isl_ast_build_ast_from_schedule: make construction of ors in ifs optional
[isl.git] / isl_map_simplify.c
bloba10da54447382fe6839031133ad90931856f134d
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 #include <strings.h>
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
16 #include <isl/map.h>
17 #include <isl/seq.h>
18 #include "isl_tab.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
22 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
24 isl_int *t = bmap->eq[a];
25 bmap->eq[a] = bmap->eq[b];
26 bmap->eq[b] = t;
29 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
31 if (a != b) {
32 isl_int *t = bmap->ineq[a];
33 bmap->ineq[a] = bmap->ineq[b];
34 bmap->ineq[b] = t;
38 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
40 isl_seq_cpy(c, c + n, rem);
41 isl_seq_clr(c + rem, n);
44 /* Drop n dimensions starting at first.
46 * In principle, this frees up some extra variables as the number
47 * of columns remains constant, but we would have to extend
48 * the div array too as the number of rows in this array is assumed
49 * to be equal to extra.
51 struct isl_basic_set *isl_basic_set_drop_dims(
52 struct isl_basic_set *bset, unsigned first, unsigned n)
54 int i;
56 if (!bset)
57 goto error;
59 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
61 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
62 return bset;
64 bset = isl_basic_set_cow(bset);
65 if (!bset)
66 return NULL;
68 for (i = 0; i < bset->n_eq; ++i)
69 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
70 (bset->dim->n_out-first-n)+bset->extra);
72 for (i = 0; i < bset->n_ineq; ++i)
73 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_div; ++i)
77 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
81 if (!bset->dim)
82 goto error;
84 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
85 bset = isl_basic_set_simplify(bset);
86 return isl_basic_set_finalize(bset);
87 error:
88 isl_basic_set_free(bset);
89 return NULL;
92 struct isl_set *isl_set_drop_dims(
93 struct isl_set *set, unsigned first, unsigned n)
95 int i;
97 if (!set)
98 goto error;
100 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
102 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
103 return set;
104 set = isl_set_cow(set);
105 if (!set)
106 goto error;
107 set->dim = isl_space_drop_outputs(set->dim, first, n);
108 if (!set->dim)
109 goto error;
111 for (i = 0; i < set->n; ++i) {
112 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
113 if (!set->p[i])
114 goto error;
117 ISL_F_CLR(set, ISL_SET_NORMALIZED);
118 return set;
119 error:
120 isl_set_free(set);
121 return NULL;
124 /* Move "n" divs starting at "first" to the end of the list of divs.
126 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
127 unsigned first, unsigned n)
129 isl_int **div;
130 int i;
132 if (first + n == bmap->n_div)
133 return bmap;
135 div = isl_alloc_array(bmap->ctx, isl_int *, n);
136 if (!div)
137 goto error;
138 for (i = 0; i < n; ++i)
139 div[i] = bmap->div[first + i];
140 for (i = 0; i < bmap->n_div - first - n; ++i)
141 bmap->div[first + i] = bmap->div[first + n + i];
142 for (i = 0; i < n; ++i)
143 bmap->div[bmap->n_div - n + i] = div[i];
144 free(div);
145 return bmap;
146 error:
147 isl_basic_map_free(bmap);
148 return NULL;
151 /* Drop "n" dimensions of type "type" starting at "first".
153 * In principle, this frees up some extra variables as the number
154 * of columns remains constant, but we would have to extend
155 * the div array too as the number of rows in this array is assumed
156 * to be equal to extra.
158 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
159 enum isl_dim_type type, unsigned first, unsigned n)
161 int i;
162 unsigned dim;
163 unsigned offset;
164 unsigned left;
166 if (!bmap)
167 goto error;
169 dim = isl_basic_map_dim(bmap, type);
170 isl_assert(bmap->ctx, first + n <= dim, goto error);
172 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
173 return bmap;
175 bmap = isl_basic_map_cow(bmap);
176 if (!bmap)
177 return NULL;
179 offset = isl_basic_map_offset(bmap, type) + first;
180 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
181 for (i = 0; i < bmap->n_eq; ++i)
182 constraint_drop_vars(bmap->eq[i]+offset, n, left);
184 for (i = 0; i < bmap->n_ineq; ++i)
185 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
187 for (i = 0; i < bmap->n_div; ++i)
188 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
190 if (type == isl_dim_div) {
191 bmap = move_divs_last(bmap, first, n);
192 if (!bmap)
193 goto error;
194 isl_basic_map_free_div(bmap, n);
195 } else
196 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
197 if (!bmap->dim)
198 goto error;
200 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
201 bmap = isl_basic_map_simplify(bmap);
202 return isl_basic_map_finalize(bmap);
203 error:
204 isl_basic_map_free(bmap);
205 return NULL;
208 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
209 enum isl_dim_type type, unsigned first, unsigned n)
211 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
212 type, first, n);
215 struct isl_basic_map *isl_basic_map_drop_inputs(
216 struct isl_basic_map *bmap, unsigned first, unsigned n)
218 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
221 struct isl_map *isl_map_drop(struct isl_map *map,
222 enum isl_dim_type type, unsigned first, unsigned n)
224 int i;
226 if (!map)
227 goto error;
229 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
231 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
232 return map;
233 map = isl_map_cow(map);
234 if (!map)
235 goto error;
236 map->dim = isl_space_drop_dims(map->dim, type, first, n);
237 if (!map->dim)
238 goto error;
240 for (i = 0; i < map->n; ++i) {
241 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
242 if (!map->p[i])
243 goto error;
245 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
247 return map;
248 error:
249 isl_map_free(map);
250 return NULL;
253 struct isl_set *isl_set_drop(struct isl_set *set,
254 enum isl_dim_type type, unsigned first, unsigned n)
256 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
259 struct isl_map *isl_map_drop_inputs(
260 struct isl_map *map, unsigned first, unsigned n)
262 return isl_map_drop(map, isl_dim_in, first, n);
266 * We don't cow, as the div is assumed to be redundant.
268 static struct isl_basic_map *isl_basic_map_drop_div(
269 struct isl_basic_map *bmap, unsigned div)
271 int i;
272 unsigned pos;
274 if (!bmap)
275 goto error;
277 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
279 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
281 for (i = 0; i < bmap->n_eq; ++i)
282 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
284 for (i = 0; i < bmap->n_ineq; ++i) {
285 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
286 isl_basic_map_drop_inequality(bmap, i);
287 --i;
288 continue;
290 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
293 for (i = 0; i < bmap->n_div; ++i)
294 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
296 if (div != bmap->n_div - 1) {
297 int j;
298 isl_int *t = bmap->div[div];
300 for (j = div; j < bmap->n_div - 1; ++j)
301 bmap->div[j] = bmap->div[j+1];
303 bmap->div[bmap->n_div - 1] = t;
305 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
306 isl_basic_map_free_div(bmap, 1);
308 return bmap;
309 error:
310 isl_basic_map_free(bmap);
311 return NULL;
314 struct isl_basic_map *isl_basic_map_normalize_constraints(
315 struct isl_basic_map *bmap)
317 int i;
318 isl_int gcd;
319 unsigned total = isl_basic_map_total_dim(bmap);
321 if (!bmap)
322 return NULL;
324 isl_int_init(gcd);
325 for (i = bmap->n_eq - 1; i >= 0; --i) {
326 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
327 if (isl_int_is_zero(gcd)) {
328 if (!isl_int_is_zero(bmap->eq[i][0])) {
329 bmap = isl_basic_map_set_to_empty(bmap);
330 break;
332 isl_basic_map_drop_equality(bmap, i);
333 continue;
335 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
336 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
337 if (isl_int_is_one(gcd))
338 continue;
339 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
340 bmap = isl_basic_map_set_to_empty(bmap);
341 break;
343 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
346 for (i = bmap->n_ineq - 1; i >= 0; --i) {
347 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
348 if (isl_int_is_zero(gcd)) {
349 if (isl_int_is_neg(bmap->ineq[i][0])) {
350 bmap = isl_basic_map_set_to_empty(bmap);
351 break;
353 isl_basic_map_drop_inequality(bmap, i);
354 continue;
356 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
357 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
358 if (isl_int_is_one(gcd))
359 continue;
360 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
361 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
363 isl_int_clear(gcd);
365 return bmap;
368 struct isl_basic_set *isl_basic_set_normalize_constraints(
369 struct isl_basic_set *bset)
371 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
372 (struct isl_basic_map *)bset);
375 /* Remove any common factor in numerator and denominator of the div expression,
376 * not taking into account the constant term.
377 * That is, if the div is of the form
379 * floor((a + m f(x))/(m d))
381 * then replace it by
383 * floor((floor(a/m) + f(x))/d)
385 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
386 * and can therefore not influence the result of the floor.
388 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
390 unsigned total = isl_basic_map_total_dim(bmap);
391 isl_ctx *ctx = bmap->ctx;
393 if (isl_int_is_zero(bmap->div[div][0]))
394 return;
395 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
396 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
397 if (isl_int_is_one(ctx->normalize_gcd))
398 return;
399 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
400 ctx->normalize_gcd);
401 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
402 ctx->normalize_gcd);
403 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
404 ctx->normalize_gcd, total);
407 /* Remove any common factor in numerator and denominator of a div expression,
408 * not taking into account the constant term.
409 * That is, look for any div of the form
411 * floor((a + m f(x))/(m d))
413 * and replace it by
415 * floor((floor(a/m) + f(x))/d)
417 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
418 * and can therefore not influence the result of the floor.
420 static __isl_give isl_basic_map *normalize_div_expressions(
421 __isl_take isl_basic_map *bmap)
423 int i;
425 if (!bmap)
426 return NULL;
427 if (bmap->n_div == 0)
428 return bmap;
430 for (i = 0; i < bmap->n_div; ++i)
431 normalize_div_expression(bmap, i);
433 return bmap;
436 /* Assumes divs have been ordered if keep_divs is set.
438 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
439 unsigned pos, isl_int *eq, int keep_divs, int *progress)
441 unsigned total;
442 unsigned space_total;
443 int k;
444 int last_div;
446 total = isl_basic_map_total_dim(bmap);
447 space_total = isl_space_dim(bmap->dim, isl_dim_all);
448 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
449 for (k = 0; k < bmap->n_eq; ++k) {
450 if (bmap->eq[k] == eq)
451 continue;
452 if (isl_int_is_zero(bmap->eq[k][1+pos]))
453 continue;
454 if (progress)
455 *progress = 1;
456 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
457 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
460 for (k = 0; k < bmap->n_ineq; ++k) {
461 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
462 continue;
463 if (progress)
464 *progress = 1;
465 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
466 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
467 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
470 for (k = 0; k < bmap->n_div; ++k) {
471 if (isl_int_is_zero(bmap->div[k][0]))
472 continue;
473 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
474 continue;
475 if (progress)
476 *progress = 1;
477 /* We need to be careful about circular definitions,
478 * so for now we just remove the definition of div k
479 * if the equality contains any divs.
480 * If keep_divs is set, then the divs have been ordered
481 * and we can keep the definition as long as the result
482 * is still ordered.
484 if (last_div == -1 || (keep_divs && last_div < k)) {
485 isl_seq_elim(bmap->div[k]+1, eq,
486 1+pos, 1+total, &bmap->div[k][0]);
487 normalize_div_expression(bmap, k);
488 } else
489 isl_seq_clr(bmap->div[k], 1 + total);
490 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
494 /* Assumes divs have been ordered if keep_divs is set.
496 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
497 unsigned div, int keep_divs)
499 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
501 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
503 isl_basic_map_drop_div(bmap, div);
506 /* Check if elimination of div "div" using equality "eq" would not
507 * result in a div depending on a later div.
509 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
510 unsigned div)
512 int k;
513 int last_div;
514 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
515 unsigned pos = space_total + div;
517 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
518 if (last_div < 0 || last_div <= div)
519 return 1;
521 for (k = 0; k <= last_div; ++k) {
522 if (isl_int_is_zero(bmap->div[k][0]))
523 return 1;
524 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
525 return 0;
528 return 1;
531 /* Elimininate divs based on equalities
533 static struct isl_basic_map *eliminate_divs_eq(
534 struct isl_basic_map *bmap, int *progress)
536 int d;
537 int i;
538 int modified = 0;
539 unsigned off;
541 bmap = isl_basic_map_order_divs(bmap);
543 if (!bmap)
544 return NULL;
546 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
548 for (d = bmap->n_div - 1; d >= 0 ; --d) {
549 for (i = 0; i < bmap->n_eq; ++i) {
550 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
551 !isl_int_is_negone(bmap->eq[i][off + d]))
552 continue;
553 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
554 continue;
555 modified = 1;
556 *progress = 1;
557 eliminate_div(bmap, bmap->eq[i], d, 1);
558 isl_basic_map_drop_equality(bmap, i);
559 break;
562 if (modified)
563 return eliminate_divs_eq(bmap, progress);
564 return bmap;
567 /* Elimininate divs based on inequalities
569 static struct isl_basic_map *eliminate_divs_ineq(
570 struct isl_basic_map *bmap, int *progress)
572 int d;
573 int i;
574 unsigned off;
575 struct isl_ctx *ctx;
577 if (!bmap)
578 return NULL;
580 ctx = bmap->ctx;
581 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
583 for (d = bmap->n_div - 1; d >= 0 ; --d) {
584 for (i = 0; i < bmap->n_eq; ++i)
585 if (!isl_int_is_zero(bmap->eq[i][off + d]))
586 break;
587 if (i < bmap->n_eq)
588 continue;
589 for (i = 0; i < bmap->n_ineq; ++i)
590 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
591 break;
592 if (i < bmap->n_ineq)
593 continue;
594 *progress = 1;
595 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
596 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
597 break;
598 bmap = isl_basic_map_drop_div(bmap, d);
599 if (!bmap)
600 break;
602 return bmap;
605 struct isl_basic_map *isl_basic_map_gauss(
606 struct isl_basic_map *bmap, int *progress)
608 int k;
609 int done;
610 int last_var;
611 unsigned total_var;
612 unsigned total;
614 bmap = isl_basic_map_order_divs(bmap);
616 if (!bmap)
617 return NULL;
619 total = isl_basic_map_total_dim(bmap);
620 total_var = total - bmap->n_div;
622 last_var = total - 1;
623 for (done = 0; done < bmap->n_eq; ++done) {
624 for (; last_var >= 0; --last_var) {
625 for (k = done; k < bmap->n_eq; ++k)
626 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
627 break;
628 if (k < bmap->n_eq)
629 break;
631 if (last_var < 0)
632 break;
633 if (k != done)
634 swap_equality(bmap, k, done);
635 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
636 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
638 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
639 progress);
641 if (last_var >= total_var &&
642 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
643 unsigned div = last_var - total_var;
644 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
645 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
646 isl_int_set(bmap->div[div][0],
647 bmap->eq[done][1+last_var]);
648 if (progress)
649 *progress = 1;
650 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
653 if (done == bmap->n_eq)
654 return bmap;
655 for (k = done; k < bmap->n_eq; ++k) {
656 if (isl_int_is_zero(bmap->eq[k][0]))
657 continue;
658 return isl_basic_map_set_to_empty(bmap);
660 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
661 return bmap;
664 struct isl_basic_set *isl_basic_set_gauss(
665 struct isl_basic_set *bset, int *progress)
667 return (struct isl_basic_set*)isl_basic_map_gauss(
668 (struct isl_basic_map *)bset, progress);
672 static unsigned int round_up(unsigned int v)
674 int old_v = v;
676 while (v) {
677 old_v = v;
678 v ^= v & -v;
680 return old_v << 1;
683 static int hash_index(isl_int ***index, unsigned int size, int bits,
684 struct isl_basic_map *bmap, int k)
686 int h;
687 unsigned total = isl_basic_map_total_dim(bmap);
688 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
689 for (h = hash; index[h]; h = (h+1) % size)
690 if (&bmap->ineq[k] != index[h] &&
691 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
692 break;
693 return h;
696 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
697 struct isl_basic_set *bset, int k)
699 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
702 /* If we can eliminate more than one div, then we need to make
703 * sure we do it from last div to first div, in order not to
704 * change the position of the other divs that still need to
705 * be removed.
707 static struct isl_basic_map *remove_duplicate_divs(
708 struct isl_basic_map *bmap, int *progress)
710 unsigned int size;
711 int *index;
712 int *elim_for;
713 int k, l, h;
714 int bits;
715 struct isl_blk eq;
716 unsigned total_var;
717 unsigned total;
718 struct isl_ctx *ctx;
720 bmap = isl_basic_map_order_divs(bmap);
721 if (!bmap || bmap->n_div <= 1)
722 return bmap;
724 total_var = isl_space_dim(bmap->dim, isl_dim_all);
725 total = total_var + bmap->n_div;
727 ctx = bmap->ctx;
728 for (k = bmap->n_div - 1; k >= 0; --k)
729 if (!isl_int_is_zero(bmap->div[k][0]))
730 break;
731 if (k <= 0)
732 return bmap;
734 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
735 size = round_up(4 * bmap->n_div / 3 - 1);
736 bits = ffs(size) - 1;
737 index = isl_calloc_array(ctx, int, size);
738 if (!index)
739 return bmap;
740 eq = isl_blk_alloc(ctx, 1+total);
741 if (isl_blk_is_error(eq))
742 goto out;
744 isl_seq_clr(eq.data, 1+total);
745 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
746 for (--k; k >= 0; --k) {
747 uint32_t hash;
749 if (isl_int_is_zero(bmap->div[k][0]))
750 continue;
752 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
753 for (h = hash; index[h]; h = (h+1) % size)
754 if (isl_seq_eq(bmap->div[k],
755 bmap->div[index[h]-1], 2+total))
756 break;
757 if (index[h]) {
758 *progress = 1;
759 l = index[h] - 1;
760 elim_for[l] = k + 1;
762 index[h] = k+1;
764 for (l = bmap->n_div - 1; l >= 0; --l) {
765 if (!elim_for[l])
766 continue;
767 k = elim_for[l] - 1;
768 isl_int_set_si(eq.data[1+total_var+k], -1);
769 isl_int_set_si(eq.data[1+total_var+l], 1);
770 eliminate_div(bmap, eq.data, l, 1);
771 isl_int_set_si(eq.data[1+total_var+k], 0);
772 isl_int_set_si(eq.data[1+total_var+l], 0);
775 isl_blk_free(ctx, eq);
776 out:
777 free(index);
778 free(elim_for);
779 return bmap;
782 static int n_pure_div_eq(struct isl_basic_map *bmap)
784 int i, j;
785 unsigned total;
787 total = isl_space_dim(bmap->dim, isl_dim_all);
788 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
789 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
790 --j;
791 if (j < 0)
792 break;
793 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
794 return 0;
796 return i;
799 /* Normalize divs that appear in equalities.
801 * In particular, we assume that bmap contains some equalities
802 * of the form
804 * a x = m * e_i
806 * and we want to replace the set of e_i by a minimal set and
807 * such that the new e_i have a canonical representation in terms
808 * of the vector x.
809 * If any of the equalities involves more than one divs, then
810 * we currently simply bail out.
812 * Let us first additionally assume that all equalities involve
813 * a div. The equalities then express modulo constraints on the
814 * remaining variables and we can use "parameter compression"
815 * to find a minimal set of constraints. The result is a transformation
817 * x = T(x') = x_0 + G x'
819 * with G a lower-triangular matrix with all elements below the diagonal
820 * non-negative and smaller than the diagonal element on the same row.
821 * We first normalize x_0 by making the same property hold in the affine
822 * T matrix.
823 * The rows i of G with a 1 on the diagonal do not impose any modulo
824 * constraint and simply express x_i = x'_i.
825 * For each of the remaining rows i, we introduce a div and a corresponding
826 * equality. In particular
828 * g_ii e_j = x_i - g_i(x')
830 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
831 * corresponding div (if g_kk != 1).
833 * If there are any equalities not involving any div, then we
834 * first apply a variable compression on the variables x:
836 * x = C x'' x'' = C_2 x
838 * and perform the above parameter compression on A C instead of on A.
839 * The resulting compression is then of the form
841 * x'' = T(x') = x_0 + G x'
843 * and in constructing the new divs and the corresponding equalities,
844 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
845 * by the corresponding row from C_2.
847 static struct isl_basic_map *normalize_divs(
848 struct isl_basic_map *bmap, int *progress)
850 int i, j, k;
851 int total;
852 int div_eq;
853 struct isl_mat *B;
854 struct isl_vec *d;
855 struct isl_mat *T = NULL;
856 struct isl_mat *C = NULL;
857 struct isl_mat *C2 = NULL;
858 isl_int v;
859 int *pos;
860 int dropped, needed;
862 if (!bmap)
863 return NULL;
865 if (bmap->n_div == 0)
866 return bmap;
868 if (bmap->n_eq == 0)
869 return bmap;
871 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
872 return bmap;
874 total = isl_space_dim(bmap->dim, isl_dim_all);
875 div_eq = n_pure_div_eq(bmap);
876 if (div_eq == 0)
877 return bmap;
879 if (div_eq < bmap->n_eq) {
880 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
881 bmap->n_eq - div_eq, 0, 1 + total);
882 C = isl_mat_variable_compression(B, &C2);
883 if (!C || !C2)
884 goto error;
885 if (C->n_col == 0) {
886 bmap = isl_basic_map_set_to_empty(bmap);
887 isl_mat_free(C);
888 isl_mat_free(C2);
889 goto done;
893 d = isl_vec_alloc(bmap->ctx, div_eq);
894 if (!d)
895 goto error;
896 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
897 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
898 --j;
899 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
901 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
903 if (C) {
904 B = isl_mat_product(B, C);
905 C = NULL;
908 T = isl_mat_parameter_compression(B, d);
909 if (!T)
910 goto error;
911 if (T->n_col == 0) {
912 bmap = isl_basic_map_set_to_empty(bmap);
913 isl_mat_free(C2);
914 isl_mat_free(T);
915 goto done;
917 isl_int_init(v);
918 for (i = 0; i < T->n_row - 1; ++i) {
919 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
920 if (isl_int_is_zero(v))
921 continue;
922 isl_mat_col_submul(T, 0, v, 1 + i);
924 isl_int_clear(v);
925 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
926 if (!pos)
927 goto error;
928 /* We have to be careful because dropping equalities may reorder them */
929 dropped = 0;
930 for (j = bmap->n_div - 1; j >= 0; --j) {
931 for (i = 0; i < bmap->n_eq; ++i)
932 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
933 break;
934 if (i < bmap->n_eq) {
935 bmap = isl_basic_map_drop_div(bmap, j);
936 isl_basic_map_drop_equality(bmap, i);
937 ++dropped;
940 pos[0] = 0;
941 needed = 0;
942 for (i = 1; i < T->n_row; ++i) {
943 if (isl_int_is_one(T->row[i][i]))
944 pos[i] = i;
945 else
946 needed++;
948 if (needed > dropped) {
949 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
950 needed, needed, 0);
951 if (!bmap)
952 goto error;
954 for (i = 1; i < T->n_row; ++i) {
955 if (isl_int_is_one(T->row[i][i]))
956 continue;
957 k = isl_basic_map_alloc_div(bmap);
958 pos[i] = 1 + total + k;
959 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
960 isl_int_set(bmap->div[k][0], T->row[i][i]);
961 if (C2)
962 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
963 else
964 isl_int_set_si(bmap->div[k][1 + i], 1);
965 for (j = 0; j < i; ++j) {
966 if (isl_int_is_zero(T->row[i][j]))
967 continue;
968 if (pos[j] < T->n_row && C2)
969 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
970 C2->row[pos[j]], 1 + total);
971 else
972 isl_int_neg(bmap->div[k][1 + pos[j]],
973 T->row[i][j]);
975 j = isl_basic_map_alloc_equality(bmap);
976 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
977 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
979 free(pos);
980 isl_mat_free(C2);
981 isl_mat_free(T);
983 if (progress)
984 *progress = 1;
985 done:
986 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
988 return bmap;
989 error:
990 isl_mat_free(C);
991 isl_mat_free(C2);
992 isl_mat_free(T);
993 return bmap;
996 static struct isl_basic_map *set_div_from_lower_bound(
997 struct isl_basic_map *bmap, int div, int ineq)
999 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1001 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1002 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1003 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1004 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1005 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1007 return bmap;
1010 /* Check whether it is ok to define a div based on an inequality.
1011 * To avoid the introduction of circular definitions of divs, we
1012 * do not allow such a definition if the resulting expression would refer to
1013 * any other undefined divs or if any known div is defined in
1014 * terms of the unknown div.
1016 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1017 int div, int ineq)
1019 int j;
1020 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1022 /* Not defined in terms of unknown divs */
1023 for (j = 0; j < bmap->n_div; ++j) {
1024 if (div == j)
1025 continue;
1026 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1027 continue;
1028 if (isl_int_is_zero(bmap->div[j][0]))
1029 return 0;
1032 /* No other div defined in terms of this one => avoid loops */
1033 for (j = 0; j < bmap->n_div; ++j) {
1034 if (div == j)
1035 continue;
1036 if (isl_int_is_zero(bmap->div[j][0]))
1037 continue;
1038 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1039 return 0;
1042 return 1;
1045 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1046 * be a better expression than the current one?
1048 * If we do not have any expression yet, then any expression would be better.
1049 * Otherwise we check if the last variable involved in the inequality
1050 * (disregarding the div that it would define) is in an earlier position
1051 * than the last variable involved in the current div expression.
1053 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1054 int div, int ineq)
1056 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1057 int last_div;
1058 int last_ineq;
1060 if (isl_int_is_zero(bmap->div[div][0]))
1061 return 1;
1063 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1064 bmap->n_div - (div + 1)) >= 0)
1065 return 0;
1067 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1068 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1069 total + bmap->n_div);
1071 return last_ineq < last_div;
1074 /* Given two constraints "k" and "l" that are opposite to each other,
1075 * except for the constant term, check if we can use them
1076 * to obtain an expression for one of the hitherto unknown divs or
1077 * a "better" expression for a div for which we already have an expression.
1078 * "sum" is the sum of the constant terms of the constraints.
1079 * If this sum is strictly smaller than the coefficient of one
1080 * of the divs, then this pair can be used define the div.
1081 * To avoid the introduction of circular definitions of divs, we
1082 * do not use the pair if the resulting expression would refer to
1083 * any other undefined divs or if any known div is defined in
1084 * terms of the unknown div.
1086 static struct isl_basic_map *check_for_div_constraints(
1087 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1089 int i;
1090 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1092 for (i = 0; i < bmap->n_div; ++i) {
1093 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1094 continue;
1095 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1096 continue;
1097 if (!better_div_constraint(bmap, i, k))
1098 continue;
1099 if (!ok_to_set_div_from_bound(bmap, i, k))
1100 break;
1101 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1102 bmap = set_div_from_lower_bound(bmap, i, k);
1103 else
1104 bmap = set_div_from_lower_bound(bmap, i, l);
1105 if (progress)
1106 *progress = 1;
1107 break;
1109 return bmap;
1112 static struct isl_basic_map *remove_duplicate_constraints(
1113 struct isl_basic_map *bmap, int *progress, int detect_divs)
1115 unsigned int size;
1116 isl_int ***index;
1117 int k, l, h;
1118 int bits;
1119 unsigned total = isl_basic_map_total_dim(bmap);
1120 isl_int sum;
1121 isl_ctx *ctx;
1123 if (!bmap || bmap->n_ineq <= 1)
1124 return bmap;
1126 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1127 bits = ffs(size) - 1;
1128 ctx = isl_basic_map_get_ctx(bmap);
1129 index = isl_calloc_array(ctx, isl_int **, size);
1130 if (!index)
1131 return bmap;
1133 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1134 for (k = 1; k < bmap->n_ineq; ++k) {
1135 h = hash_index(index, size, bits, bmap, k);
1136 if (!index[h]) {
1137 index[h] = &bmap->ineq[k];
1138 continue;
1140 if (progress)
1141 *progress = 1;
1142 l = index[h] - &bmap->ineq[0];
1143 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1144 swap_inequality(bmap, k, l);
1145 isl_basic_map_drop_inequality(bmap, k);
1146 --k;
1148 isl_int_init(sum);
1149 for (k = 0; k < bmap->n_ineq-1; ++k) {
1150 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1151 h = hash_index(index, size, bits, bmap, k);
1152 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1153 if (!index[h])
1154 continue;
1155 l = index[h] - &bmap->ineq[0];
1156 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1157 if (isl_int_is_pos(sum)) {
1158 if (detect_divs)
1159 bmap = check_for_div_constraints(bmap, k, l,
1160 sum, progress);
1161 continue;
1163 if (isl_int_is_zero(sum)) {
1164 /* We need to break out of the loop after these
1165 * changes since the contents of the hash
1166 * will no longer be valid.
1167 * Plus, we probably we want to regauss first.
1169 if (progress)
1170 *progress = 1;
1171 isl_basic_map_drop_inequality(bmap, l);
1172 isl_basic_map_inequality_to_equality(bmap, k);
1173 } else
1174 bmap = isl_basic_map_set_to_empty(bmap);
1175 break;
1177 isl_int_clear(sum);
1179 free(index);
1180 return bmap;
1184 /* Eliminate knowns divs from constraints where they appear with
1185 * a (positive or negative) unit coefficient.
1187 * That is, replace
1189 * floor(e/m) + f >= 0
1191 * by
1193 * e + m f >= 0
1195 * and
1197 * -floor(e/m) + f >= 0
1199 * by
1201 * -e + m f + m - 1 >= 0
1203 * The first conversion is valid because floor(e/m) >= -f is equivalent
1204 * to e/m >= -f because -f is an integral expression.
1205 * The second conversion follows from the fact that
1207 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1210 * We skip integral divs, i.e., those with denominator 1, as we would
1211 * risk eliminating the div from the div constraints. We do not need
1212 * to handle those divs here anyway since the div constraints will turn
1213 * out to form an equality and this equality can then be use to eliminate
1214 * the div from all constraints.
1216 static __isl_give isl_basic_map *eliminate_unit_divs(
1217 __isl_take isl_basic_map *bmap, int *progress)
1219 int i, j;
1220 isl_ctx *ctx;
1221 unsigned total;
1223 if (!bmap)
1224 return NULL;
1226 ctx = isl_basic_map_get_ctx(bmap);
1227 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1229 for (i = 0; i < bmap->n_div; ++i) {
1230 if (isl_int_is_zero(bmap->div[i][0]))
1231 continue;
1232 if (isl_int_is_one(bmap->div[i][0]))
1233 continue;
1234 for (j = 0; j < bmap->n_ineq; ++j) {
1235 int s;
1237 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1238 !isl_int_is_negone(bmap->ineq[j][total + i]))
1239 continue;
1241 *progress = 1;
1243 s = isl_int_sgn(bmap->ineq[j][total + i]);
1244 isl_int_set_si(bmap->ineq[j][total + i], 0);
1245 if (s < 0)
1246 isl_seq_combine(bmap->ineq[j],
1247 ctx->negone, bmap->div[i] + 1,
1248 bmap->div[i][0], bmap->ineq[j],
1249 total + bmap->n_div);
1250 else
1251 isl_seq_combine(bmap->ineq[j],
1252 ctx->one, bmap->div[i] + 1,
1253 bmap->div[i][0], bmap->ineq[j],
1254 total + bmap->n_div);
1255 if (s < 0) {
1256 isl_int_add(bmap->ineq[j][0],
1257 bmap->ineq[j][0], bmap->div[i][0]);
1258 isl_int_sub_ui(bmap->ineq[j][0],
1259 bmap->ineq[j][0], 1);
1264 return bmap;
1267 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1269 int progress = 1;
1270 if (!bmap)
1271 return NULL;
1272 while (progress) {
1273 progress = 0;
1274 bmap = isl_basic_map_normalize_constraints(bmap);
1275 bmap = normalize_div_expressions(bmap);
1276 bmap = remove_duplicate_divs(bmap, &progress);
1277 bmap = eliminate_unit_divs(bmap, &progress);
1278 bmap = eliminate_divs_eq(bmap, &progress);
1279 bmap = eliminate_divs_ineq(bmap, &progress);
1280 bmap = isl_basic_map_gauss(bmap, &progress);
1281 /* requires equalities in normal form */
1282 bmap = normalize_divs(bmap, &progress);
1283 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1285 return bmap;
1288 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1290 return (struct isl_basic_set *)
1291 isl_basic_map_simplify((struct isl_basic_map *)bset);
1295 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1296 isl_int *constraint, unsigned div)
1298 unsigned pos;
1300 if (!bmap)
1301 return -1;
1303 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1305 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1306 int neg;
1307 isl_int_sub(bmap->div[div][1],
1308 bmap->div[div][1], bmap->div[div][0]);
1309 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1310 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1311 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1312 isl_int_add(bmap->div[div][1],
1313 bmap->div[div][1], bmap->div[div][0]);
1314 if (!neg)
1315 return 0;
1316 if (isl_seq_first_non_zero(constraint+pos+1,
1317 bmap->n_div-div-1) != -1)
1318 return 0;
1319 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1320 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1321 return 0;
1322 if (isl_seq_first_non_zero(constraint+pos+1,
1323 bmap->n_div-div-1) != -1)
1324 return 0;
1325 } else
1326 return 0;
1328 return 1;
1331 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1332 isl_int *constraint, unsigned div)
1334 return isl_basic_map_is_div_constraint(bset, constraint, div);
1338 /* If the only constraints a div d=floor(f/m)
1339 * appears in are its two defining constraints
1341 * f - m d >=0
1342 * -(f - (m - 1)) + m d >= 0
1344 * then it can safely be removed.
1346 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1348 int i;
1349 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1351 for (i = 0; i < bmap->n_eq; ++i)
1352 if (!isl_int_is_zero(bmap->eq[i][pos]))
1353 return 0;
1355 for (i = 0; i < bmap->n_ineq; ++i) {
1356 if (isl_int_is_zero(bmap->ineq[i][pos]))
1357 continue;
1358 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1359 return 0;
1362 for (i = 0; i < bmap->n_div; ++i)
1363 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1364 return 0;
1366 return 1;
1370 * Remove divs that don't occur in any of the constraints or other divs.
1371 * These can arise when dropping some of the variables in a quast
1372 * returned by piplib.
1374 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1376 int i;
1378 if (!bmap)
1379 return NULL;
1381 for (i = bmap->n_div-1; i >= 0; --i) {
1382 if (!div_is_redundant(bmap, i))
1383 continue;
1384 bmap = isl_basic_map_drop_div(bmap, i);
1386 return bmap;
1389 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1391 bmap = remove_redundant_divs(bmap);
1392 if (!bmap)
1393 return NULL;
1394 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1395 return bmap;
1398 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1400 return (struct isl_basic_set *)
1401 isl_basic_map_finalize((struct isl_basic_map *)bset);
1404 struct isl_set *isl_set_finalize(struct isl_set *set)
1406 int i;
1408 if (!set)
1409 return NULL;
1410 for (i = 0; i < set->n; ++i) {
1411 set->p[i] = isl_basic_set_finalize(set->p[i]);
1412 if (!set->p[i])
1413 goto error;
1415 return set;
1416 error:
1417 isl_set_free(set);
1418 return NULL;
1421 struct isl_map *isl_map_finalize(struct isl_map *map)
1423 int i;
1425 if (!map)
1426 return NULL;
1427 for (i = 0; i < map->n; ++i) {
1428 map->p[i] = isl_basic_map_finalize(map->p[i]);
1429 if (!map->p[i])
1430 goto error;
1432 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1433 return map;
1434 error:
1435 isl_map_free(map);
1436 return NULL;
1440 /* Remove definition of any div that is defined in terms of the given variable.
1441 * The div itself is not removed. Functions such as
1442 * eliminate_divs_ineq depend on the other divs remaining in place.
1444 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1445 int pos)
1447 int i;
1449 if (!bmap)
1450 return NULL;
1452 for (i = 0; i < bmap->n_div; ++i) {
1453 if (isl_int_is_zero(bmap->div[i][0]))
1454 continue;
1455 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1456 continue;
1457 isl_int_set_si(bmap->div[i][0], 0);
1459 return bmap;
1462 /* Eliminate the specified variables from the constraints using
1463 * Fourier-Motzkin. The variables themselves are not removed.
1465 struct isl_basic_map *isl_basic_map_eliminate_vars(
1466 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1468 int d;
1469 int i, j, k;
1470 unsigned total;
1471 int need_gauss = 0;
1473 if (n == 0)
1474 return bmap;
1475 if (!bmap)
1476 return NULL;
1477 total = isl_basic_map_total_dim(bmap);
1479 bmap = isl_basic_map_cow(bmap);
1480 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1481 bmap = remove_dependent_vars(bmap, d);
1482 if (!bmap)
1483 return NULL;
1485 for (d = pos + n - 1;
1486 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1487 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1488 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1489 int n_lower, n_upper;
1490 if (!bmap)
1491 return NULL;
1492 for (i = 0; i < bmap->n_eq; ++i) {
1493 if (isl_int_is_zero(bmap->eq[i][1+d]))
1494 continue;
1495 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1496 isl_basic_map_drop_equality(bmap, i);
1497 need_gauss = 1;
1498 break;
1500 if (i < bmap->n_eq)
1501 continue;
1502 n_lower = 0;
1503 n_upper = 0;
1504 for (i = 0; i < bmap->n_ineq; ++i) {
1505 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1506 n_lower++;
1507 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1508 n_upper++;
1510 bmap = isl_basic_map_extend_constraints(bmap,
1511 0, n_lower * n_upper);
1512 if (!bmap)
1513 goto error;
1514 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1515 int last;
1516 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1517 continue;
1518 last = -1;
1519 for (j = 0; j < i; ++j) {
1520 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1521 continue;
1522 last = j;
1523 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1524 isl_int_sgn(bmap->ineq[j][1+d]))
1525 continue;
1526 k = isl_basic_map_alloc_inequality(bmap);
1527 if (k < 0)
1528 goto error;
1529 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1530 1+total);
1531 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1532 1+d, 1+total, NULL);
1534 isl_basic_map_drop_inequality(bmap, i);
1535 i = last + 1;
1537 if (n_lower > 0 && n_upper > 0) {
1538 bmap = isl_basic_map_normalize_constraints(bmap);
1539 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1540 bmap = isl_basic_map_gauss(bmap, NULL);
1541 bmap = isl_basic_map_remove_redundancies(bmap);
1542 need_gauss = 0;
1543 if (!bmap)
1544 goto error;
1545 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1546 break;
1549 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1550 if (need_gauss)
1551 bmap = isl_basic_map_gauss(bmap, NULL);
1552 return bmap;
1553 error:
1554 isl_basic_map_free(bmap);
1555 return NULL;
1558 struct isl_basic_set *isl_basic_set_eliminate_vars(
1559 struct isl_basic_set *bset, unsigned pos, unsigned n)
1561 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1562 (struct isl_basic_map *)bset, pos, n);
1565 /* Eliminate the specified n dimensions starting at first from the
1566 * constraints, without removing the dimensions from the space.
1567 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1568 * Otherwise, they are projected out and the original space is restored.
1570 __isl_give isl_basic_map *isl_basic_map_eliminate(
1571 __isl_take isl_basic_map *bmap,
1572 enum isl_dim_type type, unsigned first, unsigned n)
1574 isl_space *space;
1576 if (!bmap)
1577 return NULL;
1578 if (n == 0)
1579 return bmap;
1581 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1582 isl_die(bmap->ctx, isl_error_invalid,
1583 "index out of bounds", goto error);
1585 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1586 first += isl_basic_map_offset(bmap, type) - 1;
1587 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1588 return isl_basic_map_finalize(bmap);
1591 space = isl_basic_map_get_space(bmap);
1592 bmap = isl_basic_map_project_out(bmap, type, first, n);
1593 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1594 bmap = isl_basic_map_reset_space(bmap, space);
1595 return bmap;
1596 error:
1597 isl_basic_map_free(bmap);
1598 return NULL;
1601 __isl_give isl_basic_set *isl_basic_set_eliminate(
1602 __isl_take isl_basic_set *bset,
1603 enum isl_dim_type type, unsigned first, unsigned n)
1605 return isl_basic_map_eliminate(bset, type, first, n);
1608 /* Don't assume equalities are in order, because align_divs
1609 * may have changed the order of the divs.
1611 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1613 int d, i;
1614 unsigned total;
1616 total = isl_space_dim(bmap->dim, isl_dim_all);
1617 for (d = 0; d < total; ++d)
1618 elim[d] = -1;
1619 for (i = 0; i < bmap->n_eq; ++i) {
1620 for (d = total - 1; d >= 0; --d) {
1621 if (isl_int_is_zero(bmap->eq[i][1+d]))
1622 continue;
1623 elim[d] = i;
1624 break;
1629 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1631 compute_elimination_index((struct isl_basic_map *)bset, elim);
1634 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1635 struct isl_basic_map *bmap, int *elim)
1637 int d;
1638 int copied = 0;
1639 unsigned total;
1641 total = isl_space_dim(bmap->dim, isl_dim_all);
1642 for (d = total - 1; d >= 0; --d) {
1643 if (isl_int_is_zero(src[1+d]))
1644 continue;
1645 if (elim[d] == -1)
1646 continue;
1647 if (!copied) {
1648 isl_seq_cpy(dst, src, 1 + total);
1649 copied = 1;
1651 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1653 return copied;
1656 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1657 struct isl_basic_set *bset, int *elim)
1659 return reduced_using_equalities(dst, src,
1660 (struct isl_basic_map *)bset, elim);
1663 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1664 struct isl_basic_set *bset, struct isl_basic_set *context)
1666 int i;
1667 int *elim;
1669 if (!bset || !context)
1670 goto error;
1672 if (context->n_eq == 0) {
1673 isl_basic_set_free(context);
1674 return bset;
1677 bset = isl_basic_set_cow(bset);
1678 if (!bset)
1679 goto error;
1681 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1682 if (!elim)
1683 goto error;
1684 set_compute_elimination_index(context, elim);
1685 for (i = 0; i < bset->n_eq; ++i)
1686 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1687 context, elim);
1688 for (i = 0; i < bset->n_ineq; ++i)
1689 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1690 context, elim);
1691 isl_basic_set_free(context);
1692 free(elim);
1693 bset = isl_basic_set_simplify(bset);
1694 bset = isl_basic_set_finalize(bset);
1695 return bset;
1696 error:
1697 isl_basic_set_free(bset);
1698 isl_basic_set_free(context);
1699 return NULL;
1702 static struct isl_basic_set *remove_shifted_constraints(
1703 struct isl_basic_set *bset, struct isl_basic_set *context)
1705 unsigned int size;
1706 isl_int ***index;
1707 int bits;
1708 int k, h, l;
1709 isl_ctx *ctx;
1711 if (!bset)
1712 return NULL;
1714 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1715 bits = ffs(size) - 1;
1716 ctx = isl_basic_set_get_ctx(bset);
1717 index = isl_calloc_array(ctx, isl_int **, size);
1718 if (!index)
1719 return bset;
1721 for (k = 0; k < context->n_ineq; ++k) {
1722 h = set_hash_index(index, size, bits, context, k);
1723 index[h] = &context->ineq[k];
1725 for (k = 0; k < bset->n_ineq; ++k) {
1726 h = set_hash_index(index, size, bits, bset, k);
1727 if (!index[h])
1728 continue;
1729 l = index[h] - &context->ineq[0];
1730 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1731 continue;
1732 bset = isl_basic_set_cow(bset);
1733 if (!bset)
1734 goto error;
1735 isl_basic_set_drop_inequality(bset, k);
1736 --k;
1738 free(index);
1739 return bset;
1740 error:
1741 free(index);
1742 return bset;
1745 /* Does the (linear part of a) constraint "c" involve any of the "len"
1746 * "relevant" dimensions?
1748 static int is_related(isl_int *c, int len, int *relevant)
1750 int i;
1752 for (i = 0; i < len; ++i) {
1753 if (!relevant[i])
1754 continue;
1755 if (!isl_int_is_zero(c[i]))
1756 return 1;
1759 return 0;
1762 /* Drop constraints from "bset" that do not involve any of
1763 * the dimensions marked "relevant".
1765 static __isl_give isl_basic_set *drop_unrelated_constraints(
1766 __isl_take isl_basic_set *bset, int *relevant)
1768 int i, dim;
1770 dim = isl_basic_set_dim(bset, isl_dim_set);
1771 for (i = 0; i < dim; ++i)
1772 if (!relevant[i])
1773 break;
1774 if (i >= dim)
1775 return bset;
1777 for (i = bset->n_eq - 1; i >= 0; --i)
1778 if (!is_related(bset->eq[i] + 1, dim, relevant))
1779 isl_basic_set_drop_equality(bset, i);
1781 for (i = bset->n_ineq - 1; i >= 0; --i)
1782 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1783 isl_basic_set_drop_inequality(bset, i);
1785 return bset;
1788 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1790 * In particular, for any variable involved in the constraint,
1791 * find the actual group id from before and replace the group
1792 * of the corresponding variable by the minimal group of all
1793 * the variables involved in the constraint considered so far
1794 * (if this minimum is smaller) or replace the minimum by this group
1795 * (if the minimum is larger).
1797 * At the end, all the variables in "c" will (indirectly) point
1798 * to the minimal of the groups that they referred to originally.
1800 static void update_groups(int dim, int *group, isl_int *c)
1802 int j;
1803 int min = dim;
1805 for (j = 0; j < dim; ++j) {
1806 if (isl_int_is_zero(c[j]))
1807 continue;
1808 while (group[j] >= 0 && group[group[j]] != group[j])
1809 group[j] = group[group[j]];
1810 if (group[j] == min)
1811 continue;
1812 if (group[j] < min) {
1813 if (min >= 0 && min < dim)
1814 group[min] = group[j];
1815 min = group[j];
1816 } else
1817 group[group[j]] = min;
1821 /* Drop constraints from "context" that are irrelevant for computing
1822 * the gist of "bset".
1824 * In particular, drop constraints in variables that are not related
1825 * to any of the variables involved in the constraints of "bset"
1826 * in the sense that there is no sequence of constraints that connects them.
1828 * We construct groups of variables that collect variables that
1829 * (indirectly) appear in some common constraint of "context".
1830 * Each group is identified by the first variable in the group,
1831 * except for the special group of variables that appear in "bset"
1832 * (or are related to those variables), which is identified by -1.
1833 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1834 * otherwise the group of i is the group of group[i].
1836 * We first initialize the -1 group with the variables that appear in "bset".
1837 * Then we initialize groups for the remaining variables.
1838 * Then we iterate over the constraints of "context" and update the
1839 * group of the variables in the constraint by the smallest group.
1840 * Finally, we resolve indirect references to groups by running over
1841 * the variables.
1843 * After computing the groups, we drop constraints that do not involve
1844 * any variables in the -1 group.
1846 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1847 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1849 isl_ctx *ctx;
1850 int *group;
1851 int dim;
1852 int i, j;
1853 int last;
1855 if (!context || !bset)
1856 return isl_basic_set_free(context);
1858 dim = isl_basic_set_dim(bset, isl_dim_set);
1859 ctx = isl_basic_set_get_ctx(bset);
1860 group = isl_calloc_array(ctx, int, dim);
1862 if (!group)
1863 goto error;
1865 for (i = 0; i < dim; ++i) {
1866 for (j = 0; j < bset->n_eq; ++j)
1867 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1868 break;
1869 if (j < bset->n_eq) {
1870 group[i] = -1;
1871 continue;
1873 for (j = 0; j < bset->n_ineq; ++j)
1874 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1875 break;
1876 if (j < bset->n_ineq)
1877 group[i] = -1;
1880 last = -1;
1881 for (i = 0; i < dim; ++i)
1882 if (group[i] >= 0)
1883 last = group[i] = i;
1884 if (last < 0) {
1885 free(group);
1886 return context;
1889 for (i = 0; i < context->n_eq; ++i)
1890 update_groups(dim, group, context->eq[i] + 1);
1891 for (i = 0; i < context->n_ineq; ++i)
1892 update_groups(dim, group, context->ineq[i] + 1);
1894 for (i = 0; i < dim; ++i)
1895 if (group[i] >= 0)
1896 group[i] = group[group[i]];
1898 for (i = 0; i < dim; ++i)
1899 group[i] = group[i] == -1;
1901 context = drop_unrelated_constraints(context, group);
1903 free(group);
1904 return context;
1905 error:
1906 free(group);
1907 return isl_basic_set_free(context);
1910 /* Remove all information from bset that is redundant in the context
1911 * of context. Both bset and context are assumed to be full-dimensional.
1913 * We first remove the inequalities from "bset"
1914 * that are obviously redundant with respect to some inequality in "context".
1915 * Then we remove those constraints from "context" that have become
1916 * irrelevant for computing the gist of "bset".
1917 * Note that this removal of constraints cannot be replaced by
1918 * a factorization because factors in "bset" may still be connected
1919 * to each other through constraints in "context".
1921 * If there are any inequalities left, we construct a tableau for
1922 * the context and then add the inequalities of "bset".
1923 * Before adding these inequalities, we freeze all constraints such that
1924 * they won't be considered redundant in terms of the constraints of "bset".
1925 * Then we detect all redundant constraints (among the
1926 * constraints that weren't frozen), first by checking for redundancy in the
1927 * the tableau and then by checking if replacing a constraint by its negation
1928 * would lead to an empty set. This last step is fairly expensive
1929 * and could be optimized by more reuse of the tableau.
1930 * Finally, we update bset according to the results.
1932 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1933 __isl_take isl_basic_set *context)
1935 int i, k;
1936 isl_basic_set *combined = NULL;
1937 struct isl_tab *tab = NULL;
1938 unsigned context_ineq;
1939 unsigned total;
1941 if (!bset || !context)
1942 goto error;
1944 if (isl_basic_set_is_universe(bset)) {
1945 isl_basic_set_free(context);
1946 return bset;
1949 if (isl_basic_set_is_universe(context)) {
1950 isl_basic_set_free(context);
1951 return bset;
1954 bset = remove_shifted_constraints(bset, context);
1955 if (!bset)
1956 goto error;
1957 if (bset->n_ineq == 0)
1958 goto done;
1960 context = drop_irrelevant_constraints(context, bset);
1961 if (!context)
1962 goto error;
1963 if (isl_basic_set_is_universe(context)) {
1964 isl_basic_set_free(context);
1965 return bset;
1968 context_ineq = context->n_ineq;
1969 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1970 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1971 tab = isl_tab_from_basic_set(combined, 0);
1972 for (i = 0; i < context_ineq; ++i)
1973 if (isl_tab_freeze_constraint(tab, i) < 0)
1974 goto error;
1975 tab = isl_tab_extend(tab, bset->n_ineq);
1976 for (i = 0; i < bset->n_ineq; ++i)
1977 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1978 goto error;
1979 bset = isl_basic_set_add_constraints(combined, bset, 0);
1980 combined = NULL;
1981 if (!bset)
1982 goto error;
1983 if (isl_tab_detect_redundant(tab) < 0)
1984 goto error;
1985 total = isl_basic_set_total_dim(bset);
1986 for (i = context_ineq; i < bset->n_ineq; ++i) {
1987 int is_empty;
1988 if (tab->con[i].is_redundant)
1989 continue;
1990 tab->con[i].is_redundant = 1;
1991 combined = isl_basic_set_dup(bset);
1992 combined = isl_basic_set_update_from_tab(combined, tab);
1993 combined = isl_basic_set_extend_constraints(combined, 0, 1);
1994 k = isl_basic_set_alloc_inequality(combined);
1995 if (k < 0)
1996 goto error;
1997 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
1998 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
1999 is_empty = isl_basic_set_is_empty(combined);
2000 if (is_empty < 0)
2001 goto error;
2002 isl_basic_set_free(combined);
2003 combined = NULL;
2004 if (!is_empty)
2005 tab->con[i].is_redundant = 0;
2007 for (i = 0; i < context_ineq; ++i)
2008 tab->con[i].is_redundant = 1;
2009 bset = isl_basic_set_update_from_tab(bset, tab);
2010 if (bset) {
2011 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2012 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2015 isl_tab_free(tab);
2016 done:
2017 bset = isl_basic_set_simplify(bset);
2018 bset = isl_basic_set_finalize(bset);
2019 isl_basic_set_free(context);
2020 return bset;
2021 error:
2022 isl_tab_free(tab);
2023 isl_basic_set_free(combined);
2024 isl_basic_set_free(context);
2025 isl_basic_set_free(bset);
2026 return NULL;
2029 /* Remove all information from bset that is redundant in the context
2030 * of context. In particular, equalities that are linear combinations
2031 * of those in context are removed. Then the inequalities that are
2032 * redundant in the context of the equalities and inequalities of
2033 * context are removed.
2035 * First of all, we drop those constraints from "context"
2036 * that are irrelevant for computing the gist of "bset".
2037 * Alternatively, we could factorize the intersection of "context" and "bset".
2039 * We first compute the integer affine hull of the intersection,
2040 * compute the gist inside this affine hull and then add back
2041 * those equalities that are not implied by the context.
2043 * If two constraints are mutually redundant, then uset_gist_full
2044 * will remove the second of those constraints. We therefore first
2045 * sort the constraints so that constraints not involving existentially
2046 * quantified variables are given precedence over those that do.
2047 * We have to perform this sorting before the variable compression,
2048 * because that may effect the order of the variables.
2050 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2051 __isl_take isl_basic_set *context)
2053 isl_mat *eq;
2054 isl_mat *T, *T2;
2055 isl_basic_set *aff;
2056 isl_basic_set *aff_context;
2057 unsigned total;
2059 if (!bset || !context)
2060 goto error;
2062 context = drop_irrelevant_constraints(context, bset);
2064 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
2065 if (isl_basic_set_plain_is_empty(bset)) {
2066 isl_basic_set_free(context);
2067 return bset;
2069 bset = isl_basic_set_sort_constraints(bset);
2070 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
2071 if (!aff)
2072 goto error;
2073 if (isl_basic_set_plain_is_empty(aff)) {
2074 isl_basic_set_free(aff);
2075 isl_basic_set_free(context);
2076 return bset;
2078 if (aff->n_eq == 0) {
2079 isl_basic_set_free(aff);
2080 return uset_gist_full(bset, context);
2082 total = isl_basic_set_total_dim(bset);
2083 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2084 eq = isl_mat_cow(eq);
2085 T = isl_mat_variable_compression(eq, &T2);
2086 if (T && T->n_col == 0) {
2087 isl_mat_free(T);
2088 isl_mat_free(T2);
2089 isl_basic_set_free(context);
2090 isl_basic_set_free(aff);
2091 return isl_basic_set_set_to_empty(bset);
2094 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2096 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2097 context = isl_basic_set_preimage(context, T);
2099 bset = uset_gist_full(bset, context);
2100 bset = isl_basic_set_preimage(bset, T2);
2101 bset = isl_basic_set_intersect(bset, aff);
2102 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2104 if (bset) {
2105 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2106 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2109 return bset;
2110 error:
2111 isl_basic_set_free(bset);
2112 isl_basic_set_free(context);
2113 return NULL;
2116 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2117 * We simply add the equalities in context to bmap and then do a regular
2118 * div normalizations. Better results can be obtained by normalizing
2119 * only the divs in bmap than do not also appear in context.
2120 * We need to be careful to reduce the divs using the equalities
2121 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2122 * spurious constraints.
2124 static struct isl_basic_map *normalize_divs_in_context(
2125 struct isl_basic_map *bmap, struct isl_basic_map *context)
2127 int i;
2128 unsigned total_context;
2129 int div_eq;
2131 div_eq = n_pure_div_eq(bmap);
2132 if (div_eq == 0)
2133 return bmap;
2135 if (context->n_div > 0)
2136 bmap = isl_basic_map_align_divs(bmap, context);
2138 total_context = isl_basic_map_total_dim(context);
2139 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2140 for (i = 0; i < context->n_eq; ++i) {
2141 int k;
2142 k = isl_basic_map_alloc_equality(bmap);
2143 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2144 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2145 isl_basic_map_total_dim(bmap) - total_context);
2147 bmap = isl_basic_map_gauss(bmap, NULL);
2148 bmap = normalize_divs(bmap, NULL);
2149 bmap = isl_basic_map_gauss(bmap, NULL);
2150 return bmap;
2153 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2154 struct isl_basic_map *context)
2156 struct isl_basic_set *bset;
2158 if (!bmap || !context)
2159 goto error;
2161 if (isl_basic_map_is_universe(bmap)) {
2162 isl_basic_map_free(context);
2163 return bmap;
2165 if (isl_basic_map_plain_is_empty(context)) {
2166 isl_basic_map_free(bmap);
2167 return context;
2169 if (isl_basic_map_plain_is_empty(bmap)) {
2170 isl_basic_map_free(context);
2171 return bmap;
2174 bmap = isl_basic_map_remove_redundancies(bmap);
2175 context = isl_basic_map_remove_redundancies(context);
2177 if (context->n_eq)
2178 bmap = normalize_divs_in_context(bmap, context);
2180 context = isl_basic_map_align_divs(context, bmap);
2181 bmap = isl_basic_map_align_divs(bmap, context);
2183 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2184 isl_basic_map_underlying_set(context));
2186 return isl_basic_map_overlying_set(bset, bmap);
2187 error:
2188 isl_basic_map_free(bmap);
2189 isl_basic_map_free(context);
2190 return NULL;
2194 * Assumes context has no implicit divs.
2196 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2197 __isl_take isl_basic_map *context)
2199 int i;
2201 if (!map || !context)
2202 goto error;;
2204 if (isl_basic_map_plain_is_empty(context)) {
2205 isl_map_free(map);
2206 return isl_map_from_basic_map(context);
2209 context = isl_basic_map_remove_redundancies(context);
2210 map = isl_map_cow(map);
2211 if (!map || !context)
2212 goto error;;
2213 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2214 map = isl_map_compute_divs(map);
2215 for (i = 0; i < map->n; ++i)
2216 context = isl_basic_map_align_divs(context, map->p[i]);
2217 for (i = map->n - 1; i >= 0; --i) {
2218 map->p[i] = isl_basic_map_gist(map->p[i],
2219 isl_basic_map_copy(context));
2220 if (!map->p[i])
2221 goto error;
2222 if (isl_basic_map_plain_is_empty(map->p[i])) {
2223 isl_basic_map_free(map->p[i]);
2224 if (i != map->n - 1)
2225 map->p[i] = map->p[map->n - 1];
2226 map->n--;
2229 isl_basic_map_free(context);
2230 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2231 return map;
2232 error:
2233 isl_map_free(map);
2234 isl_basic_map_free(context);
2235 return NULL;
2238 /* Return a map that has the same intersection with "context" as "map"
2239 * and that as "simple" as possible.
2241 * If "map" is already the universe, then we cannot make it any simpler.
2242 * Similarly, if "context" is the universe, then we cannot exploit it
2243 * to simplify "map"
2244 * If "map" and "context" are identical to each other, then we can
2245 * return the corresponding universe.
2247 * If none of these cases apply, we have to work a bit harder.
2249 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2250 __isl_take isl_map *context)
2252 int equal;
2253 int is_universe;
2255 is_universe = isl_map_plain_is_universe(map);
2256 if (is_universe >= 0 && !is_universe)
2257 is_universe = isl_map_plain_is_universe(context);
2258 if (is_universe < 0)
2259 goto error;
2260 if (is_universe) {
2261 isl_map_free(context);
2262 return map;
2265 equal = isl_map_plain_is_equal(map, context);
2266 if (equal < 0)
2267 goto error;
2268 if (equal) {
2269 isl_map *res = isl_map_universe(isl_map_get_space(map));
2270 isl_map_free(map);
2271 isl_map_free(context);
2272 return res;
2275 context = isl_map_compute_divs(context);
2276 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2277 error:
2278 isl_map_free(map);
2279 isl_map_free(context);
2280 return NULL;
2283 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2284 __isl_take isl_map *context)
2286 return isl_map_align_params_map_map_and(map, context, &map_gist);
2289 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2290 struct isl_basic_set *context)
2292 return (struct isl_basic_set *)isl_basic_map_gist(
2293 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2296 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2297 __isl_take isl_basic_set *context)
2299 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2300 (struct isl_basic_map *)context);
2303 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2304 __isl_take isl_basic_set *context)
2306 isl_space *space = isl_set_get_space(set);
2307 isl_basic_set *dom_context = isl_basic_set_universe(space);
2308 dom_context = isl_basic_set_intersect_params(dom_context, context);
2309 return isl_set_gist_basic_set(set, dom_context);
2312 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2313 __isl_take isl_set *context)
2315 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2316 (struct isl_map *)context);
2319 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2320 __isl_take isl_set *context)
2322 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2323 map_context = isl_map_intersect_domain(map_context, context);
2324 return isl_map_gist(map, map_context);
2327 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2328 __isl_take isl_set *context)
2330 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2331 map_context = isl_map_intersect_range(map_context, context);
2332 return isl_map_gist(map, map_context);
2335 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2336 __isl_take isl_set *context)
2338 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2339 map_context = isl_map_intersect_params(map_context, context);
2340 return isl_map_gist(map, map_context);
2343 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2344 __isl_take isl_set *context)
2346 return isl_map_gist_params(set, context);
2349 /* Quick check to see if two basic maps are disjoint.
2350 * In particular, we reduce the equalities and inequalities of
2351 * one basic map in the context of the equalities of the other
2352 * basic map and check if we get a contradiction.
2354 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2355 __isl_keep isl_basic_map *bmap2)
2357 struct isl_vec *v = NULL;
2358 int *elim = NULL;
2359 unsigned total;
2360 int i;
2362 if (!bmap1 || !bmap2)
2363 return -1;
2364 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2365 return -1);
2366 if (bmap1->n_div || bmap2->n_div)
2367 return 0;
2368 if (!bmap1->n_eq && !bmap2->n_eq)
2369 return 0;
2371 total = isl_space_dim(bmap1->dim, isl_dim_all);
2372 if (total == 0)
2373 return 0;
2374 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2375 if (!v)
2376 goto error;
2377 elim = isl_alloc_array(bmap1->ctx, int, total);
2378 if (!elim)
2379 goto error;
2380 compute_elimination_index(bmap1, elim);
2381 for (i = 0; i < bmap2->n_eq; ++i) {
2382 int reduced;
2383 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2384 bmap1, elim);
2385 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2386 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2387 goto disjoint;
2389 for (i = 0; i < bmap2->n_ineq; ++i) {
2390 int reduced;
2391 reduced = reduced_using_equalities(v->block.data,
2392 bmap2->ineq[i], bmap1, elim);
2393 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2394 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2395 goto disjoint;
2397 compute_elimination_index(bmap2, elim);
2398 for (i = 0; i < bmap1->n_ineq; ++i) {
2399 int reduced;
2400 reduced = reduced_using_equalities(v->block.data,
2401 bmap1->ineq[i], bmap2, elim);
2402 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2403 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2404 goto disjoint;
2406 isl_vec_free(v);
2407 free(elim);
2408 return 0;
2409 disjoint:
2410 isl_vec_free(v);
2411 free(elim);
2412 return 1;
2413 error:
2414 isl_vec_free(v);
2415 free(elim);
2416 return -1;
2419 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2420 __isl_keep isl_basic_set *bset2)
2422 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2423 (struct isl_basic_map *)bset2);
2426 /* Are "map1" and "map2" obviously disjoint?
2428 * If one of them is empty or if they live in different spaces (ignoring
2429 * parameters), then they are clearly disjoint.
2431 * If they have different parameters, then we skip any further tests.
2433 * If they are obviously equal, but not obviously empty, then we will
2434 * not be able to detect if they are disjoint.
2436 * Otherwise we check if each basic map in "map1" is obviously disjoint
2437 * from each basic map in "map2".
2439 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2440 __isl_keep isl_map *map2)
2442 int i, j;
2443 int disjoint;
2444 int intersect;
2445 int match;
2447 if (!map1 || !map2)
2448 return -1;
2450 disjoint = isl_map_plain_is_empty(map1);
2451 if (disjoint < 0 || disjoint)
2452 return disjoint;
2454 disjoint = isl_map_plain_is_empty(map2);
2455 if (disjoint < 0 || disjoint)
2456 return disjoint;
2458 match = isl_space_tuple_match(map1->dim, isl_dim_in,
2459 map2->dim, isl_dim_in);
2460 if (match < 0 || !match)
2461 return match < 0 ? -1 : 1;
2463 match = isl_space_tuple_match(map1->dim, isl_dim_out,
2464 map2->dim, isl_dim_out);
2465 if (match < 0 || !match)
2466 return match < 0 ? -1 : 1;
2468 match = isl_space_match(map1->dim, isl_dim_param,
2469 map2->dim, isl_dim_param);
2470 if (match < 0 || !match)
2471 return match < 0 ? -1 : 0;
2473 intersect = isl_map_plain_is_equal(map1, map2);
2474 if (intersect < 0 || intersect)
2475 return intersect < 0 ? -1 : 0;
2477 for (i = 0; i < map1->n; ++i) {
2478 for (j = 0; j < map2->n; ++j) {
2479 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2480 map2->p[j]);
2481 if (d != 1)
2482 return d;
2485 return 1;
2488 /* Are "map1" and "map2" disjoint?
2490 * They are disjoint if they are "obviously disjoint" or if one of them
2491 * is empty. Otherwise, they are not disjoint if one of them is universal.
2492 * If none of these cases apply, we compute the intersection and see if
2493 * the result is empty.
2495 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2497 int disjoint;
2498 int intersect;
2499 isl_map *test;
2501 disjoint = isl_map_plain_is_disjoint(map1, map2);
2502 if (disjoint < 0 || disjoint)
2503 return disjoint;
2505 disjoint = isl_map_is_empty(map1);
2506 if (disjoint < 0 || disjoint)
2507 return disjoint;
2509 disjoint = isl_map_is_empty(map2);
2510 if (disjoint < 0 || disjoint)
2511 return disjoint;
2513 intersect = isl_map_plain_is_universe(map1);
2514 if (intersect < 0 || intersect)
2515 return intersect < 0 ? -1 : 0;
2517 intersect = isl_map_plain_is_universe(map2);
2518 if (intersect < 0 || intersect)
2519 return intersect < 0 ? -1 : 0;
2521 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2522 disjoint = isl_map_is_empty(test);
2523 isl_map_free(test);
2525 return disjoint;
2528 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2529 __isl_keep isl_set *set2)
2531 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2532 (struct isl_map *)set2);
2535 /* Are "set1" and "set2" disjoint?
2537 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2539 return isl_map_is_disjoint(set1, set2);
2542 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2544 return isl_set_plain_is_disjoint(set1, set2);
2547 /* Check if we can combine a given div with lower bound l and upper
2548 * bound u with some other div and if so return that other div.
2549 * Otherwise return -1.
2551 * We first check that
2552 * - the bounds are opposites of each other (except for the constant
2553 * term)
2554 * - the bounds do not reference any other div
2555 * - no div is defined in terms of this div
2557 * Let m be the size of the range allowed on the div by the bounds.
2558 * That is, the bounds are of the form
2560 * e <= a <= e + m - 1
2562 * with e some expression in the other variables.
2563 * We look for another div b such that no third div is defined in terms
2564 * of this second div b and such that in any constraint that contains
2565 * a (except for the given lower and upper bound), also contains b
2566 * with a coefficient that is m times that of b.
2567 * That is, all constraints (execpt for the lower and upper bound)
2568 * are of the form
2570 * e + f (a + m b) >= 0
2572 * If so, we return b so that "a + m b" can be replaced by
2573 * a single div "c = a + m b".
2575 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2576 unsigned div, unsigned l, unsigned u)
2578 int i, j;
2579 unsigned dim;
2580 int coalesce = -1;
2582 if (bmap->n_div <= 1)
2583 return -1;
2584 dim = isl_space_dim(bmap->dim, isl_dim_all);
2585 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2586 return -1;
2587 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2588 bmap->n_div - div - 1) != -1)
2589 return -1;
2590 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2591 dim + bmap->n_div))
2592 return -1;
2594 for (i = 0; i < bmap->n_div; ++i) {
2595 if (isl_int_is_zero(bmap->div[i][0]))
2596 continue;
2597 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2598 return -1;
2601 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2602 if (isl_int_is_neg(bmap->ineq[l][0])) {
2603 isl_int_sub(bmap->ineq[l][0],
2604 bmap->ineq[l][0], bmap->ineq[u][0]);
2605 bmap = isl_basic_map_copy(bmap);
2606 bmap = isl_basic_map_set_to_empty(bmap);
2607 isl_basic_map_free(bmap);
2608 return -1;
2610 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2611 for (i = 0; i < bmap->n_div; ++i) {
2612 if (i == div)
2613 continue;
2614 if (!pairs[i])
2615 continue;
2616 for (j = 0; j < bmap->n_div; ++j) {
2617 if (isl_int_is_zero(bmap->div[j][0]))
2618 continue;
2619 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2620 break;
2622 if (j < bmap->n_div)
2623 continue;
2624 for (j = 0; j < bmap->n_ineq; ++j) {
2625 int valid;
2626 if (j == l || j == u)
2627 continue;
2628 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2629 continue;
2630 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2631 break;
2632 isl_int_mul(bmap->ineq[j][1 + dim + div],
2633 bmap->ineq[j][1 + dim + div],
2634 bmap->ineq[l][0]);
2635 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2636 bmap->ineq[j][1 + dim + i]);
2637 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2638 bmap->ineq[j][1 + dim + div],
2639 bmap->ineq[l][0]);
2640 if (!valid)
2641 break;
2643 if (j < bmap->n_ineq)
2644 continue;
2645 coalesce = i;
2646 break;
2648 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2649 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2650 return coalesce;
2653 /* Given a lower and an upper bound on div i, construct an inequality
2654 * that when nonnegative ensures that this pair of bounds always allows
2655 * for an integer value of the given div.
2656 * The lower bound is inequality l, while the upper bound is inequality u.
2657 * The constructed inequality is stored in ineq.
2658 * g, fl, fu are temporary scalars.
2660 * Let the upper bound be
2662 * -n_u a + e_u >= 0
2664 * and the lower bound
2666 * n_l a + e_l >= 0
2668 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2669 * We have
2671 * - f_u e_l <= f_u f_l g a <= f_l e_u
2673 * Since all variables are integer valued, this is equivalent to
2675 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2677 * If this interval is at least f_u f_l g, then it contains at least
2678 * one integer value for a.
2679 * That is, the test constraint is
2681 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2683 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2684 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2686 unsigned dim;
2687 dim = isl_space_dim(bmap->dim, isl_dim_all);
2689 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2690 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2691 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2692 isl_int_neg(fu, fu);
2693 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2694 1 + dim + bmap->n_div);
2695 isl_int_add(ineq[0], ineq[0], fl);
2696 isl_int_add(ineq[0], ineq[0], fu);
2697 isl_int_sub_ui(ineq[0], ineq[0], 1);
2698 isl_int_mul(g, g, fl);
2699 isl_int_mul(g, g, fu);
2700 isl_int_sub(ineq[0], ineq[0], g);
2703 /* Remove more kinds of divs that are not strictly needed.
2704 * In particular, if all pairs of lower and upper bounds on a div
2705 * are such that they allow at least one integer value of the div,
2706 * the we can eliminate the div using Fourier-Motzkin without
2707 * introducing any spurious solutions.
2709 static struct isl_basic_map *drop_more_redundant_divs(
2710 struct isl_basic_map *bmap, int *pairs, int n)
2712 struct isl_tab *tab = NULL;
2713 struct isl_vec *vec = NULL;
2714 unsigned dim;
2715 int remove = -1;
2716 isl_int g, fl, fu;
2718 isl_int_init(g);
2719 isl_int_init(fl);
2720 isl_int_init(fu);
2722 if (!bmap)
2723 goto error;
2725 dim = isl_space_dim(bmap->dim, isl_dim_all);
2726 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2727 if (!vec)
2728 goto error;
2730 tab = isl_tab_from_basic_map(bmap, 0);
2732 while (n > 0) {
2733 int i, l, u;
2734 int best = -1;
2735 enum isl_lp_result res;
2737 for (i = 0; i < bmap->n_div; ++i) {
2738 if (!pairs[i])
2739 continue;
2740 if (best >= 0 && pairs[best] <= pairs[i])
2741 continue;
2742 best = i;
2745 i = best;
2746 for (l = 0; l < bmap->n_ineq; ++l) {
2747 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2748 continue;
2749 for (u = 0; u < bmap->n_ineq; ++u) {
2750 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2751 continue;
2752 construct_test_ineq(bmap, i, l, u,
2753 vec->el, g, fl, fu);
2754 res = isl_tab_min(tab, vec->el,
2755 bmap->ctx->one, &g, NULL, 0);
2756 if (res == isl_lp_error)
2757 goto error;
2758 if (res == isl_lp_empty) {
2759 bmap = isl_basic_map_set_to_empty(bmap);
2760 break;
2762 if (res != isl_lp_ok || isl_int_is_neg(g))
2763 break;
2765 if (u < bmap->n_ineq)
2766 break;
2768 if (l == bmap->n_ineq) {
2769 remove = i;
2770 break;
2772 pairs[i] = 0;
2773 --n;
2776 isl_tab_free(tab);
2777 isl_vec_free(vec);
2779 isl_int_clear(g);
2780 isl_int_clear(fl);
2781 isl_int_clear(fu);
2783 free(pairs);
2785 if (remove < 0)
2786 return bmap;
2788 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2789 return isl_basic_map_drop_redundant_divs(bmap);
2790 error:
2791 free(pairs);
2792 isl_basic_map_free(bmap);
2793 isl_tab_free(tab);
2794 isl_vec_free(vec);
2795 isl_int_clear(g);
2796 isl_int_clear(fl);
2797 isl_int_clear(fu);
2798 return NULL;
2801 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2802 * and the upper bound u, div1 always occurs together with div2 in the form
2803 * (div1 + m div2), where m is the constant range on the variable div1
2804 * allowed by l and u, replace the pair div1 and div2 by a single
2805 * div that is equal to div1 + m div2.
2807 * The new div will appear in the location that contains div2.
2808 * We need to modify all constraints that contain
2809 * div2 = (div - div1) / m
2810 * (If a constraint does not contain div2, it will also not contain div1.)
2811 * If the constraint also contains div1, then we know they appear
2812 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2813 * i.e., the coefficient of div is f.
2815 * Otherwise, we first need to introduce div1 into the constraint.
2816 * Let the l be
2818 * div1 + f >=0
2820 * and u
2822 * -div1 + f' >= 0
2824 * A lower bound on div2
2826 * n div2 + t >= 0
2828 * can be replaced by
2830 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2832 * with g = gcd(m,n).
2833 * An upper bound
2835 * -n div2 + t >= 0
2837 * can be replaced by
2839 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2841 * These constraint are those that we would obtain from eliminating
2842 * div1 using Fourier-Motzkin.
2844 * After all constraints have been modified, we drop the lower and upper
2845 * bound and then drop div1.
2847 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2848 unsigned div1, unsigned div2, unsigned l, unsigned u)
2850 isl_int a;
2851 isl_int b;
2852 isl_int m;
2853 unsigned dim, total;
2854 int i;
2856 dim = isl_space_dim(bmap->dim, isl_dim_all);
2857 total = 1 + dim + bmap->n_div;
2859 isl_int_init(a);
2860 isl_int_init(b);
2861 isl_int_init(m);
2862 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2863 isl_int_add_ui(m, m, 1);
2865 for (i = 0; i < bmap->n_ineq; ++i) {
2866 if (i == l || i == u)
2867 continue;
2868 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2869 continue;
2870 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2871 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2872 isl_int_divexact(a, m, b);
2873 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2874 if (isl_int_is_pos(b)) {
2875 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2876 b, bmap->ineq[l], total);
2877 } else {
2878 isl_int_neg(b, b);
2879 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2880 b, bmap->ineq[u], total);
2883 isl_int_set(bmap->ineq[i][1 + dim + div2],
2884 bmap->ineq[i][1 + dim + div1]);
2885 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2888 isl_int_clear(a);
2889 isl_int_clear(b);
2890 isl_int_clear(m);
2891 if (l > u) {
2892 isl_basic_map_drop_inequality(bmap, l);
2893 isl_basic_map_drop_inequality(bmap, u);
2894 } else {
2895 isl_basic_map_drop_inequality(bmap, u);
2896 isl_basic_map_drop_inequality(bmap, l);
2898 bmap = isl_basic_map_drop_div(bmap, div1);
2899 return bmap;
2902 /* First check if we can coalesce any pair of divs and
2903 * then continue with dropping more redundant divs.
2905 * We loop over all pairs of lower and upper bounds on a div
2906 * with coefficient 1 and -1, respectively, check if there
2907 * is any other div "c" with which we can coalesce the div
2908 * and if so, perform the coalescing.
2910 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2911 struct isl_basic_map *bmap, int *pairs, int n)
2913 int i, l, u;
2914 unsigned dim;
2916 dim = isl_space_dim(bmap->dim, isl_dim_all);
2918 for (i = 0; i < bmap->n_div; ++i) {
2919 if (!pairs[i])
2920 continue;
2921 for (l = 0; l < bmap->n_ineq; ++l) {
2922 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2923 continue;
2924 for (u = 0; u < bmap->n_ineq; ++u) {
2925 int c;
2927 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2928 continue;
2929 c = div_find_coalesce(bmap, pairs, i, l, u);
2930 if (c < 0)
2931 continue;
2932 free(pairs);
2933 bmap = coalesce_divs(bmap, i, c, l, u);
2934 return isl_basic_map_drop_redundant_divs(bmap);
2939 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2940 return bmap;
2942 return drop_more_redundant_divs(bmap, pairs, n);
2945 /* Remove divs that are not strictly needed.
2946 * In particular, if a div only occurs positively (or negatively)
2947 * in constraints, then it can simply be dropped.
2948 * Also, if a div occurs in only two constraints and if moreover
2949 * those two constraints are opposite to each other, except for the constant
2950 * term and if the sum of the constant terms is such that for any value
2951 * of the other values, there is always at least one integer value of the
2952 * div, i.e., if one plus this sum is greater than or equal to
2953 * the (absolute value) of the coefficent of the div in the constraints,
2954 * then we can also simply drop the div.
2956 * We skip divs that appear in equalities or in the definition of other divs.
2957 * Divs that appear in the definition of other divs usually occur in at least
2958 * 4 constraints, but the constraints may have been simplified.
2960 * If any divs are left after these simple checks then we move on
2961 * to more complicated cases in drop_more_redundant_divs.
2963 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2964 struct isl_basic_map *bmap)
2966 int i, j;
2967 unsigned off;
2968 int *pairs = NULL;
2969 int n = 0;
2971 if (!bmap)
2972 goto error;
2974 off = isl_space_dim(bmap->dim, isl_dim_all);
2975 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2976 if (!pairs)
2977 goto error;
2979 for (i = 0; i < bmap->n_div; ++i) {
2980 int pos, neg;
2981 int last_pos, last_neg;
2982 int redundant;
2983 int defined;
2985 defined = !isl_int_is_zero(bmap->div[i][0]);
2986 for (j = i; j < bmap->n_div; ++j)
2987 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
2988 break;
2989 if (j < bmap->n_div)
2990 continue;
2991 for (j = 0; j < bmap->n_eq; ++j)
2992 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2993 break;
2994 if (j < bmap->n_eq)
2995 continue;
2996 ++n;
2997 pos = neg = 0;
2998 for (j = 0; j < bmap->n_ineq; ++j) {
2999 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3000 last_pos = j;
3001 ++pos;
3003 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3004 last_neg = j;
3005 ++neg;
3008 pairs[i] = pos * neg;
3009 if (pairs[i] == 0) {
3010 for (j = bmap->n_ineq - 1; j >= 0; --j)
3011 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3012 isl_basic_map_drop_inequality(bmap, j);
3013 bmap = isl_basic_map_drop_div(bmap, i);
3014 free(pairs);
3015 return isl_basic_map_drop_redundant_divs(bmap);
3017 if (pairs[i] != 1)
3018 continue;
3019 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3020 bmap->ineq[last_neg] + 1,
3021 off + bmap->n_div))
3022 continue;
3024 isl_int_add(bmap->ineq[last_pos][0],
3025 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3026 isl_int_add_ui(bmap->ineq[last_pos][0],
3027 bmap->ineq[last_pos][0], 1);
3028 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3029 bmap->ineq[last_pos][1+off+i]);
3030 isl_int_sub_ui(bmap->ineq[last_pos][0],
3031 bmap->ineq[last_pos][0], 1);
3032 isl_int_sub(bmap->ineq[last_pos][0],
3033 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3034 if (!redundant) {
3035 if (defined ||
3036 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3037 pairs[i] = 0;
3038 --n;
3039 continue;
3041 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3042 bmap = isl_basic_map_simplify(bmap);
3043 free(pairs);
3044 return isl_basic_map_drop_redundant_divs(bmap);
3046 if (last_pos > last_neg) {
3047 isl_basic_map_drop_inequality(bmap, last_pos);
3048 isl_basic_map_drop_inequality(bmap, last_neg);
3049 } else {
3050 isl_basic_map_drop_inequality(bmap, last_neg);
3051 isl_basic_map_drop_inequality(bmap, last_pos);
3053 bmap = isl_basic_map_drop_div(bmap, i);
3054 free(pairs);
3055 return isl_basic_map_drop_redundant_divs(bmap);
3058 if (n > 0)
3059 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3061 free(pairs);
3062 return bmap;
3063 error:
3064 free(pairs);
3065 isl_basic_map_free(bmap);
3066 return NULL;
3069 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3070 struct isl_basic_set *bset)
3072 return (struct isl_basic_set *)
3073 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3076 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3078 int i;
3080 if (!map)
3081 return NULL;
3082 for (i = 0; i < map->n; ++i) {
3083 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3084 if (!map->p[i])
3085 goto error;
3087 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3088 return map;
3089 error:
3090 isl_map_free(map);
3091 return NULL;
3094 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3096 return (struct isl_set *)
3097 isl_map_drop_redundant_divs((struct isl_map *)set);