_union(set, isl_set_from_basic_set(bset));
1684 set = isl_set_make_disjoint(set);
1685 if (isl_set_n_basic_set(set) == n)
1686 isl_die(isl_ast_graft_list_get_ctx(list), isl_error_internal,
1687 "unable to separate loop parts", goto error);
1688 domain_list = isl_basic_set_list_from_set(set);
1689 list = isl_ast_graft_list_concat(list,
1690 generate_sorted_domains(domain_list, executed, build));
1691 isl_basic_set_list_free(domain_list);
1693 return list;
1694 error:
1695 isl_set_free(set);
1696 return isl_ast_graft_list_free(list);
1699 /* Sort the domains in "domain_list" according to the execution order
1700 * at the current depth (for equal values of the outer dimensions),
1701 * generate code for each of them, collecting the results in a list.
1702 * If no code is generated (because the intersection of the inverse schedule
1703 * with the domains turns out to be empty), then an empty list is returned.
1705 * The caller is responsible for ensuring that the basic sets in "domain_list"
1706 * are pair-wise disjoint. It can, however, in principle happen that
1707 * two basic sets should be ordered one way for one value of the outer
1708 * dimensions and the other way for some other value of the outer dimensions.
1709 * We therefore play safe and look for strongly connected components.
1710 * The function add_nodes takes care of handling non-trivial components.
1712 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1713 __isl_keep isl_basic_set_list *domain_list,
1714 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1716 isl_ctx *ctx;
1717 isl_ast_graft_list *list;
1718 struct isl_domain_follows_at_depth_data data;
1719 struct isl_tarjan_graph *g;
1720 int i, n;
1722 if (!domain_list)
1723 return NULL;
1725 ctx = isl_basic_set_list_get_ctx(domain_list);
1726 n = isl_basic_set_list_n_basic_set(domain_list);
1727 list = isl_ast_graft_list_alloc(ctx, n);
1728 if (n == 0)
1729 return list;
1730 if (n == 1)
1731 return add_node(list, isl_union_map_copy(executed),
1732 isl_basic_set_list_get_basic_set(domain_list, 0),
1733 isl_ast_build_copy(build));
1735 data.depth = isl_ast_build_get_depth(build);
1736 data.piece = domain_list->p;
1737 g = isl_tarjan_graph_init(ctx, n, &domain_follows_at_depth, &data);
1739 i = 0;
1740 while (list && n) {
1741 int first;
1743 if (g->order[i] == -1)
1744 isl_die(ctx, isl_error_internal, "cannot happen",
1745 goto error);
1746 first = i;
1747 while (g->order[i] != -1) {
1748 ++i; --n;
1750 list = add_nodes(list, g->order + first, i - first,
1751 domain_list, executed, build);
1752 ++i;
1755 if (0)
1756 error: list = isl_ast_graft_list_free(list);
1757 isl_tarjan_graph_free(g);
1759 return list;
1762 struct isl_shared_outer_data {
1763 int depth;
1764 isl_basic_set **piece;
1767 /* Do elements i and j share any values for the outer dimensions?
1769 static int shared_outer(int i, int j, void *user)
1771 struct isl_shared_outer_data *data = user;
1772 isl_basic_map *test;
1773 int empty;
1774 int l;
1776 test = isl_basic_map_from_domain_and_range(
1777 isl_basic_set_copy(data->piece[i]),
1778 isl_basic_set_copy(data->piece[j]));
1779 for (l = 0; l < data->depth; ++l)
1780 test = isl_basic_map_equate(test, isl_dim_in, l,
1781 isl_dim_out, l);
1782 empty = isl_basic_map_is_empty(test);
1783 isl_basic_map_free(test);
1785 return empty < 0 ? -1 : !empty;
1788 /* Call generate_sorted_domains on a list containing the elements
1789 * of "domain_list indexed by the first "n" elements of "pos".
1791 static __isl_give isl_ast_graft_list *generate_sorted_domains_part(
1792 __isl_keep isl_basic_set_list *domain_list, int *pos, int n,
1793 __isl_keep isl_union_map *executed,
1794 __isl_keep isl_ast_build *build)
1796 int i;
1797 isl_ctx *ctx;
1798 isl_basic_set_list *slice;
1799 isl_ast_graft_list *list;
1801 ctx = isl_ast_build_get_ctx(build);
1802 slice = isl_basic_set_list_alloc(ctx, n);
1803 for (i = 0; i < n; ++i) {
1804 isl_basic_set *bset;
1806 bset = isl_basic_set_copy(domain_list->p[pos[i]]);
1807 slice = isl_basic_set_list_add(slice, bset);
1810 list = generate_sorted_domains(slice, executed, build);
1811 isl_basic_set_list_free(slice);
1813 return list;
1816 /* Look for any (weakly connected) components in the "domain_list"
1817 * of domains that share some values of the outer dimensions.
1818 * That is, domains in different components do not share any values
1819 * of the outer dimensions. This means that these components
1820 * can be freely reorderd.
1821 * Within each of the components, we sort the domains according
1822 * to the execution order at the current depth.
1824 * We fuse the result of each call to generate_sorted_domains_part
1825 * into a list with either zero or one graft and collect these (at most)
1826 * single element lists into a bigger list. This means that the elements of the
1827 * final list can be freely reordered. In particular, we sort them
1828 * according to an arbitrary but fixed ordering to ease merging of
1829 * graft lists from different components.
1831 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1832 __isl_keep isl_basic_set_list *domain_list,
1833 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1835 int i, n;
1836 isl_ctx *ctx;
1837 isl_ast_graft_list *list;
1838 struct isl_shared_outer_data data;
1839 struct isl_tarjan_graph *g;
1841 if (!domain_list)
1842 return NULL;
1844 n = isl_basic_set_list_n_basic_set(domain_list);
1845 if (n <= 1)
1846 return generate_sorted_domains(domain_list, executed, build);
1848 ctx = isl_basic_set_list_get_ctx(domain_list);
1850 data.depth = isl_ast_build_get_depth(build);
1851 data.piece = domain_list->p;
1852 g = isl_tarjan_graph_init(ctx, n, &shared_outer, &data);
1853 if (!g)
1854 return NULL;
1856 i = 0;
1857 do {
1858 int first;
1859 isl_ast_graft_list *list_c;
1861 if (g->order[i] == -1)
1862 isl_die(ctx, isl_error_internal, "cannot happen",
1863 break);
1864 first = i;
1865 while (g->order[i] != -1) {
1866 ++i; --n;
1868 if (first == 0 && n == 0) {
1869 isl_tarjan_graph_free(g);
1870 return generate_sorted_domains(domain_list,
1871 executed, build);
1873 list_c = generate_sorted_domains_part(domain_list,
1874 g->order + first, i - first, executed, build);
1875 list_c = isl_ast_graft_list_fuse(list_c, build);
1876 if (first == 0)
1877 list = list_c;
1878 else
1879 list = isl_ast_graft_list_concat(list, list_c);
1880 ++i;
1881 } while (list && n);
1883 if (n > 0)
1884 list = isl_ast_graft_list_free(list);
1886 list = isl_ast_graft_list_sort(list);
1888 isl_tarjan_graph_free(g);
1890 return list;
1893 /* Internal data for separate_domain.
1895 * "explicit" is set if we only want to use explicit bounds.
1897 * "domain" collects the separated domains.
1899 struct isl_separate_domain_data {
1900 isl_ast_build *build;
1901 int explicit;
1902 isl_set *domain;
1905 /* Extract implicit bounds on the current dimension for the executed "map".
1907 * The domain of "map" may involve inner dimensions, so we
1908 * need to eliminate them.
1910 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
1911 __isl_keep isl_ast_build *build)
1913 isl_set *domain;
1915 domain = isl_map_domain(map);
1916 domain = isl_ast_build_eliminate(build, domain);
1918 return domain;
1921 /* Extract explicit bounds on the current dimension for the executed "map".
1923 * Rather than eliminating the inner dimensions as in implicit_bounds,
1924 * we simply drop any constraints involving those inner dimensions.
1925 * The idea is that most bounds that are implied by constraints on the
1926 * inner dimensions will be enforced by for loops and not by explicit guards.
1927 * There is then no need to separate along those bounds.
1929 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
1930 __isl_keep isl_ast_build *build)
1932 isl_set *domain;
1933 int depth, dim;
1935 dim = isl_map_dim(map, isl_dim_out);
1936 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
1938 domain = isl_map_domain(map);
1939 depth = isl_ast_build_get_depth(build);
1940 dim = isl_set_dim(domain, isl_dim_set);
1941 domain = isl_set_detect_equalities(domain);
1942 domain = isl_set_drop_constraints_involving_dims(domain,
1943 isl_dim_set, depth + 1, dim - (depth + 1));
1944 domain = isl_set_remove_divs_involving_dims(domain,
1945 isl_dim_set, depth, 1);
1946 domain = isl_set_remove_unknown_divs(domain);
1948 return domain;
1951 /* Split data->domain into pieces that intersect with the range of "map"
1952 * and pieces that do not intersect with the range of "map"
1953 * and then add that part of the range of "map" that does not intersect
1954 * with data->domain.
1956 static int separate_domain(__isl_take isl_map *map, void *user)
1958 struct isl_separate_domain_data *data = user;
1959 isl_set *domain;
1960 isl_set *d1, *d2;
1962 if (data->explicit)
1963 domain = explicit_bounds(map, data->build);
1964 else
1965 domain = implicit_bounds(map, data->build);
1967 domain = isl_set_coalesce(domain);
1968 domain = isl_set_make_disjoint(domain);
1969 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
1970 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
1971 data->domain = isl_set_intersect(data->domain, domain);
1972 data->domain = isl_set_union(data->domain, d1);
1973 data->domain = isl_set_union(data->domain, d2);
1975 return 0;
1978 /* Separate the schedule domains of "executed".
1980 * That is, break up the domain of "executed" into basic sets,
1981 * such that for each basic set S, every element in S is associated with
1982 * the same domain spaces.
1984 * "space" is the (single) domain space of "executed".
1986 static __isl_give isl_set *separate_schedule_domains(
1987 __isl_take isl_space *space, __isl_take isl_union_map *executed,
1988 __isl_keep isl_ast_build *build)
1990 struct isl_separate_domain_data data = { build };
1991 isl_ctx *ctx;
1993 ctx = isl_ast_build_get_ctx(build);
1994 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
1995 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
1996 data.domain = isl_set_empty(space);
1997 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
1998 data.domain = isl_set_free(data.domain);
2000 isl_union_map_free(executed);
2001 return data.domain;
2004 /* Temporary data used during the search for a lower bound for unrolling.
2006 * "domain" is the original set for which to find a lower bound
2007 * "depth" is the dimension for which to find a lower boudn
2009 * "lower" is the best lower bound found so far. It is NULL if we have not
2010 * found any yet.
2011 * "n" is the corresponding size. If lower is NULL, then the value of n
2012 * is undefined.
2014 * "tmp" is a temporary initialized isl_int.
2016 struct isl_find_unroll_data {
2017 isl_set *domain;
2018 int depth;
2020 isl_aff *lower;
2021 int *n;
2022 isl_int tmp;
2025 /* Check if we can use "c" as a lower bound and if it is better than
2026 * any previously found lower bound.
2028 * If "c" does not involve the dimension at the current depth,
2029 * then we cannot use it.
2030 * Otherwise, let "c" be of the form
2032 * i >= f(j)/a
2034 * We compute the maximal value of
2036 * -ceil(f(j)/a)) + i + 1
2038 * over the domain. If there is such a value "n", then we know
2040 * -ceil(f(j)/a)) + i + 1 <= n
2042 * or
2044 * i < ceil(f(j)/a)) + n
2046 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2047 * We just need to check if we have found any lower bound before and
2048 * if the new lower bound is better (smaller n) than the previously found
2049 * lower bounds.
2051 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2052 __isl_keep isl_constraint *c)
2054 isl_aff *aff, *lower;
2055 enum isl_lp_result res;
2057 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2058 return 0;
2060 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2061 lower = isl_aff_ceil(lower);
2062 aff = isl_aff_copy(lower);
2063 aff = isl_aff_neg(aff);
2064 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2065 aff = isl_aff_add_constant_si(aff, 1);
2066 res = isl_set_max(data->domain, aff, &data->tmp);
2067 isl_aff_free(aff);
2069 if (res == isl_lp_error)
2070 goto error;
2071 if (res == isl_lp_unbounded) {
2072 isl_aff_free(lower);
2073 return 0;
2076 if (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0) {
2077 isl_aff_free(data->lower);
2078 data->lower = lower;
2079 *data->n = isl_int_get_si(data->tmp);
2080 } else
2081 isl_aff_free(lower);
2083 return 1;
2084 error:
2085 isl_aff_free(lower);
2086 return -1;
2089 /* Check if we can use "c" as a lower bound and if it is better than
2090 * any previously found lower bound.
2092 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2094 struct isl_find_unroll_data *data;
2095 int r;
2097 data = (struct isl_find_unroll_data *) user;
2098 r = update_unrolling_lower_bound(data, c);
2099 isl_constraint_free(c);
2101 return r;
2104 /* Look for a lower bound l(i) on the dimension at "depth"
2105 * and a size n such that "domain" is a subset of
2107 * { [i] : l(i) <= i_d < l(i) + n }
2109 * where d is "depth" and l(i) depends only on earlier dimensions.
2110 * Furthermore, try and find a lower bound such that n is as small as possible.
2111 * In particular, "n" needs to be finite.
2113 * Inner dimensions have been eliminated from "domain" by the caller.
2115 * We first construct a collection of lower bounds on the input set
2116 * by computing its simple hull. We then iterate through them,
2117 * discarding those that we cannot use (either because they do not
2118 * involve the dimension at "depth" or because they have no corresponding
2119 * upper bound, meaning that "n" would be unbounded) and pick out the
2120 * best from the remaining ones.
2122 * If we cannot find a suitable lower bound, then we consider that
2123 * to be an error.
2125 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2126 int depth, int *n)
2128 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2129 isl_basic_set *hull;
2131 isl_int_init(data.tmp);
2132 hull = isl_set_simple_hull(isl_set_copy(domain));
2134 if (isl_basic_set_foreach_constraint(hull,
2135 &constraint_find_unroll, &data) < 0)
2136 goto error;
2138 isl_basic_set_free(hull);
2139 isl_int_clear(data.tmp);
2141 if (!data.lower)
2142 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2143 "cannot find lower bound for unrolling", return NULL);
2145 return data.lower;
2146 error:
2147 isl_basic_set_free(hull);
2148 isl_int_clear(data.tmp);
2149 return isl_aff_free(data.lower);
2152 /* Intersect "set" with the constraint
2154 * i_"depth" = aff + offset
2156 static __isl_give isl_set *at_offset(__isl_take isl_set *set, int depth,
2157 __isl_keep isl_aff *aff, int offset)
2159 isl_constraint *eq;
2161 aff = isl_aff_copy(aff);
2162 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2163 aff = isl_aff_add_constant_si(aff, offset);
2164 eq = isl_equality_from_aff(aff);
2165 set = isl_set_add_constraint(set, eq);
2167 return set;
2170 /* Return a list of basic sets, one for each value of the current dimension
2171 * in "domain".
2172 * The divs that involve the current dimension have not been projected out
2173 * from this domain.
2175 * Since we are going to be iterating over the individual values,
2176 * we first check if there are any strides on the current dimension.
2177 * If there is, we rewrite the current dimension i as
2179 * i = stride i' + offset
2181 * and then iterate over individual values of i' instead.
2183 * We then look for a lower bound on i' and a size such that the domain
2184 * is a subset of
2186 * { [j,i'] : l(j) <= i' < l(j) + n }
2188 * and then take slices of the domain at values of i'
2189 * between l(j) and l(j) + n - 1.
2191 * We compute the unshifted simple hull of each slice to ensure that
2192 * we have a single basic set per offset. The slicing constraint
2193 * is preserved by taking the unshifted simple hull, so these basic sets
2194 * remain disjoint. The constraints that are dropped by taking the hull
2195 * will be taken into account at the next level, as in the case of the
2196 * atomic option.
2198 * Finally, we map i' back to i and add each basic set to the list.
2200 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2201 __isl_keep isl_ast_build *build)
2203 int i, n;
2204 int depth;
2205 isl_ctx *ctx;
2206 isl_aff *lower;
2207 isl_basic_set_list *list;
2208 isl_multi_aff *expansion;
2209 isl_basic_map *bmap;
2211 if (!domain)
2212 return NULL;
2214 ctx = isl_set_get_ctx(domain);
2215 depth = isl_ast_build_get_depth(build);
2216 build = isl_ast_build_copy(build);
2217 domain = isl_ast_build_eliminate_inner(build, domain);
2218 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2219 expansion = isl_ast_build_get_stride_expansion(build);
2221 domain = isl_set_preimage_multi_aff(domain,
2222 isl_multi_aff_copy(expansion));
2223 domain = isl_ast_build_eliminate_divs(build, domain);
2225 isl_ast_build_free(build);
2227 list = isl_basic_set_list_alloc(ctx, 0);
2229 lower = find_unroll_lower_bound(domain, depth, &n);
2230 if (!lower)
2231 list = isl_basic_set_list_free(list);
2233 bmap = isl_basic_map_from_multi_aff(expansion);
2235 for (i = 0; list && i < n; ++i) {
2236 isl_set *set;
2237 isl_basic_set *bset;
2239 set = at_offset(isl_set_copy(domain), depth, lower, i);
2240 bset = isl_set_unshifted_simple_hull(set);
2241 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2242 list = isl_basic_set_list_add(list, bset);
2245 isl_aff_free(lower);
2246 isl_set_free(domain);
2247 isl_basic_map_free(bmap);
2249 return list;
2252 /* Data structure for storing the results and the intermediate objects
2253 * of compute_domains.
2255 * "list" is the main result of the function and contains a list
2256 * of disjoint basic sets for which code should be generated.
2258 * "executed" and "build" are inputs to compute_domains.
2259 * "schedule_domain" is the domain of "executed".
2261 * "option" constains the domains at the current depth that should by
2262 * atomic, separated or unrolled. These domains are as specified by
2263 * the user, except that inner dimensions have been eliminated and
2264 * that they have been made pair-wise disjoint.
2266 * "sep_class" contains the user-specified split into separation classes
2267 * specialized to the current depth.
2268 * "done" contains the union of th separation domains that have already
2269 * been handled.
2271 struct isl_codegen_domains {
2272 isl_basic_set_list *list;
2274 isl_union_map *executed;
2275 isl_ast_build *build;
2276 isl_set *schedule_domain;
2278 isl_set *option[3];
2280 isl_map *sep_class;
2281 isl_set *done;
2284 /* Add domains to domains->list for each individual value of the current
2285 * dimension, for that part of the schedule domain that lies in the
2286 * intersection of the option domain and the class domain.
2288 * "domain" is the intersection of the class domain and the schedule domain.
2289 * The divs that involve the current dimension have not been projected out
2290 * from this domain.
2292 * We first break up the unroll option domain into individual pieces
2293 * and then handle each of them separately. The unroll option domain
2294 * has been made disjoint in compute_domains_init_options,
2296 * Note that we actively want to combine different pieces of the
2297 * schedule domain that have the same value at the current dimension.
2298 * We therefore need to break up the unroll option domain before
2299 * intersecting with class and schedule domain, hoping that the
2300 * unroll option domain specified by the user is relatively simple.
2302 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2303 __isl_keep isl_set *domain)
2305 isl_set *unroll_domain;
2306 isl_basic_set_list *unroll_list;
2307 int i, n;
2308 int empty;
2310 empty = isl_set_is_empty(domains->option[unroll]);
2311 if (empty < 0)
2312 return -1;
2313 if (empty)
2314 return 0;
2316 unroll_domain = isl_set_copy(domains->option[unroll]);
2317 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2319 n = isl_basic_set_list_n_basic_set(unroll_list);
2320 for (i = 0; i < n; ++i) {
2321 isl_basic_set *bset;
2322 isl_basic_set_list *list;
2324 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2325 unroll_domain = isl_set_from_basic_set(bset);
2326 unroll_domain = isl_set_intersect(unroll_domain,
2327 isl_set_copy(domain));
2329 empty = isl_set_is_empty(unroll_domain);
2330 if (empty >= 0 && empty) {
2331 isl_set_free(unroll_domain);
2332 continue;
2335 list = do_unroll(unroll_domain, domains->build);
2336 domains->list = isl_basic_set_list_concat(domains->list, list);
2339 isl_basic_set_list_free(unroll_list);
2341 return 0;
2344 /* Construct a single basic set that includes the intersection of
2345 * the schedule domain, the atomic option domain and the class domain.
2346 * Add the resulting basic set to domains->list.
2348 * We construct a single domain rather than trying to combine
2349 * the schedule domains of individual domains because we are working
2350 * within a single component so that non-overlapping schedule domains
2351 * should already have been separated.
2352 * Note, though, that this does not take into account the class domain.
2353 * So, it is possible for a class domain to carve out a piece of the
2354 * schedule domain with independent pieces and then we would only
2355 * generate a single domain for them. If this proves to be problematic
2356 * for some users, then this function will have to be adjusted.
2358 * "domain" is the intersection of the schedule domain and the class domain,
2359 * with inner dimensions projected out.
2361 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2362 __isl_keep isl_set *domain)
2364 isl_basic_set *bset;
2365 isl_set *atomic_domain;
2366 int empty;
2368 atomic_domain = isl_set_copy(domains->option[atomic]);
2369 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2370 empty = isl_set_is_empty(atomic_domain);
2371 if (empty < 0 || empty) {
2372 isl_set_free(atomic_domain);
2373 return empty < 0 ? -1 : 0;
2376 atomic_domain = isl_set_coalesce(atomic_domain);
2377 bset = isl_set_unshifted_simple_hull(atomic_domain);
2378 domains->list = isl_basic_set_list_add(domains->list, bset);
2380 return 0;
2383 /* Split up the schedule domain into uniform basic sets,
2384 * in the sense that each element in a basic set is associated to
2385 * elements of the same domains, and add the result to domains->list.
2386 * Do this for that part of the schedule domain that lies in the
2387 * intersection of "class_domain" and the separate option domain.
2389 * "class_domain" may or may not include the constraints
2390 * of the schedule domain, but this does not make a difference
2391 * since we are going to intersect it with the domain of the inverse schedule.
2392 * If it includes schedule domain constraints, then they may involve
2393 * inner dimensions, but we will eliminate them in separation_domain.
2395 static int compute_separate_domain(struct isl_codegen_domains *domains,
2396 __isl_keep isl_set *class_domain)
2398 isl_space *space;
2399 isl_set *domain;
2400 isl_union_map *executed;
2401 isl_basic_set_list *list;
2402 int empty;
2404 domain = isl_set_copy(domains->option[separate]);
2405 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2406 executed = isl_union_map_copy(domains->executed);
2407 executed = isl_union_map_intersect_domain(executed,
2408 isl_union_set_from_set(domain));
2409 empty = isl_union_map_is_empty(executed);
2410 if (empty < 0 || empty) {
2411 isl_union_map_free(executed);
2412 return empty < 0 ? -1 : 0;
2415 space = isl_set_get_space(class_domain);
2416 domain = separate_schedule_domains(space, executed, domains->build);
2418 list = isl_basic_set_list_from_set(domain);
2419 domains->list = isl_basic_set_list_concat(domains->list, list);
2421 return 0;
2424 /* Split up the domain at the current depth into disjoint
2425 * basic sets for which code should be generated separately
2426 * for the given separation class domain.
2428 * If any separation classes have been defined, then "class_domain"
2429 * is the domain of the current class and does not refer to inner dimensions.
2430 * Otherwise, "class_domain" is the universe domain.
2432 * We first make sure that the class domain is disjoint from
2433 * previously considered class domains.
2435 * The separate domains can be computed directly from the "class_domain".
2437 * The unroll, atomic and remainder domains need the constraints
2438 * from the schedule domain.
2440 * For unrolling, the actual schedule domain is needed (with divs that
2441 * may refer to the current dimension) so that stride detection can be
2442 * performed.
2444 * For atomic and remainder domains, inner dimensions and divs involving
2445 * the current dimensions should be eliminated.
2446 * In case we are working within a separation class, we need to intersect
2447 * the result with the current "class_domain" to ensure that the domains
2448 * are disjoint from those generated from other class domains.
2450 * If anything is left after handling separate, unroll and atomic,
2451 * we split it up into basic sets and append the basic sets to domains->list.
2453 static int compute_partial_domains(struct isl_codegen_domains *domains,
2454 __isl_take isl_set *class_domain)
2456 isl_basic_set_list *list;
2457 isl_set *domain;
2459 class_domain = isl_set_subtract(class_domain,
2460 isl_set_copy(domains->done));
2461 domains->done = isl_set_union(domains->done,
2462 isl_set_copy(class_domain));
2464 domain = isl_set_copy(class_domain);
2466 if (compute_separate_domain(domains, domain) < 0)
2467 goto error;
2468 domain = isl_set_subtract(domain,
2469 isl_set_copy(domains->option[separate]));
2471 domain = isl_set_intersect(domain,
2472 isl_set_copy(domains->schedule_domain));
2474 if (compute_unroll_domains(domains, domain) < 0)
2475 goto error;
2476 domain = isl_set_subtract(domain,
2477 isl_set_copy(domains->option[unroll]));
2479 domain = isl_ast_build_eliminate(domains->build, domain);
2480 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2482 if (compute_atomic_domain(domains, domain) < 0)
2483 goto error;
2484 domain = isl_set_subtract(domain,
2485 isl_set_copy(domains->option[atomic]));
2487 domain = isl_set_coalesce(domain);
2488 domain = isl_set_make_disjoint(domain);
2490 list = isl_basic_set_list_from_set(domain);
2491 domains->list = isl_basic_set_list_concat(domains->list, list);
2493 isl_set_free(class_domain);
2495 return 0;
2496 error:
2497 isl_set_free(domain);
2498 isl_set_free(class_domain);
2499 return -1;
2502 /* Split up the domain at the current depth into disjoint
2503 * basic sets for which code should be generated separately
2504 * for the separation class identified by "pnt".
2506 * We extract the corresponding class domain from domains->sep_class,
2507 * eliminate inner dimensions and pass control to compute_partial_domains.
2509 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2511 struct isl_codegen_domains *domains = user;
2512 isl_set *class_set;
2513 isl_set *domain;
2514 int disjoint;
2516 class_set = isl_set_from_point(pnt);
2517 domain = isl_map_domain(isl_map_intersect_range(
2518 isl_map_copy(domains->sep_class), class_set));
2519 domain = isl_ast_build_eliminate(domains->build, domain);
2521 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2522 if (disjoint < 0)
2523 return -1;
2524 if (disjoint) {
2525 isl_set_free(domain);
2526 return 0;
2529 return compute_partial_domains(domains, domain);
2532 /* Extract the domains at the current depth that should be atomic,
2533 * separated or unrolled and store them in option.
2535 * The domains specified by the user might overlap, so we make
2536 * them disjoint by subtracting earlier domains from later domains.
2538 static void compute_domains_init_options(isl_set *option[3],
2539 __isl_keep isl_ast_build *build)
2541 enum isl_ast_build_domain_type type, type2;
2543 for (type = atomic; type <= separate; ++type) {
2544 option[type] = isl_ast_build_get_option_domain(build, type);
2545 for (type2 = atomic; type2 < type; ++type2)
2546 option[type] = isl_set_subtract(option[type],
2547 isl_set_copy(option[type2]));
2550 option[unroll] = isl_set_coalesce(option[unroll]);
2551 option[unroll] = isl_set_make_disjoint(option[unroll]);
2554 /* Split up the domain at the current depth into disjoint
2555 * basic sets for which code should be generated separately,
2556 * based on the user-specified options.
2557 * Return the list of disjoint basic sets.
2559 * There are three kinds of domains that we need to keep track of.
2560 * - the "schedule domain" is the domain of "executed"
2561 * - the "class domain" is the domain corresponding to the currrent
2562 * separation class
2563 * - the "option domain" is the domain corresponding to one of the options
2564 * atomic, unroll or separate
2566 * We first consider the individial values of the separation classes
2567 * and split up the domain for each of them separately.
2568 * Finally, we consider the remainder. If no separation classes were
2569 * specified, then we call compute_partial_domains with the universe
2570 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2571 * with inner dimensions removed. We do this because we want to
2572 * avoid computing the complement of the class domains (i.e., the difference
2573 * between the universe and domains->done).
2575 static __isl_give isl_basic_set_list *compute_domains(
2576 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2578 struct isl_codegen_domains domains;
2579 isl_ctx *ctx;
2580 isl_set *domain;
2581 isl_union_set *schedule_domain;
2582 isl_set *classes;
2583 isl_space *space;
2584 int n_param;
2585 enum isl_ast_build_domain_type type;
2586 int empty;
2588 ctx = isl_union_map_get_ctx(executed);
2589 domains.list = isl_basic_set_list_alloc(ctx, 0);
2591 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2592 domain = isl_set_from_union_set(schedule_domain);
2594 compute_domains_init_options(domains.option, build);
2596 domains.sep_class = isl_ast_build_get_separation_class(build);
2597 classes = isl_map_range(isl_map_copy(domains.sep_class));
2598 n_param = isl_set_dim(classes, isl_dim_param);
2599 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2601 space = isl_set_get_space(domain);
2602 domains.build = build;
2603 domains.schedule_domain = isl_set_copy(domain);
2604 domains.executed = executed;
2605 domains.done = isl_set_empty(space);
2607 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2608 domains.list = isl_basic_set_list_free(domains.list);
2609 isl_set_free(classes);
2611 empty = isl_set_is_empty(domains.done);
2612 if (empty < 0) {
2613 domains.list = isl_basic_set_list_free(domains.list);
2614 domain = isl_set_free(domain);
2615 } else if (empty) {
2616 isl_set_free(domain);
2617 domain = isl_set_universe(isl_set_get_space(domains.done));
2618 } else {
2619 domain = isl_ast_build_eliminate(build, domain);
2621 if (compute_partial_domains(&domains, domain) < 0)
2622 domains.list = isl_basic_set_list_free(domains.list);
2624 isl_set_free(domains.schedule_domain);
2625 isl_set_free(domains.done);
2626 isl_map_free(domains.sep_class);
2627 for (type = atomic; type <= separate; ++type)
2628 isl_set_free(domains.option[type]);
2630 return domains.list;
2633 /* Generate code for a single component, after shifting (if any)
2634 * has been applied.
2636 * We first split up the domain at the current depth into disjoint
2637 * basic sets based on the user-specified options.
2638 * Then we generated code for each of them and concatenate the results.
2640 static __isl_give isl_ast_graft_list *generate_shifted_component(
2641 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2643 isl_basic_set_list *domain_list;
2644 isl_ast_graft_list *list = NULL;
2646 domain_list = compute_domains(executed, build);
2647 list = generate_parallel_domains(domain_list, executed, build);
2649 isl_basic_set_list_free(domain_list);
2650 isl_union_map_free(executed);
2651 isl_ast_build_free(build);
2653 return list;
2656 struct isl_set_map_pair {
2657 isl_set *set;
2658 isl_map *map;
2661 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2662 * of indices into the "domain" array,
2663 * return the union of the "map" fields of the elements
2664 * indexed by the first "n" elements of "order".
2666 static __isl_give isl_union_map *construct_component_executed(
2667 struct isl_set_map_pair *domain, int *order, int n)
2669 int i;
2670 isl_map *map;
2671 isl_union_map *executed;
2673 map = isl_map_copy(domain[order[0]].map);
2674 executed = isl_union_map_from_map(map);
2675 for (i = 1; i < n; ++i) {
2676 map = isl_map_copy(domain[order[i]].map);
2677 executed = isl_union_map_add_map(executed, map);
2680 return executed;
2683 /* Generate code for a single component, after shifting (if any)
2684 * has been applied.
2686 * The component inverse schedule is specified as the "map" fields
2687 * of the elements of "domain" indexed by the first "n" elements of "order".
2689 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2690 struct isl_set_map_pair *domain, int *order, int n,
2691 __isl_take isl_ast_build *build)
2693 isl_union_map *executed;
2695 executed = construct_component_executed(domain, order, n);
2696 return generate_shifted_component(executed, build);
2699 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2700 * of indices into the "domain" array,
2701 * do all (except for at most one) of the "set" field of the elements
2702 * indexed by the first "n" elements of "order" have a fixed value
2703 * at position "depth"?
2705 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2706 int *order, int n, int depth)
2708 int i;
2709 int non_fixed = -1;
2711 for (i = 0; i < n; ++i) {
2712 int f;
2714 f = isl_set_plain_is_fixed(domain[order[i]].set,
2715 isl_dim_set, depth, NULL);
2716 if (f < 0)
2717 return -1;
2718 if (f)
2719 continue;
2720 if (non_fixed >= 0)
2721 return 0;
2722 non_fixed = i;
2725 return 1;
2728 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2729 * of indices into the "domain" array,
2730 * eliminate the inner dimensions from the "set" field of the elements
2731 * indexed by the first "n" elements of "order", provided the current
2732 * dimension does not have a fixed value.
2734 * Return the index of the first element in "order" with a corresponding
2735 * "set" field that does not have an (obviously) fixed value.
2737 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2738 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2740 int i;
2741 int base = -1;
2743 for (i = n - 1; i >= 0; --i) {
2744 int f;
2745 f = isl_set_plain_is_fixed(domain[order[i]].set,
2746 isl_dim_set, depth, NULL);
2747 if (f < 0)
2748 return -1;
2749 if (f)
2750 continue;
2751 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2752 domain[order[i]].set);
2753 base = i;
2756 return base;
2759 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2760 * of indices into the "domain" array,
2761 * find the element of "domain" (amongst those indexed by the first "n"
2762 * elements of "order") with the "set" field that has the smallest
2763 * value for the current iterator.
2765 * Note that the domain with the smallest value may depend on the parameters
2766 * and/or outer loop dimension. Since the result of this function is only
2767 * used as heuristic, we only make a reasonable attempt at finding the best
2768 * domain, one that should work in case a single domain provides the smallest
2769 * value for the current dimension over all values of the parameters
2770 * and outer dimensions.
2772 * In particular, we compute the smallest value of the first domain
2773 * and replace it by that of any later domain if that later domain
2774 * has a smallest value that is smaller for at least some value
2775 * of the parameters and outer dimensions.
2777 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2778 __isl_keep isl_ast_build *build)
2780 int i;
2781 isl_map *min_first;
2782 int first = 0;
2784 min_first = isl_ast_build_map_to_iterator(build,
2785 isl_set_copy(domain[order[0]].set));
2786 min_first = isl_map_lexmin(min_first);
2788 for (i = 1; i < n; ++i) {
2789 isl_map *min, *test;
2790 int empty;
2792 min = isl_ast_build_map_to_iterator(build,
2793 isl_set_copy(domain[order[i]].set));
2794 min = isl_map_lexmin(min);
2795 test = isl_map_copy(min);
2796 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2797 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2798 empty = isl_map_is_empty(test);
2799 isl_map_free(test);
2800 if (empty >= 0 && !empty) {
2801 isl_map_free(min_first);
2802 first = i;
2803 min_first = min;
2804 } else
2805 isl_map_free(min);
2807 if (empty < 0)
2808 break;
2811 isl_map_free(min_first);
2813 return i < n ? -1 : first;
2816 /* Construct a shifted inverse schedule based on the original inverse schedule,
2817 * the stride and the offset.
2819 * The original inverse schedule is specified as the "map" fields
2820 * of the elements of "domain" indexed by the first "n" elements of "order".
2822 * "stride" and "offset" are such that the difference
2823 * between the values of the current dimension of domain "i"
2824 * and the values of the current dimension for some reference domain are
2825 * equal to
2827 * stride * integer + offset[i]
2829 * Moreover, 0 <= offset[i] < stride.
2831 * For each domain, we create a map
2833 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2835 * where j refers to the current dimension and the other dimensions are
2836 * unchanged, and apply this map to the original schedule domain.
2838 * For example, for the original schedule
2840 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2842 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2843 * we apply the mapping
2845 * { [j] -> [j, 0] }
2847 * to the schedule of the "A" domain and the mapping
2849 * { [j - 1] -> [j, 1] }
2851 * to the schedule of the "B" domain.
2854 * Note that after the transformation, the differences between pairs
2855 * of values of the current dimension over all domains are multiples
2856 * of stride and that we have therefore exposed the stride.
2859 * To see that the mapping preserves the lexicographic order,
2860 * first note that each of the individual maps above preserves the order.
2861 * If the value of the current iterator is j1 in one domain and j2 in another,
2862 * then if j1 = j2, we know that the same map is applied to both domains
2863 * and the order is preserved.
2864 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2865 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2867 * j1 - c1 < j2 - c2
2869 * and the order is preserved.
2870 * If c1 < c2, then we know
2872 * 0 <= c2 - c1 < s
2874 * We also have
2876 * j2 - j1 = n * s + r
2878 * with n >= 0 and 0 <= r < s.
2879 * In other words, r = c2 - c1.
2880 * If n > 0, then
2882 * j1 - c1 < j2 - c2
2884 * If n = 0, then
2886 * j1 - c1 = j2 - c2
2888 * and so
2890 * (j1 - c1, c1) << (j2 - c2, c2)
2892 * with "<<" the lexicographic order, proving that the order is preserved
2893 * in all cases.
2895 static __isl_give isl_union_map *contruct_shifted_executed(
2896 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2897 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
2899 int i;
2900 isl_int v;
2901 isl_union_map *executed;
2902 isl_space *space;
2903 isl_map *map;
2904 int depth;
2905 isl_constraint *c;
2907 depth = isl_ast_build_get_depth(build);
2908 space = isl_ast_build_get_space(build, 1);
2909 executed = isl_union_map_empty(isl_space_copy(space));
2910 space = isl_space_map_from_set(space);
2911 map = isl_map_identity(isl_space_copy(space));
2912 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
2913 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
2914 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
2916 c = isl_equality_alloc(isl_local_space_from_space(space));
2917 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
2918 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
2920 isl_int_init(v);
2922 for (i = 0; i < n; ++i) {
2923 isl_map *map_i;
2925 if (isl_vec_get_element(offset, i, &v) < 0)
2926 break;
2927 map_i = isl_map_copy(map);
2928 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
2929 isl_int_neg(v, v);
2930 c = isl_constraint_set_constant(c, v);
2931 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
2933 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
2934 map_i);
2935 executed = isl_union_map_add_map(executed, map_i);
2938 isl_constraint_free(c);
2939 isl_map_free(map);
2941 isl_int_clear(v);
2943 if (i < n)
2944 executed = isl_union_map_free(executed);
2946 return executed;
2949 /* Generate code for a single component, after exposing the stride,
2950 * given that the schedule domain is "shifted strided".
2952 * The component inverse schedule is specified as the "map" fields
2953 * of the elements of "domain" indexed by the first "n" elements of "order".
2955 * The schedule domain being "shifted strided" means that the differences
2956 * between the values of the current dimension of domain "i"
2957 * and the values of the current dimension for some reference domain are
2958 * equal to
2960 * stride * integer + offset[i]
2962 * We first look for the domain with the "smallest" value for the current
2963 * dimension and adjust the offsets such that the offset of the "smallest"
2964 * domain is equal to zero. The other offsets are reduced modulo stride.
2966 * Based on this information, we construct a new inverse schedule in
2967 * contruct_shifted_executed that exposes the stride.
2968 * Since this involves the introduction of a new schedule dimension,
2969 * the build needs to be changed accodingly.
2970 * After computing the AST, the newly introduced dimension needs
2971 * to be removed again from the list of grafts. We do this by plugging
2972 * in a mapping that represents the new schedule domain in terms of the
2973 * old schedule domain.
2975 static __isl_give isl_ast_graft_list *generate_shift_component(
2976 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2977 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
2979 isl_ast_graft_list *list;
2980 int first;
2981 int depth;
2982 isl_ctx *ctx;
2983 isl_int val;
2984 isl_vec *v;
2985 isl_space *space;
2986 isl_multi_aff *ma, *zero;
2987 isl_union_map *executed;
2989 ctx = isl_ast_build_get_ctx(build);
2990 depth = isl_ast_build_get_depth(build);
2992 first = first_offset(domain, order, n, build);
2993 if (first < 0)
2994 return isl_ast_build_free(build);
2996 isl_int_init(val);
2997 v = isl_vec_alloc(ctx, n);
2998 if (isl_vec_get_element(offset, first, &val) < 0)
2999 v = isl_vec_free(v);
3000 isl_int_neg(val, val);
3001 v = isl_vec_set(v, val);
3002 v = isl_vec_add(v, isl_vec_copy(offset));
3003 v = isl_vec_fdiv_r(v, stride);
3005 executed = contruct_shifted_executed(domain, order, n, stride, v,
3006 build);
3007 space = isl_ast_build_get_space(build, 1);
3008 space = isl_space_map_from_set(space);
3009 ma = isl_multi_aff_identity(isl_space_copy(space));
3010 space = isl_space_from_domain(isl_space_domain(space));
3011 space = isl_space_add_dims(space, isl_dim_out, 1);
3012 zero = isl_multi_aff_zero(space);
3013 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3014 build = isl_ast_build_insert_dim(build, depth + 1);
3015 list = generate_shifted_component(executed, build);
3017 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3019 isl_vec_free(v);
3020 isl_int_clear(val);
3022 return list;
3025 /* Generate code for a single component.
3027 * The component inverse schedule is specified as the "map" fields
3028 * of the elements of "domain" indexed by the first "n" elements of "order".
3030 * This function may modify the "set" fields of "domain".
3032 * Before proceeding with the actual code generation for the component,
3033 * we first check if there are any "shifted" strides, meaning that
3034 * the schedule domains of the individual domains are all strided,
3035 * but that they have different offsets, resulting in the union
3036 * of schedule domains not being strided anymore.
3038 * The simplest example is the schedule
3040 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3042 * Both schedule domains are strided, but their union is not.
3043 * This function detects such cases and then rewrites the schedule to
3045 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3047 * In the new schedule, the schedule domains have the same offset (modulo
3048 * the stride), ensuring that the union of schedule domains is also strided.
3051 * If there is only a single domain in the component, then there is
3052 * nothing to do. Similarly, if the current schedule dimension has
3053 * a fixed value for almost all domains then there is nothing to be done.
3054 * In particular, we need at least two domains where the current schedule
3055 * dimension does not have a fixed value.
3056 * Finally, if any of the options refer to the current schedule dimension,
3057 * then we bail out as well. It would be possible to reformulate the options
3058 * in terms of the new schedule domain, but that would introduce constraints
3059 * that separate the domains in the options and that is something we would
3060 * like to avoid.
3063 * To see if there is any shifted stride, we look at the differences
3064 * between the values of the current dimension in pairs of domains
3065 * for equal values of outer dimensions. These differences should be
3066 * of the form
3068 * m x + r
3070 * with "m" the stride and "r" a constant. Note that we cannot perform
3071 * this analysis on individual domains as the lower bound in each domain
3072 * may depend on parameters or outer dimensions and so the current dimension
3073 * itself may not have a fixed remainder on division by the stride.
3075 * In particular, we compare the first domain that does not have an
3076 * obviously fixed value for the current dimension to itself and all
3077 * other domains and collect the offsets and the gcd of the strides.
3078 * If the gcd becomes one, then we failed to find shifted strides.
3079 * If all the offsets are the same (for those domains that do not have
3080 * an obviously fixed value for the current dimension), then we do not
3081 * apply the transformation.
3082 * If none of the domains were skipped, then there is nothing to do.
3083 * If some of them were skipped, then if we apply separation, the schedule
3084 * domain should get split in pieces with a (non-shifted) stride.
3086 * Otherwise, we apply a shift to expose the stride in
3087 * generate_shift_component.
3089 static __isl_give isl_ast_graft_list *generate_component(
3090 struct isl_set_map_pair *domain, int *order, int n,
3091 __isl_take isl_ast_build *build)
3093 int i, d;
3094 int depth;
3095 isl_ctx *ctx;
3096 isl_map *map;
3097 isl_set *deltas;
3098 isl_int m, r, gcd;
3099 isl_vec *v;
3100 int fixed, skip;
3101 int base;
3102 isl_ast_graft_list *list;
3103 int res = 0;
3105 depth = isl_ast_build_get_depth(build);
3107 skip = n == 1;
3108 if (skip >= 0 && !skip)
3109 skip = at_most_one_non_fixed(domain, order, n, depth);
3110 if (skip >= 0 && !skip)
3111 skip = isl_ast_build_options_involve_depth(build);
3112 if (skip < 0)
3113 return isl_ast_build_free(build);
3114 if (skip)
3115 return generate_shifted_component_from_list(domain,
3116 order, n, build);
3118 base = eliminate_non_fixed(domain, order, n, depth, build);
3119 if (base < 0)
3120 return isl_ast_build_free(build);
3122 ctx = isl_ast_build_get_ctx(build);
3124 isl_int_init(m);
3125 isl_int_init(r);
3126 isl_int_init(gcd);
3127 v = isl_vec_alloc(ctx, n);
3129 fixed = 1;
3130 for (i = 0; i < n; ++i) {
3131 map = isl_map_from_domain_and_range(
3132 isl_set_copy(domain[order[base]].set),
3133 isl_set_copy(domain[order[i]].set));
3134 for (d = 0; d < depth; ++d)
3135 map = isl_map_equate(map, isl_dim_in, d,
3136 isl_dim_out, d);
3137 deltas = isl_map_deltas(map);
3138 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
3139 isl_set_free(deltas);
3140 if (res < 0)
3141 break;
3143 if (i == 0)
3144 isl_int_set(gcd, m);
3145 else
3146 isl_int_gcd(gcd, gcd, m);
3147 if (isl_int_is_one(gcd))
3148 break;
3149 v = isl_vec_set_element(v, i, r);
3151 res = isl_set_plain_is_fixed(domain[order[i]].set,
3152 isl_dim_set, depth, NULL);
3153 if (res < 0)
3154 break;
3155 if (res)
3156 continue;
3158 if (fixed && i > base) {
3159 isl_vec_get_element(v, base, &m);
3160 if (isl_int_ne(m, r))
3161 fixed = 0;
3165 if (res < 0) {
3166 isl_ast_build_free(build);
3167 list = NULL;
3168 } else if (i < n || fixed) {
3169 list = generate_shifted_component_from_list(domain,
3170 order, n, build);
3171 } else {
3172 list = generate_shift_component(domain, order, n, gcd, v,
3173 build);
3176 isl_vec_free(v);
3177 isl_int_clear(gcd);
3178 isl_int_clear(r);
3179 isl_int_clear(m);
3181 return list;
3184 /* Store both "map" itself and its domain in the
3185 * structure pointed to by *next and advance to the next array element.
3187 static int extract_domain(__isl_take isl_map *map, void *user)
3189 struct isl_set_map_pair **next = user;
3191 (*next)->map = isl_map_copy(map);
3192 (*next)->set = isl_map_domain(map);
3193 (*next)++;
3195 return 0;
3198 /* Internal data for any_scheduled_after.
3200 * "depth" is the number of loops that have already been generated
3201 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3202 * "domain" is an array of set-map pairs corresponding to the different
3203 * iteration domains. The set is the schedule domain, i.e., the domain
3204 * of the inverse schedule, while the map is the inverse schedule itself.
3206 struct isl_any_scheduled_after_data {
3207 int depth;
3208 int group_coscheduled;
3209 struct isl_set_map_pair *domain;
3212 /* Is any element of domain "i" scheduled after any element of domain "j"
3213 * (for a common iteration of the first data->depth loops)?
3215 * data->domain[i].set contains the domain of the inverse schedule
3216 * for domain "i", i.e., elements in the schedule domain.
3218 * If data->group_coscheduled is set, then we also return 1 if there
3219 * is any pair of elements in the two domains that are scheduled together.
3221 static int any_scheduled_after(int i, int j, void *user)
3223 struct isl_any_scheduled_after_data *data = user;
3224 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3225 int pos;
3227 for (pos = data->depth; pos < dim; ++pos) {
3228 int follows;
3230 follows = isl_set_follows_at(data->domain[i].set,
3231 data->domain[j].set, pos);
3233 if (follows < -1)
3234 return -1;
3235 if (follows > 0)
3236 return 1;
3237 if (follows < 0)
3238 return 0;
3241 return data->group_coscheduled;
3244 /* Look for independent components at the current depth and generate code
3245 * for each component separately. The resulting lists of grafts are
3246 * merged in an attempt to combine grafts with identical guards.
3248 * Code for two domains can be generated separately if all the elements
3249 * of one domain are scheduled before (or together with) all the elements
3250 * of the other domain. We therefore consider the graph with as nodes
3251 * the domains and an edge between two nodes if any element of the first
3252 * node is scheduled after any element of the second node.
3253 * If the ast_build_group_coscheduled is set, then we also add an edge if
3254 * there is any pair of elements in the two domains that are scheduled
3255 * together.
3256 * Code is then generated (by generate_component)
3257 * for each of the strongly connected components in this graph
3258 * in their topological order.
3260 * Since the test is performed on the domain of the inverse schedules of
3261 * the different domains, we precompute these domains and store
3262 * them in data.domain.
3264 static __isl_give isl_ast_graft_list *generate_components(
3265 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3267 int i;
3268 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3269 int n = isl_union_map_n_map(executed);
3270 struct isl_any_scheduled_after_data data;
3271 struct isl_set_map_pair *next;
3272 struct isl_tarjan_graph *g = NULL;
3273 isl_ast_graft_list *list = NULL;
3274 int n_domain = 0;
3276 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3277 if (!data.domain)
3278 goto error;
3279 n_domain = n;
3281 next = data.domain;
3282 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3283 goto error;
3285 if (!build)
3286 goto error;
3287 data.depth = isl_ast_build_get_depth(build);
3288 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3289 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3291 list = isl_ast_graft_list_alloc(ctx, 0);
3293 i = 0;
3294 while (list && n) {
3295 isl_ast_graft_list *list_c;
3296 int first = i;
3298 if (g->order[i] == -1)
3299 isl_die(ctx, isl_error_internal, "cannot happen",
3300 goto error);
3301 ++i; --n;
3302 while (g->order[i] != -1) {
3303 ++i; --n;
3306 list_c = generate_component(data.domain,
3307 g->order + first, i - first,
3308 isl_ast_build_copy(build));
3309 list = isl_ast_graft_list_merge(list, list_c, build);
3311 ++i;
3314 if (0)
3315 error: list = isl_ast_graft_list_free(list);
3316 isl_tarjan_graph_free(g);
3317 for (i = 0; i < n_domain; ++i) {
3318 isl_map_free(data.domain[i].map);
3319 isl_set_free(data.domain[i].set);
3321 free(data.domain);
3322 isl_union_map_free(executed);
3323 isl_ast_build_free(build);
3325 return list;
3328 /* Generate code for the next level (and all inner levels).
3330 * If "executed" is empty, i.e., no code needs to be generated,
3331 * then we return an empty list.
3333 * If we have already generated code for all loop levels, then we pass
3334 * control to generate_inner_level.
3336 * If "executed" lives in a single space, i.e., if code needs to be
3337 * generated for a single domain, then there can only be a single
3338 * component and we go directly to generate_shifted_component.
3339 * Otherwise, we call generate_components to detect the components
3340 * and to call generate_component on each of them separately.
3342 static __isl_give isl_ast_graft_list *generate_next_level(
3343 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3345 int depth;
3347 if (!build || !executed)
3348 goto error;
3350 if (isl_union_map_is_empty(executed)) {
3351 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3352 isl_union_map_free(executed);
3353 isl_ast_build_free(build);
3354 return isl_ast_graft_list_alloc(ctx, 0);
3357 depth = isl_ast_build_get_depth(build);
3358 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3359 return generate_inner_level(executed, build);
3361 if (isl_union_map_n_map(executed) == 1)
3362 return generate_shifted_component(executed, build);
3364 return generate_components(executed, build);
3365 error:
3366 isl_union_map_free(executed);
3367 isl_ast_build_free(build);
3368 return NULL;
3371 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3372 * internal, executed and build are the inputs to generate_code.
3373 * list collects the output.
3375 struct isl_generate_code_data {
3376 int internal;
3377 isl_union_map *executed;
3378 isl_ast_build *build;
3380 isl_ast_graft_list *list;
3383 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3385 * [E -> S] -> D
3387 * with E the external build schedule and S the additional schedule "space",
3388 * reformulate the inverse schedule in terms of the internal schedule domain,
3389 * i.e., return
3391 * [I -> S] -> D
3393 * We first obtain a mapping
3395 * I -> E
3397 * take the inverse and the product with S -> S, resulting in
3399 * [I -> S] -> [E -> S]
3401 * Applying the map to the input produces the desired result.
3403 static __isl_give isl_union_map *internal_executed(
3404 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3405 __isl_keep isl_ast_build *build)
3407 isl_map *id, *proj;
3409 proj = isl_ast_build_get_schedule_map(build);
3410 proj = isl_map_reverse(proj);
3411 space = isl_space_map_from_set(isl_space_copy(space));
3412 id = isl_map_identity(space);
3413 proj = isl_map_product(proj, id);
3414 executed = isl_union_map_apply_domain(executed,
3415 isl_union_map_from_map(proj));
3416 return executed;
3419 /* Generate an AST that visits the elements in the range of data->executed
3420 * in the relative order specified by the corresponding image element(s)
3421 * for those image elements that belong to "set".
3422 * Add the result to data->list.
3424 * The caller ensures that "set" is a universe domain.
3425 * "space" is the space of the additional part of the schedule.
3426 * It is equal to the space of "set" if build->domain is parametric.
3427 * Otherwise, it is equal to the range of the wrapped space of "set".
3429 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3430 * was called from an outside user (data->internal not set), then
3431 * the (inverse) schedule refers to the external build domain and needs to
3432 * be transformed to refer to the internal build domain.
3434 * The build is extended to include the additional part of the schedule.
3435 * If the original build space was not parametric, then the options
3436 * in data->build refer only to the additional part of the schedule
3437 * and they need to be adjusted to refer to the complete AST build
3438 * domain.
3440 * After having adjusted inverse schedule and build, we start generating
3441 * code with the outer loop of the current code generation
3442 * in generate_next_level.
3444 * If the original build space was not parametric, we undo the embedding
3445 * on the resulting isl_ast_node_list so that it can be used within
3446 * the outer AST build.
3448 static int generate_code_in_space(struct isl_generate_code_data *data,
3449 __isl_take isl_set *set, __isl_take isl_space *space)
3451 isl_union_map *executed;
3452 isl_ast_build *build;
3453 isl_ast_graft_list *list;
3454 int embed;
3456 executed = isl_union_map_copy(data->executed);
3457 executed = isl_union_map_intersect_domain(executed,
3458 isl_union_set_from_set(set));
3460 embed = !isl_set_is_params(data->build->domain);
3461 if (embed && !data->internal)
3462 executed = internal_executed(executed, space, data->build);
3464 build = isl_ast_build_copy(data->build);
3465 build = isl_ast_build_product(build, space);
3467 list = generate_next_level(executed, build);
3469 list = isl_ast_graft_list_unembed(list, embed);
3471 data->list = isl_ast_graft_list_concat(data->list, list);
3473 return 0;
3476 /* Generate an AST that visits the elements in the range of data->executed
3477 * in the relative order specified by the corresponding domain element(s)
3478 * for those domain elements that belong to "set".
3479 * Add the result to data->list.
3481 * The caller ensures that "set" is a universe domain.
3483 * If the build space S is not parametric, then the space of "set"
3484 * need to be a wrapped relation with S as domain. That is, it needs
3485 * to be of the form
3487 * [S -> T]
3489 * Check this property and pass control to generate_code_in_space
3490 * passing along T.
3491 * If the build space is not parametric, then T is the space of "set".
3493 static int generate_code_set(__isl_take isl_set *set, void *user)
3495 struct isl_generate_code_data *data = user;
3496 isl_space *space, *build_space;
3497 int is_domain;
3499 space = isl_set_get_space(set);
3501 if (isl_set_is_params(data->build->domain))
3502 return generate_code_in_space(data, set, space);
3504 build_space = isl_ast_build_get_space(data->build, data->internal);
3505 space = isl_space_unwrap(space);
3506 is_domain = isl_space_is_domain(build_space, space);
3507 isl_space_free(build_space);
3508 space = isl_space_range(space);
3510 if (is_domain < 0)
3511 goto error;
3512 if (!is_domain)
3513 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3514 "invalid nested schedule space", goto error);
3516 return generate_code_in_space(data, set, space);
3517 error:
3518 isl_set_free(set);
3519 isl_space_free(space);
3520 return -1;
3523 /* Generate an AST that visits the elements in the range of "executed"
3524 * in the relative order specified by the corresponding domain element(s).
3526 * "build" is an isl_ast_build that has either been constructed by
3527 * isl_ast_build_from_context or passed to a callback set by
3528 * isl_ast_build_set_create_leaf.
3529 * In the first case, the space of the isl_ast_build is typically
3530 * a parametric space, although this is currently not enforced.
3531 * In the second case, the space is never a parametric space.
3532 * If the space S is not parametric, then the domain space(s) of "executed"
3533 * need to be wrapped relations with S as domain.
3535 * If the domain of "executed" consists of several spaces, then an AST
3536 * is generated for each of them (in arbitrary order) and the results
3537 * are concatenated.
3539 * If "internal" is set, then the domain "S" above refers to the internal
3540 * schedule domain representation. Otherwise, it refers to the external
3541 * representation, as returned by isl_ast_build_get_schedule_space.
3543 * We essentially run over all the spaces in the domain of "executed"
3544 * and call generate_code_set on each of them.
3546 static __isl_give isl_ast_graft_list *generate_code(
3547 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3548 int internal)
3550 isl_ctx *ctx;
3551 struct isl_generate_code_data data = { 0 };
3552 isl_space *space;
3553 isl_union_set *schedule_domain;
3554 isl_union_map *universe;
3556 if (!build)
3557 goto error;
3558 space = isl_ast_build_get_space(build, 1);
3559 space = isl_space_align_params(space,
3560 isl_union_map_get_space(executed));
3561 space = isl_space_align_params(space,
3562 isl_union_map_get_space(build->options));
3563 build = isl_ast_build_align_params(build, isl_space_copy(space));
3564 executed = isl_union_map_align_params(executed, space);
3565 if (!executed || !build)
3566 goto error;
3568 ctx = isl_ast_build_get_ctx(build);
3570 data.internal = internal;
3571 data.executed = executed;
3572 data.build = build;
3573 data.list = isl_ast_graft_list_alloc(ctx, 0);
3575 universe = isl_union_map_universe(isl_union_map_copy(executed));
3576 schedule_domain = isl_union_map_domain(universe);
3577 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3578 &data) < 0)
3579 data.list = isl_ast_graft_list_free(data.list);
3581 isl_union_set_free(schedule_domain);
3582 isl_union_map_free(executed);
3584 isl_ast_build_free(build);
3585 return data.list;
3586 error:
3587 isl_union_map_free(executed);
3588 isl_ast_build_free(build);
3589 return NULL;
3592 /* Generate an AST that visits the elements in the domain of "schedule"
3593 * in the relative order specified by the corresponding image element(s).
3595 * "build" is an isl_ast_build that has either been constructed by
3596 * isl_ast_build_from_context or passed to a callback set by
3597 * isl_ast_build_set_create_leaf.
3598 * In the first case, the space of the isl_ast_build is typically
3599 * a parametric space, although this is currently not enforced.
3600 * In the second case, the space is never a parametric space.
3601 * If the space S is not parametric, then the range space(s) of "schedule"
3602 * need to be wrapped relations with S as domain.
3604 * If the range of "schedule" consists of several spaces, then an AST
3605 * is generated for each of them (in arbitrary order) and the results
3606 * are concatenated.
3608 * We first initialize the local copies of the relevant options.
3609 * We do this here rather than when the isl_ast_build is created
3610 * because the options may have changed between the construction
3611 * of the isl_ast_build and the call to isl_generate_code.
3613 * The main computation is performed on an inverse schedule (with
3614 * the schedule domain in the domain and the elements to be executed
3615 * in the range) called "executed".
3617 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3618 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3620 isl_ast_graft_list *list;
3621 isl_ast_node *node;
3622 isl_union_map *executed;
3624 executed = isl_union_map_reverse(schedule);
3625 list = generate_code(executed, isl_ast_build_copy(build), 0);
3626 node = isl_ast_node_from_graft_list(list, build);
3628 return node;