hide isl_token internals
[isl.git] / isl_schedule.c
blobfccff793f1dfb3c0efb0bd355283208bf2761001
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl/aff.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl_hmap_map_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
40 /* Internal information about a node that is used during the construction
41 * of a schedule.
42 * dim represents the space in which the domain lives
43 * sched is a matrix representation of the schedule being constructed
44 * for this node
45 * sched_map is an isl_map representation of the same (partial) schedule
46 * sched_map may be NULL
47 * rank is the number of linearly independent rows in the linear part
48 * of sched
49 * the columns of cmap represent a change of basis for the schedule
50 * coefficients; the first rank columns span the linear part of
51 * the schedule rows
52 * start is the first variable in the LP problem in the sequences that
53 * represents the schedule coefficients of this node
54 * nvar is the dimension of the domain
55 * nparam is the number of parameters or 0 if we are not constructing
56 * a parametric schedule
58 * scc is the index of SCC (or WCC) this node belongs to
60 * band contains the band index for each of the rows of the schedule.
61 * band_id is used to differentiate between separate bands at the same
62 * level within the same parent band, i.e., bands that are separated
63 * by the parent band or bands that are independent of each other.
64 * zero contains a boolean for each of the rows of the schedule,
65 * indicating whether the corresponding scheduling dimension results
66 * in zero dependence distances within its band and with respect
67 * to the proximity edges.
69 struct isl_sched_node {
70 isl_space *dim;
71 isl_mat *sched;
72 isl_map *sched_map;
73 int rank;
74 isl_mat *cmap;
75 int start;
76 int nvar;
77 int nparam;
79 int scc;
81 int *band;
82 int *band_id;
83 int *zero;
86 static int node_has_dim(const void *entry, const void *val)
88 struct isl_sched_node *node = (struct isl_sched_node *)entry;
89 isl_space *dim = (isl_space *)val;
91 return isl_space_is_equal(node->dim, dim);
94 /* An edge in the dependence graph. An edge may be used to
95 * ensure validity of the generated schedule, to minimize the dependence
96 * distance or both
98 * map is the dependence relation
99 * src is the source node
100 * dst is the sink node
101 * validity is set if the edge is used to ensure correctness
102 * proximity is set if the edge is used to minimize dependence distances
104 * For validity edges, start and end mark the sequence of inequality
105 * constraints in the LP problem that encode the validity constraint
106 * corresponding to this edge.
108 struct isl_sched_edge {
109 isl_map *map;
111 struct isl_sched_node *src;
112 struct isl_sched_node *dst;
114 int validity;
115 int proximity;
117 int start;
118 int end;
121 enum isl_edge_type {
122 isl_edge_validity = 0,
123 isl_edge_first = isl_edge_validity,
124 isl_edge_proximity,
125 isl_edge_last = isl_edge_proximity
128 /* Internal information about the dependence graph used during
129 * the construction of the schedule.
131 * intra_hmap is a cache, mapping dependence relations to their dual,
132 * for dependences from a node to itself
133 * inter_hmap is a cache, mapping dependence relations to their dual,
134 * for dependences between distinct nodes
136 * n is the number of nodes
137 * node is the list of nodes
138 * maxvar is the maximal number of variables over all nodes
139 * max_row is the allocated number of rows in the schedule
140 * n_row is the current (maximal) number of linearly independent
141 * rows in the node schedules
142 * n_total_row is the current number of rows in the node schedules
143 * n_band is the current number of completed bands
144 * band_start is the starting row in the node schedules of the current band
145 * root is set if this graph is the original dependence graph,
146 * without any splitting
148 * sorted contains a list of node indices sorted according to the
149 * SCC to which a node belongs
151 * n_edge is the number of edges
152 * edge is the list of edges
153 * max_edge contains the maximal number of edges of each type;
154 * in particular, it contains the number of edges in the inital graph.
155 * edge_table contains pointers into the edge array, hashed on the source
156 * and sink spaces; there is one such table for each type;
157 * a given edge may be referenced from more than one table
158 * if the corresponding relation appears in more than of the
159 * sets of dependences
161 * node_table contains pointers into the node array, hashed on the space
163 * region contains a list of variable sequences that should be non-trivial
165 * lp contains the (I)LP problem used to obtain new schedule rows
167 * src_scc and dst_scc are the source and sink SCCs of an edge with
168 * conflicting constraints
170 * scc represents the number of components
172 struct isl_sched_graph {
173 isl_hmap_map_basic_set *intra_hmap;
174 isl_hmap_map_basic_set *inter_hmap;
176 struct isl_sched_node *node;
177 int n;
178 int maxvar;
179 int max_row;
180 int n_row;
182 int *sorted;
184 int n_band;
185 int n_total_row;
186 int band_start;
188 int root;
190 struct isl_sched_edge *edge;
191 int n_edge;
192 int max_edge[isl_edge_last + 1];
193 struct isl_hash_table *edge_table[isl_edge_last + 1];
195 struct isl_hash_table *node_table;
196 struct isl_region *region;
198 isl_basic_set *lp;
200 int src_scc;
201 int dst_scc;
203 int scc;
206 /* Initialize node_table based on the list of nodes.
208 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
210 int i;
212 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
213 if (!graph->node_table)
214 return -1;
216 for (i = 0; i < graph->n; ++i) {
217 struct isl_hash_table_entry *entry;
218 uint32_t hash;
220 hash = isl_space_get_hash(graph->node[i].dim);
221 entry = isl_hash_table_find(ctx, graph->node_table, hash,
222 &node_has_dim,
223 graph->node[i].dim, 1);
224 if (!entry)
225 return -1;
226 entry->data = &graph->node[i];
229 return 0;
232 /* Return a pointer to the node that lives within the given space,
233 * or NULL if there is no such node.
235 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
236 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
238 struct isl_hash_table_entry *entry;
239 uint32_t hash;
241 hash = isl_space_get_hash(dim);
242 entry = isl_hash_table_find(ctx, graph->node_table, hash,
243 &node_has_dim, dim, 0);
245 return entry ? entry->data : NULL;
248 static int edge_has_src_and_dst(const void *entry, const void *val)
250 const struct isl_sched_edge *edge = entry;
251 const struct isl_sched_edge *temp = val;
253 return edge->src == temp->src && edge->dst == temp->dst;
256 /* Add the given edge to graph->edge_table[type].
258 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
259 enum isl_edge_type type, struct isl_sched_edge *edge)
261 struct isl_hash_table_entry *entry;
262 uint32_t hash;
264 hash = isl_hash_init();
265 hash = isl_hash_builtin(hash, edge->src);
266 hash = isl_hash_builtin(hash, edge->dst);
267 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
268 &edge_has_src_and_dst, edge, 1);
269 if (!entry)
270 return -1;
271 entry->data = edge;
273 return 0;
276 /* Allocate the edge_tables based on the maximal number of edges of
277 * each type.
279 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
281 int i;
283 for (i = 0; i <= isl_edge_last; ++i) {
284 graph->edge_table[i] = isl_hash_table_alloc(ctx,
285 graph->max_edge[i]);
286 if (!graph->edge_table[i])
287 return -1;
290 return 0;
293 /* If graph->edge_table[type] contains an edge from the given source
294 * to the given destination, then return the hash table entry of this edge.
295 * Otherwise, return NULL.
297 static struct isl_hash_table_entry *graph_find_edge_entry(
298 struct isl_sched_graph *graph,
299 enum isl_edge_type type,
300 struct isl_sched_node *src, struct isl_sched_node *dst)
302 isl_ctx *ctx = isl_space_get_ctx(src->dim);
303 uint32_t hash;
304 struct isl_sched_edge temp = { .src = src, .dst = dst };
306 hash = isl_hash_init();
307 hash = isl_hash_builtin(hash, temp.src);
308 hash = isl_hash_builtin(hash, temp.dst);
309 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
310 &edge_has_src_and_dst, &temp, 0);
314 /* If graph->edge_table[type] contains an edge from the given source
315 * to the given destination, then return this edge.
316 * Otherwise, return NULL.
318 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
319 enum isl_edge_type type,
320 struct isl_sched_node *src, struct isl_sched_node *dst)
322 struct isl_hash_table_entry *entry;
324 entry = graph_find_edge_entry(graph, type, src, dst);
325 if (!entry)
326 return NULL;
328 return entry->data;
331 /* Check whether the dependence graph has an edge of the given type
332 * between the given two nodes.
334 static int graph_has_edge(struct isl_sched_graph *graph,
335 enum isl_edge_type type,
336 struct isl_sched_node *src, struct isl_sched_node *dst)
338 struct isl_sched_edge *edge;
339 int empty;
341 edge = graph_find_edge(graph, type, src, dst);
342 if (!edge)
343 return 0;
345 empty = isl_map_plain_is_empty(edge->map);
346 if (empty < 0)
347 return -1;
349 return !empty;
352 /* If there is an edge from the given source to the given destination
353 * of any type then return this edge.
354 * Otherwise, return NULL.
356 static struct isl_sched_edge *graph_find_any_edge(struct isl_sched_graph *graph,
357 struct isl_sched_node *src, struct isl_sched_node *dst)
359 enum isl_edge_type i;
360 struct isl_sched_edge *edge;
362 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
363 edge = graph_find_edge(graph, i, src, dst);
364 if (edge)
365 return edge;
368 return NULL;
371 /* Remove the given edge from all the edge_tables that refer to it.
373 static void graph_remove_edge(struct isl_sched_graph *graph,
374 struct isl_sched_edge *edge)
376 isl_ctx *ctx = isl_map_get_ctx(edge->map);
377 enum isl_edge_type i;
379 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
380 struct isl_hash_table_entry *entry;
382 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
383 if (!entry)
384 continue;
385 if (entry->data != edge)
386 continue;
387 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
391 /* Check whether the dependence graph has any edge
392 * between the given two nodes.
394 static int graph_has_any_edge(struct isl_sched_graph *graph,
395 struct isl_sched_node *src, struct isl_sched_node *dst)
397 enum isl_edge_type i;
398 int r;
400 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
401 r = graph_has_edge(graph, i, src, dst);
402 if (r < 0 || r)
403 return r;
406 return r;
409 /* Check whether the dependence graph has a validity edge
410 * between the given two nodes.
412 static int graph_has_validity_edge(struct isl_sched_graph *graph,
413 struct isl_sched_node *src, struct isl_sched_node *dst)
415 return graph_has_edge(graph, isl_edge_validity, src, dst);
418 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
419 int n_node, int n_edge)
421 int i;
423 graph->n = n_node;
424 graph->n_edge = n_edge;
425 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
426 graph->sorted = isl_calloc_array(ctx, int, graph->n);
427 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
428 graph->edge = isl_calloc_array(ctx,
429 struct isl_sched_edge, graph->n_edge);
431 graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
432 graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
434 if (!graph->node || !graph->region || !graph->edge || !graph->sorted)
435 return -1;
437 for(i = 0; i < graph->n; ++i)
438 graph->sorted[i] = i;
440 return 0;
443 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
445 int i;
447 isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
448 isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
450 for (i = 0; i < graph->n; ++i) {
451 isl_space_free(graph->node[i].dim);
452 isl_mat_free(graph->node[i].sched);
453 isl_map_free(graph->node[i].sched_map);
454 isl_mat_free(graph->node[i].cmap);
455 if (graph->root) {
456 free(graph->node[i].band);
457 free(graph->node[i].band_id);
458 free(graph->node[i].zero);
461 free(graph->node);
462 free(graph->sorted);
463 for (i = 0; i < graph->n_edge; ++i)
464 isl_map_free(graph->edge[i].map);
465 free(graph->edge);
466 free(graph->region);
467 for (i = 0; i <= isl_edge_last; ++i)
468 isl_hash_table_free(ctx, graph->edge_table[i]);
469 isl_hash_table_free(ctx, graph->node_table);
470 isl_basic_set_free(graph->lp);
473 /* For each "set" on which this function is called, increment
474 * graph->n by one and update graph->maxvar.
476 static int init_n_maxvar(__isl_take isl_set *set, void *user)
478 struct isl_sched_graph *graph = user;
479 int nvar = isl_set_dim(set, isl_dim_set);
481 graph->n++;
482 if (nvar > graph->maxvar)
483 graph->maxvar = nvar;
485 isl_set_free(set);
487 return 0;
490 /* Compute the number of rows that should be allocated for the schedule.
491 * The graph can be split at most "n - 1" times, there can be at most
492 * two rows for each dimension in the iteration domains (in particular,
493 * we usually have one row, but it may be split by split_scaled),
494 * and there can be one extra row for ordering the statements.
495 * Note that if we have actually split "n - 1" times, then no ordering
496 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
498 static int compute_max_row(struct isl_sched_graph *graph,
499 __isl_keep isl_union_set *domain)
501 graph->n = 0;
502 graph->maxvar = 0;
503 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
504 return -1;
505 graph->max_row = graph->n + 2 * graph->maxvar;
507 return 0;
510 /* Add a new node to the graph representing the given set.
512 static int extract_node(__isl_take isl_set *set, void *user)
514 int nvar, nparam;
515 isl_ctx *ctx;
516 isl_space *dim;
517 isl_mat *sched;
518 struct isl_sched_graph *graph = user;
519 int *band, *band_id, *zero;
521 ctx = isl_set_get_ctx(set);
522 dim = isl_set_get_space(set);
523 isl_set_free(set);
524 nvar = isl_space_dim(dim, isl_dim_set);
525 nparam = isl_space_dim(dim, isl_dim_param);
526 if (!ctx->opt->schedule_parametric)
527 nparam = 0;
528 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
529 graph->node[graph->n].dim = dim;
530 graph->node[graph->n].nvar = nvar;
531 graph->node[graph->n].nparam = nparam;
532 graph->node[graph->n].sched = sched;
533 graph->node[graph->n].sched_map = NULL;
534 band = isl_alloc_array(ctx, int, graph->max_row);
535 graph->node[graph->n].band = band;
536 band_id = isl_calloc_array(ctx, int, graph->max_row);
537 graph->node[graph->n].band_id = band_id;
538 zero = isl_calloc_array(ctx, int, graph->max_row);
539 graph->node[graph->n].zero = zero;
540 graph->n++;
542 if (!sched || !band || !band_id || !zero)
543 return -1;
545 return 0;
548 struct isl_extract_edge_data {
549 enum isl_edge_type type;
550 struct isl_sched_graph *graph;
553 /* Add a new edge to the graph based on the given map
554 * and add it to data->graph->edge_table[data->type].
555 * If a dependence relation of a given type happens to be identical
556 * to one of the dependence relations of a type that was added before,
557 * then we don't create a new edge, but instead mark the original edge
558 * as also representing a dependence of the current type.
560 static int extract_edge(__isl_take isl_map *map, void *user)
562 isl_ctx *ctx = isl_map_get_ctx(map);
563 struct isl_extract_edge_data *data = user;
564 struct isl_sched_graph *graph = data->graph;
565 struct isl_sched_node *src, *dst;
566 isl_space *dim;
567 struct isl_sched_edge *edge;
568 int is_equal;
570 dim = isl_space_domain(isl_map_get_space(map));
571 src = graph_find_node(ctx, graph, dim);
572 isl_space_free(dim);
573 dim = isl_space_range(isl_map_get_space(map));
574 dst = graph_find_node(ctx, graph, dim);
575 isl_space_free(dim);
577 if (!src || !dst) {
578 isl_map_free(map);
579 return 0;
582 graph->edge[graph->n_edge].src = src;
583 graph->edge[graph->n_edge].dst = dst;
584 graph->edge[graph->n_edge].map = map;
585 if (data->type == isl_edge_validity) {
586 graph->edge[graph->n_edge].validity = 1;
587 graph->edge[graph->n_edge].proximity = 0;
589 if (data->type == isl_edge_proximity) {
590 graph->edge[graph->n_edge].validity = 0;
591 graph->edge[graph->n_edge].proximity = 1;
593 graph->n_edge++;
595 edge = graph_find_any_edge(graph, src, dst);
596 if (!edge)
597 return graph_edge_table_add(ctx, graph, data->type,
598 &graph->edge[graph->n_edge - 1]);
599 is_equal = isl_map_plain_is_equal(map, edge->map);
600 if (is_equal < 0)
601 return -1;
602 if (!is_equal)
603 return graph_edge_table_add(ctx, graph, data->type,
604 &graph->edge[graph->n_edge - 1]);
606 graph->n_edge--;
607 edge->validity |= graph->edge[graph->n_edge].validity;
608 edge->proximity |= graph->edge[graph->n_edge].proximity;
609 isl_map_free(map);
611 return graph_edge_table_add(ctx, graph, data->type, edge);
614 /* Check whether there is any dependence from node[j] to node[i]
615 * or from node[i] to node[j].
617 static int node_follows_weak(int i, int j, void *user)
619 int f;
620 struct isl_sched_graph *graph = user;
622 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
623 if (f < 0 || f)
624 return f;
625 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
628 /* Check whether there is a validity dependence from node[j] to node[i],
629 * forcing node[i] to follow node[j].
631 static int node_follows_strong(int i, int j, void *user)
633 struct isl_sched_graph *graph = user;
635 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
638 /* Use Tarjan's algorithm for computing the strongly connected components
639 * in the dependence graph (only validity edges).
640 * If weak is set, we consider the graph to be undirected and
641 * we effectively compute the (weakly) connected components.
642 * Additionally, we also consider other edges when weak is set.
644 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
646 int i, n;
647 struct isl_tarjan_graph *g = NULL;
649 g = isl_tarjan_graph_init(ctx, graph->n,
650 weak ? &node_follows_weak : &node_follows_strong, graph);
651 if (!g)
652 return -1;
654 graph->scc = 0;
655 i = 0;
656 n = graph->n;
657 while (n) {
658 while (g->order[i] != -1) {
659 graph->node[g->order[i]].scc = graph->scc;
660 --n;
661 ++i;
663 ++i;
664 graph->scc++;
667 isl_tarjan_graph_free(g);
669 return 0;
672 /* Apply Tarjan's algorithm to detect the strongly connected components
673 * in the dependence graph.
675 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
677 return detect_ccs(ctx, graph, 0);
680 /* Apply Tarjan's algorithm to detect the (weakly) connected components
681 * in the dependence graph.
683 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
685 return detect_ccs(ctx, graph, 1);
688 static int cmp_scc(const void *a, const void *b, void *data)
690 struct isl_sched_graph *graph = data;
691 const int *i1 = a;
692 const int *i2 = b;
694 return graph->node[*i1].scc - graph->node[*i2].scc;
697 /* Sort the elements of graph->sorted according to the corresponding SCCs.
699 static int sort_sccs(struct isl_sched_graph *graph)
701 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
704 /* Given a dependence relation R from a node to itself,
705 * construct the set of coefficients of valid constraints for elements
706 * in that dependence relation.
707 * In particular, the result contains tuples of coefficients
708 * c_0, c_n, c_x such that
710 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
712 * or, equivalently,
714 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
716 * We choose here to compute the dual of delta R.
717 * Alternatively, we could have computed the dual of R, resulting
718 * in a set of tuples c_0, c_n, c_x, c_y, and then
719 * plugged in (c_0, c_n, c_x, -c_x).
721 static __isl_give isl_basic_set *intra_coefficients(
722 struct isl_sched_graph *graph, __isl_take isl_map *map)
724 isl_ctx *ctx = isl_map_get_ctx(map);
725 isl_set *delta;
726 isl_basic_set *coef;
728 if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
729 return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
731 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
732 coef = isl_set_coefficients(delta);
733 isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
734 isl_basic_set_copy(coef));
736 return coef;
739 /* Given a dependence relation R, * construct the set of coefficients
740 * of valid constraints for elements in that dependence relation.
741 * In particular, the result contains tuples of coefficients
742 * c_0, c_n, c_x, c_y such that
744 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
747 static __isl_give isl_basic_set *inter_coefficients(
748 struct isl_sched_graph *graph, __isl_take isl_map *map)
750 isl_ctx *ctx = isl_map_get_ctx(map);
751 isl_set *set;
752 isl_basic_set *coef;
754 if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
755 return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
757 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
758 coef = isl_set_coefficients(set);
759 isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
760 isl_basic_set_copy(coef));
762 return coef;
765 /* Add constraints to graph->lp that force validity for the given
766 * dependence from a node i to itself.
767 * That is, add constraints that enforce
769 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
770 * = c_i_x (y - x) >= 0
772 * for each (x,y) in R.
773 * We obtain general constraints on coefficients (c_0, c_n, c_x)
774 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
775 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
776 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
778 * Actually, we do not construct constraints for the c_i_x themselves,
779 * but for the coefficients of c_i_x written as a linear combination
780 * of the columns in node->cmap.
782 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
783 struct isl_sched_edge *edge)
785 unsigned total;
786 isl_map *map = isl_map_copy(edge->map);
787 isl_ctx *ctx = isl_map_get_ctx(map);
788 isl_space *dim;
789 isl_dim_map *dim_map;
790 isl_basic_set *coef;
791 struct isl_sched_node *node = edge->src;
793 coef = intra_coefficients(graph, map);
795 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
797 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
798 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
799 if (!coef)
800 goto error;
802 total = isl_basic_set_total_dim(graph->lp);
803 dim_map = isl_dim_map_alloc(ctx, total);
804 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
805 isl_space_dim(dim, isl_dim_set), 1,
806 node->nvar, -1);
807 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
808 isl_space_dim(dim, isl_dim_set), 1,
809 node->nvar, 1);
810 graph->lp = isl_basic_set_extend_constraints(graph->lp,
811 coef->n_eq, coef->n_ineq);
812 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
813 coef, dim_map);
814 isl_space_free(dim);
816 return 0;
817 error:
818 isl_space_free(dim);
819 return -1;
822 /* Add constraints to graph->lp that force validity for the given
823 * dependence from node i to node j.
824 * That is, add constraints that enforce
826 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
828 * for each (x,y) in R.
829 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
830 * of valid constraints for R and then plug in
831 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
832 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
833 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
834 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
836 * Actually, we do not construct constraints for the c_*_x themselves,
837 * but for the coefficients of c_*_x written as a linear combination
838 * of the columns in node->cmap.
840 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
841 struct isl_sched_edge *edge)
843 unsigned total;
844 isl_map *map = isl_map_copy(edge->map);
845 isl_ctx *ctx = isl_map_get_ctx(map);
846 isl_space *dim;
847 isl_dim_map *dim_map;
848 isl_basic_set *coef;
849 struct isl_sched_node *src = edge->src;
850 struct isl_sched_node *dst = edge->dst;
852 coef = inter_coefficients(graph, map);
854 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
856 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
857 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
858 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
859 isl_space_dim(dim, isl_dim_set) + src->nvar,
860 isl_mat_copy(dst->cmap));
861 if (!coef)
862 goto error;
864 total = isl_basic_set_total_dim(graph->lp);
865 dim_map = isl_dim_map_alloc(ctx, total);
867 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
868 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
869 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
870 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
871 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
872 dst->nvar, -1);
873 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
874 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
875 dst->nvar, 1);
877 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
878 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
879 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
880 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
881 isl_space_dim(dim, isl_dim_set), 1,
882 src->nvar, 1);
883 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
884 isl_space_dim(dim, isl_dim_set), 1,
885 src->nvar, -1);
887 edge->start = graph->lp->n_ineq;
888 graph->lp = isl_basic_set_extend_constraints(graph->lp,
889 coef->n_eq, coef->n_ineq);
890 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
891 coef, dim_map);
892 if (!graph->lp)
893 goto error;
894 isl_space_free(dim);
895 edge->end = graph->lp->n_ineq;
897 return 0;
898 error:
899 isl_space_free(dim);
900 return -1;
903 /* Add constraints to graph->lp that bound the dependence distance for the given
904 * dependence from a node i to itself.
905 * If s = 1, we add the constraint
907 * c_i_x (y - x) <= m_0 + m_n n
909 * or
911 * -c_i_x (y - x) + m_0 + m_n n >= 0
913 * for each (x,y) in R.
914 * If s = -1, we add the constraint
916 * -c_i_x (y - x) <= m_0 + m_n n
918 * or
920 * c_i_x (y - x) + m_0 + m_n n >= 0
922 * for each (x,y) in R.
923 * We obtain general constraints on coefficients (c_0, c_n, c_x)
924 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
925 * with each coefficient (except m_0) represented as a pair of non-negative
926 * coefficients.
928 * Actually, we do not construct constraints for the c_i_x themselves,
929 * but for the coefficients of c_i_x written as a linear combination
930 * of the columns in node->cmap.
932 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
933 struct isl_sched_edge *edge, int s)
935 unsigned total;
936 unsigned nparam;
937 isl_map *map = isl_map_copy(edge->map);
938 isl_ctx *ctx = isl_map_get_ctx(map);
939 isl_space *dim;
940 isl_dim_map *dim_map;
941 isl_basic_set *coef;
942 struct isl_sched_node *node = edge->src;
944 coef = intra_coefficients(graph, map);
946 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
948 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
949 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
950 if (!coef)
951 goto error;
953 nparam = isl_space_dim(node->dim, isl_dim_param);
954 total = isl_basic_set_total_dim(graph->lp);
955 dim_map = isl_dim_map_alloc(ctx, total);
956 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
957 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
958 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
959 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
960 isl_space_dim(dim, isl_dim_set), 1,
961 node->nvar, s);
962 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
963 isl_space_dim(dim, isl_dim_set), 1,
964 node->nvar, -s);
965 graph->lp = isl_basic_set_extend_constraints(graph->lp,
966 coef->n_eq, coef->n_ineq);
967 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
968 coef, dim_map);
969 isl_space_free(dim);
971 return 0;
972 error:
973 isl_space_free(dim);
974 return -1;
977 /* Add constraints to graph->lp that bound the dependence distance for the given
978 * dependence from node i to node j.
979 * If s = 1, we add the constraint
981 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
982 * <= m_0 + m_n n
984 * or
986 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
987 * m_0 + m_n n >= 0
989 * for each (x,y) in R.
990 * If s = -1, we add the constraint
992 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
993 * <= m_0 + m_n n
995 * or
997 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
998 * m_0 + m_n n >= 0
1000 * for each (x,y) in R.
1001 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1002 * of valid constraints for R and then plug in
1003 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1004 * -s*c_j_x+s*c_i_x)
1005 * with each coefficient (except m_0, c_j_0 and c_i_0)
1006 * represented as a pair of non-negative coefficients.
1008 * Actually, we do not construct constraints for the c_*_x themselves,
1009 * but for the coefficients of c_*_x written as a linear combination
1010 * of the columns in node->cmap.
1012 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1013 struct isl_sched_edge *edge, int s)
1015 unsigned total;
1016 unsigned nparam;
1017 isl_map *map = isl_map_copy(edge->map);
1018 isl_ctx *ctx = isl_map_get_ctx(map);
1019 isl_space *dim;
1020 isl_dim_map *dim_map;
1021 isl_basic_set *coef;
1022 struct isl_sched_node *src = edge->src;
1023 struct isl_sched_node *dst = edge->dst;
1025 coef = inter_coefficients(graph, map);
1027 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1029 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1030 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1031 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1032 isl_space_dim(dim, isl_dim_set) + src->nvar,
1033 isl_mat_copy(dst->cmap));
1034 if (!coef)
1035 goto error;
1037 nparam = isl_space_dim(src->dim, isl_dim_param);
1038 total = isl_basic_set_total_dim(graph->lp);
1039 dim_map = isl_dim_map_alloc(ctx, total);
1041 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1042 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1043 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1045 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1046 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1047 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1048 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1049 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1050 dst->nvar, s);
1051 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1052 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1053 dst->nvar, -s);
1055 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1056 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1057 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1058 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1059 isl_space_dim(dim, isl_dim_set), 1,
1060 src->nvar, -s);
1061 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1062 isl_space_dim(dim, isl_dim_set), 1,
1063 src->nvar, s);
1065 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1066 coef->n_eq, coef->n_ineq);
1067 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1068 coef, dim_map);
1069 isl_space_free(dim);
1071 return 0;
1072 error:
1073 isl_space_free(dim);
1074 return -1;
1077 static int add_all_validity_constraints(struct isl_sched_graph *graph)
1079 int i;
1081 for (i = 0; i < graph->n_edge; ++i) {
1082 struct isl_sched_edge *edge= &graph->edge[i];
1083 if (!edge->validity)
1084 continue;
1085 if (edge->src != edge->dst)
1086 continue;
1087 if (add_intra_validity_constraints(graph, edge) < 0)
1088 return -1;
1091 for (i = 0; i < graph->n_edge; ++i) {
1092 struct isl_sched_edge *edge = &graph->edge[i];
1093 if (!edge->validity)
1094 continue;
1095 if (edge->src == edge->dst)
1096 continue;
1097 if (add_inter_validity_constraints(graph, edge) < 0)
1098 return -1;
1101 return 0;
1104 /* Add constraints to graph->lp that bound the dependence distance
1105 * for all dependence relations.
1106 * If a given proximity dependence is identical to a validity
1107 * dependence, then the dependence distance is already bounded
1108 * from below (by zero), so we only need to bound the distance
1109 * from above.
1110 * Otherwise, we need to bound the distance both from above and from below.
1112 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
1114 int i;
1116 for (i = 0; i < graph->n_edge; ++i) {
1117 struct isl_sched_edge *edge= &graph->edge[i];
1118 if (!edge->proximity)
1119 continue;
1120 if (edge->src == edge->dst &&
1121 add_intra_proximity_constraints(graph, edge, 1) < 0)
1122 return -1;
1123 if (edge->src != edge->dst &&
1124 add_inter_proximity_constraints(graph, edge, 1) < 0)
1125 return -1;
1126 if (edge->validity)
1127 continue;
1128 if (edge->src == edge->dst &&
1129 add_intra_proximity_constraints(graph, edge, -1) < 0)
1130 return -1;
1131 if (edge->src != edge->dst &&
1132 add_inter_proximity_constraints(graph, edge, -1) < 0)
1133 return -1;
1136 return 0;
1139 /* Compute a basis for the rows in the linear part of the schedule
1140 * and extend this basis to a full basis. The remaining rows
1141 * can then be used to force linear independence from the rows
1142 * in the schedule.
1144 * In particular, given the schedule rows S, we compute
1146 * S = H Q
1148 * with H the Hermite normal form of S. That is, all but the
1149 * first rank columns of Q are zero and so each row in S is
1150 * a linear combination of the first rank rows of Q.
1151 * The matrix Q is then transposed because we will write the
1152 * coefficients of the next schedule row as a column vector s
1153 * and express this s as a linear combination s = Q c of the
1154 * computed basis.
1156 static int node_update_cmap(struct isl_sched_node *node)
1158 isl_mat *H, *Q;
1159 int n_row = isl_mat_rows(node->sched);
1161 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1162 1 + node->nparam, node->nvar);
1164 H = isl_mat_left_hermite(H, 0, NULL, &Q);
1165 isl_mat_free(node->cmap);
1166 node->cmap = isl_mat_transpose(Q);
1167 node->rank = isl_mat_initial_non_zero_cols(H);
1168 isl_mat_free(H);
1170 if (!node->cmap || node->rank < 0)
1171 return -1;
1172 return 0;
1175 /* Count the number of equality and inequality constraints
1176 * that will be added for the given map.
1177 * If carry is set, then we are counting the number of (validity)
1178 * constraints that will be added in setup_carry_lp and we count
1179 * each edge exactly once. Otherwise, we count as follows
1180 * validity -> 1 (>= 0)
1181 * validity+proximity -> 2 (>= 0 and upper bound)
1182 * proximity -> 2 (lower and upper bound)
1184 static int count_map_constraints(struct isl_sched_graph *graph,
1185 struct isl_sched_edge *edge, __isl_take isl_map *map,
1186 int *n_eq, int *n_ineq, int carry)
1188 isl_basic_set *coef;
1189 int f = carry ? 1 : edge->proximity ? 2 : 1;
1191 if (carry && !edge->validity) {
1192 isl_map_free(map);
1193 return 0;
1196 if (edge->src == edge->dst)
1197 coef = intra_coefficients(graph, map);
1198 else
1199 coef = inter_coefficients(graph, map);
1200 if (!coef)
1201 return -1;
1202 *n_eq += f * coef->n_eq;
1203 *n_ineq += f * coef->n_ineq;
1204 isl_basic_set_free(coef);
1206 return 0;
1209 /* Count the number of equality and inequality constraints
1210 * that will be added to the main lp problem.
1211 * We count as follows
1212 * validity -> 1 (>= 0)
1213 * validity+proximity -> 2 (>= 0 and upper bound)
1214 * proximity -> 2 (lower and upper bound)
1216 static int count_constraints(struct isl_sched_graph *graph,
1217 int *n_eq, int *n_ineq)
1219 int i;
1221 *n_eq = *n_ineq = 0;
1222 for (i = 0; i < graph->n_edge; ++i) {
1223 struct isl_sched_edge *edge= &graph->edge[i];
1224 isl_map *map = isl_map_copy(edge->map);
1226 if (count_map_constraints(graph, edge, map,
1227 n_eq, n_ineq, 0) < 0)
1228 return -1;
1231 return 0;
1234 /* Count the number of constraints that will be added by
1235 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1236 * accordingly.
1238 * In practice, add_bound_coefficient_constraints only adds inequalities.
1240 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1241 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1243 int i;
1245 if (ctx->opt->schedule_max_coefficient == -1)
1246 return 0;
1248 for (i = 0; i < graph->n; ++i)
1249 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1251 return 0;
1254 /* Add constraints that bound the values of the variable and parameter
1255 * coefficients of the schedule.
1257 * The maximal value of the coefficients is defined by the option
1258 * 'schedule_max_coefficient'.
1260 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1261 struct isl_sched_graph *graph)
1263 int i, j, k;
1264 int max_coefficient;
1265 int total;
1267 max_coefficient = ctx->opt->schedule_max_coefficient;
1269 if (max_coefficient == -1)
1270 return 0;
1272 total = isl_basic_set_total_dim(graph->lp);
1274 for (i = 0; i < graph->n; ++i) {
1275 struct isl_sched_node *node = &graph->node[i];
1276 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1277 int dim;
1278 k = isl_basic_set_alloc_inequality(graph->lp);
1279 if (k < 0)
1280 return -1;
1281 dim = 1 + node->start + 1 + j;
1282 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1283 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1284 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1288 return 0;
1291 /* Construct an ILP problem for finding schedule coefficients
1292 * that result in non-negative, but small dependence distances
1293 * over all dependences.
1294 * In particular, the dependence distances over proximity edges
1295 * are bounded by m_0 + m_n n and we compute schedule coefficients
1296 * with small values (preferably zero) of m_n and m_0.
1298 * All variables of the ILP are non-negative. The actual coefficients
1299 * may be negative, so each coefficient is represented as the difference
1300 * of two non-negative variables. The negative part always appears
1301 * immediately before the positive part.
1302 * Other than that, the variables have the following order
1304 * - sum of positive and negative parts of m_n coefficients
1305 * - m_0
1306 * - sum of positive and negative parts of all c_n coefficients
1307 * (unconstrained when computing non-parametric schedules)
1308 * - sum of positive and negative parts of all c_x coefficients
1309 * - positive and negative parts of m_n coefficients
1310 * - for each node
1311 * - c_i_0
1312 * - positive and negative parts of c_i_n (if parametric)
1313 * - positive and negative parts of c_i_x
1315 * The c_i_x are not represented directly, but through the columns of
1316 * node->cmap. That is, the computed values are for variable t_i_x
1317 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1319 * The constraints are those from the edges plus two or three equalities
1320 * to express the sums.
1322 * If force_zero is set, then we add equalities to ensure that
1323 * the sum of the m_n coefficients and m_0 are both zero.
1325 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1326 int force_zero)
1328 int i, j;
1329 int k;
1330 unsigned nparam;
1331 unsigned total;
1332 isl_space *dim;
1333 int parametric;
1334 int param_pos;
1335 int n_eq, n_ineq;
1336 int max_constant_term;
1338 max_constant_term = ctx->opt->schedule_max_constant_term;
1340 parametric = ctx->opt->schedule_parametric;
1341 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1342 param_pos = 4;
1343 total = param_pos + 2 * nparam;
1344 for (i = 0; i < graph->n; ++i) {
1345 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1346 if (node_update_cmap(node) < 0)
1347 return -1;
1348 node->start = total;
1349 total += 1 + 2 * (node->nparam + node->nvar);
1352 if (count_constraints(graph, &n_eq, &n_ineq) < 0)
1353 return -1;
1354 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
1355 return -1;
1357 dim = isl_space_set_alloc(ctx, 0, total);
1358 isl_basic_set_free(graph->lp);
1359 n_eq += 2 + parametric + force_zero;
1360 if (max_constant_term != -1)
1361 n_ineq += graph->n;
1363 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1365 k = isl_basic_set_alloc_equality(graph->lp);
1366 if (k < 0)
1367 return -1;
1368 isl_seq_clr(graph->lp->eq[k], 1 + total);
1369 if (!force_zero)
1370 isl_int_set_si(graph->lp->eq[k][1], -1);
1371 for (i = 0; i < 2 * nparam; ++i)
1372 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1374 if (force_zero) {
1375 k = isl_basic_set_alloc_equality(graph->lp);
1376 if (k < 0)
1377 return -1;
1378 isl_seq_clr(graph->lp->eq[k], 1 + total);
1379 isl_int_set_si(graph->lp->eq[k][2], -1);
1382 if (parametric) {
1383 k = isl_basic_set_alloc_equality(graph->lp);
1384 if (k < 0)
1385 return -1;
1386 isl_seq_clr(graph->lp->eq[k], 1 + total);
1387 isl_int_set_si(graph->lp->eq[k][3], -1);
1388 for (i = 0; i < graph->n; ++i) {
1389 int pos = 1 + graph->node[i].start + 1;
1391 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1392 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1396 k = isl_basic_set_alloc_equality(graph->lp);
1397 if (k < 0)
1398 return -1;
1399 isl_seq_clr(graph->lp->eq[k], 1 + total);
1400 isl_int_set_si(graph->lp->eq[k][4], -1);
1401 for (i = 0; i < graph->n; ++i) {
1402 struct isl_sched_node *node = &graph->node[i];
1403 int pos = 1 + node->start + 1 + 2 * node->nparam;
1405 for (j = 0; j < 2 * node->nvar; ++j)
1406 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1409 if (max_constant_term != -1)
1410 for (i = 0; i < graph->n; ++i) {
1411 struct isl_sched_node *node = &graph->node[i];
1412 k = isl_basic_set_alloc_inequality(graph->lp);
1413 if (k < 0)
1414 return -1;
1415 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1416 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1417 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1420 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1421 return -1;
1422 if (add_all_validity_constraints(graph) < 0)
1423 return -1;
1424 if (add_all_proximity_constraints(graph) < 0)
1425 return -1;
1427 return 0;
1430 /* Analyze the conflicting constraint found by
1431 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1432 * constraint of one of the edges between distinct nodes, living, moreover
1433 * in distinct SCCs, then record the source and sink SCC as this may
1434 * be a good place to cut between SCCs.
1436 static int check_conflict(int con, void *user)
1438 int i;
1439 struct isl_sched_graph *graph = user;
1441 if (graph->src_scc >= 0)
1442 return 0;
1444 con -= graph->lp->n_eq;
1446 if (con >= graph->lp->n_ineq)
1447 return 0;
1449 for (i = 0; i < graph->n_edge; ++i) {
1450 if (!graph->edge[i].validity)
1451 continue;
1452 if (graph->edge[i].src == graph->edge[i].dst)
1453 continue;
1454 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1455 continue;
1456 if (graph->edge[i].start > con)
1457 continue;
1458 if (graph->edge[i].end <= con)
1459 continue;
1460 graph->src_scc = graph->edge[i].src->scc;
1461 graph->dst_scc = graph->edge[i].dst->scc;
1464 return 0;
1467 /* Check whether the next schedule row of the given node needs to be
1468 * non-trivial. Lower-dimensional domains may have some trivial rows,
1469 * but as soon as the number of remaining required non-trivial rows
1470 * is as large as the number or remaining rows to be computed,
1471 * all remaining rows need to be non-trivial.
1473 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1475 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1478 /* Solve the ILP problem constructed in setup_lp.
1479 * For each node such that all the remaining rows of its schedule
1480 * need to be non-trivial, we construct a non-triviality region.
1481 * This region imposes that the next row is independent of previous rows.
1482 * In particular the coefficients c_i_x are represented by t_i_x
1483 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1484 * its first columns span the rows of the previously computed part
1485 * of the schedule. The non-triviality region enforces that at least
1486 * one of the remaining components of t_i_x is non-zero, i.e.,
1487 * that the new schedule row depends on at least one of the remaining
1488 * columns of Q.
1490 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1492 int i;
1493 isl_vec *sol;
1494 isl_basic_set *lp;
1496 for (i = 0; i < graph->n; ++i) {
1497 struct isl_sched_node *node = &graph->node[i];
1498 int skip = node->rank;
1499 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1500 if (needs_row(graph, node))
1501 graph->region[i].len = 2 * (node->nvar - skip);
1502 else
1503 graph->region[i].len = 0;
1505 lp = isl_basic_set_copy(graph->lp);
1506 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1507 graph->region, &check_conflict, graph);
1508 return sol;
1511 /* Update the schedules of all nodes based on the given solution
1512 * of the LP problem.
1513 * The new row is added to the current band.
1514 * All possibly negative coefficients are encoded as a difference
1515 * of two non-negative variables, so we need to perform the subtraction
1516 * here. Moreover, if use_cmap is set, then the solution does
1517 * not refer to the actual coefficients c_i_x, but instead to variables
1518 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1519 * In this case, we then also need to perform this multiplication
1520 * to obtain the values of c_i_x.
1522 * If check_zero is set, then the first two coordinates of sol are
1523 * assumed to correspond to the dependence distance. If these two
1524 * coordinates are zero, then the corresponding scheduling dimension
1525 * is marked as being zero distance.
1527 static int update_schedule(struct isl_sched_graph *graph,
1528 __isl_take isl_vec *sol, int use_cmap, int check_zero)
1530 int i, j;
1531 int zero = 0;
1532 isl_vec *csol = NULL;
1534 if (!sol)
1535 goto error;
1536 if (sol->size == 0)
1537 isl_die(sol->ctx, isl_error_internal,
1538 "no solution found", goto error);
1539 if (graph->n_total_row >= graph->max_row)
1540 isl_die(sol->ctx, isl_error_internal,
1541 "too many schedule rows", goto error);
1543 if (check_zero)
1544 zero = isl_int_is_zero(sol->el[1]) &&
1545 isl_int_is_zero(sol->el[2]);
1547 for (i = 0; i < graph->n; ++i) {
1548 struct isl_sched_node *node = &graph->node[i];
1549 int pos = node->start;
1550 int row = isl_mat_rows(node->sched);
1552 isl_vec_free(csol);
1553 csol = isl_vec_alloc(sol->ctx, node->nvar);
1554 if (!csol)
1555 goto error;
1557 isl_map_free(node->sched_map);
1558 node->sched_map = NULL;
1559 node->sched = isl_mat_add_rows(node->sched, 1);
1560 if (!node->sched)
1561 goto error;
1562 node->sched = isl_mat_set_element(node->sched, row, 0,
1563 sol->el[1 + pos]);
1564 for (j = 0; j < node->nparam + node->nvar; ++j)
1565 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1566 sol->el[1 + pos + 1 + 2 * j + 1],
1567 sol->el[1 + pos + 1 + 2 * j]);
1568 for (j = 0; j < node->nparam; ++j)
1569 node->sched = isl_mat_set_element(node->sched,
1570 row, 1 + j, sol->el[1+pos+1+2*j+1]);
1571 for (j = 0; j < node->nvar; ++j)
1572 isl_int_set(csol->el[j],
1573 sol->el[1+pos+1+2*(node->nparam+j)+1]);
1574 if (use_cmap)
1575 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1576 csol);
1577 if (!csol)
1578 goto error;
1579 for (j = 0; j < node->nvar; ++j)
1580 node->sched = isl_mat_set_element(node->sched,
1581 row, 1 + node->nparam + j, csol->el[j]);
1582 node->band[graph->n_total_row] = graph->n_band;
1583 node->zero[graph->n_total_row] = zero;
1585 isl_vec_free(sol);
1586 isl_vec_free(csol);
1588 graph->n_row++;
1589 graph->n_total_row++;
1591 return 0;
1592 error:
1593 isl_vec_free(sol);
1594 isl_vec_free(csol);
1595 return -1;
1598 /* Convert node->sched into a multi_aff and return this multi_aff.
1600 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
1601 struct isl_sched_node *node)
1603 int i, j;
1604 isl_space *space;
1605 isl_local_space *ls;
1606 isl_aff *aff;
1607 isl_multi_aff *ma;
1608 int nrow, ncol;
1609 isl_int v;
1611 nrow = isl_mat_rows(node->sched);
1612 ncol = isl_mat_cols(node->sched) - 1;
1613 space = isl_space_from_domain(isl_space_copy(node->dim));
1614 space = isl_space_add_dims(space, isl_dim_out, nrow);
1615 ma = isl_multi_aff_zero(space);
1616 ls = isl_local_space_from_space(isl_space_copy(node->dim));
1618 isl_int_init(v);
1620 for (i = 0; i < nrow; ++i) {
1621 aff = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1622 isl_mat_get_element(node->sched, i, 0, &v);
1623 aff = isl_aff_set_constant(aff, v);
1624 for (j = 0; j < node->nparam; ++j) {
1625 isl_mat_get_element(node->sched, i, 1 + j, &v);
1626 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
1628 for (j = 0; j < node->nvar; ++j) {
1629 isl_mat_get_element(node->sched,
1630 i, 1 + node->nparam + j, &v);
1631 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
1633 ma = isl_multi_aff_set_aff(ma, i, aff);
1636 isl_int_clear(v);
1638 isl_local_space_free(ls);
1640 return ma;
1643 /* Convert node->sched into a map and return this map.
1645 * The result is cached in node->sched_map, which needs to be released
1646 * whenever node->sched is updated.
1648 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1650 if (!node->sched_map) {
1651 isl_multi_aff *ma;
1653 ma = node_extract_schedule_multi_aff(node);
1654 node->sched_map = isl_map_from_multi_aff(ma);
1657 return isl_map_copy(node->sched_map);
1660 /* Update the given dependence relation based on the current schedule.
1661 * That is, intersect the dependence relation with a map expressing
1662 * that source and sink are executed within the same iteration of
1663 * the current schedule.
1664 * This is not the most efficient way, but this shouldn't be a critical
1665 * operation.
1667 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1668 struct isl_sched_node *src, struct isl_sched_node *dst)
1670 isl_map *src_sched, *dst_sched, *id;
1672 src_sched = node_extract_schedule(src);
1673 dst_sched = node_extract_schedule(dst);
1674 id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1675 return isl_map_intersect(map, id);
1678 /* Update the dependence relations of all edges based on the current schedule.
1679 * If a dependence is carried completely by the current schedule, then
1680 * it is removed from the edge_tables. It is kept in the list of edges
1681 * as otherwise all edge_tables would have to be recomputed.
1683 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1685 int i;
1687 for (i = graph->n_edge - 1; i >= 0; --i) {
1688 struct isl_sched_edge *edge = &graph->edge[i];
1689 edge->map = specialize(edge->map, edge->src, edge->dst);
1690 if (!edge->map)
1691 return -1;
1693 if (isl_map_plain_is_empty(edge->map))
1694 graph_remove_edge(graph, edge);
1697 return 0;
1700 static void next_band(struct isl_sched_graph *graph)
1702 graph->band_start = graph->n_total_row;
1703 graph->n_band++;
1706 /* Topologically sort statements mapped to the same schedule iteration
1707 * and add a row to the schedule corresponding to this order.
1709 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1711 int i, j;
1713 if (graph->n <= 1)
1714 return 0;
1716 if (update_edges(ctx, graph) < 0)
1717 return -1;
1719 if (graph->n_edge == 0)
1720 return 0;
1722 if (detect_sccs(ctx, graph) < 0)
1723 return -1;
1725 if (graph->n_total_row >= graph->max_row)
1726 isl_die(ctx, isl_error_internal,
1727 "too many schedule rows", return -1);
1729 for (i = 0; i < graph->n; ++i) {
1730 struct isl_sched_node *node = &graph->node[i];
1731 int row = isl_mat_rows(node->sched);
1732 int cols = isl_mat_cols(node->sched);
1734 isl_map_free(node->sched_map);
1735 node->sched_map = NULL;
1736 node->sched = isl_mat_add_rows(node->sched, 1);
1737 if (!node->sched)
1738 return -1;
1739 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1740 node->scc);
1741 for (j = 1; j < cols; ++j)
1742 node->sched = isl_mat_set_element_si(node->sched,
1743 row, j, 0);
1744 node->band[graph->n_total_row] = graph->n_band;
1747 graph->n_total_row++;
1748 next_band(graph);
1750 return 0;
1753 /* Construct an isl_schedule based on the computed schedule stored
1754 * in graph and with parameters specified by dim.
1756 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1757 __isl_take isl_space *dim)
1759 int i;
1760 isl_ctx *ctx;
1761 isl_schedule *sched = NULL;
1763 if (!dim)
1764 return NULL;
1766 ctx = isl_space_get_ctx(dim);
1767 sched = isl_calloc(ctx, struct isl_schedule,
1768 sizeof(struct isl_schedule) +
1769 (graph->n - 1) * sizeof(struct isl_schedule_node));
1770 if (!sched)
1771 goto error;
1773 sched->ref = 1;
1774 sched->n = graph->n;
1775 sched->n_band = graph->n_band;
1776 sched->n_total_row = graph->n_total_row;
1778 for (i = 0; i < sched->n; ++i) {
1779 int r, b;
1780 int *band_end, *band_id, *zero;
1782 sched->node[i].sched =
1783 node_extract_schedule_multi_aff(&graph->node[i]);
1784 if (!sched->node[i].sched)
1785 goto error;
1787 sched->node[i].n_band = graph->n_band;
1788 if (graph->n_band == 0)
1789 continue;
1791 band_end = isl_alloc_array(ctx, int, graph->n_band);
1792 band_id = isl_alloc_array(ctx, int, graph->n_band);
1793 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1794 sched->node[i].band_end = band_end;
1795 sched->node[i].band_id = band_id;
1796 sched->node[i].zero = zero;
1797 if (!band_end || !band_id || !zero)
1798 goto error;
1800 for (r = 0; r < graph->n_total_row; ++r)
1801 zero[r] = graph->node[i].zero[r];
1802 for (r = b = 0; r < graph->n_total_row; ++r) {
1803 if (graph->node[i].band[r] == b)
1804 continue;
1805 band_end[b++] = r;
1806 if (graph->node[i].band[r] == -1)
1807 break;
1809 if (r == graph->n_total_row)
1810 band_end[b++] = r;
1811 sched->node[i].n_band = b;
1812 for (--b; b >= 0; --b)
1813 band_id[b] = graph->node[i].band_id[b];
1816 sched->dim = dim;
1818 return sched;
1819 error:
1820 isl_space_free(dim);
1821 isl_schedule_free(sched);
1822 return NULL;
1825 /* Copy nodes that satisfy node_pred from the src dependence graph
1826 * to the dst dependence graph.
1828 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
1829 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1831 int i;
1833 dst->n = 0;
1834 for (i = 0; i < src->n; ++i) {
1835 if (!node_pred(&src->node[i], data))
1836 continue;
1837 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
1838 dst->node[dst->n].nvar = src->node[i].nvar;
1839 dst->node[dst->n].nparam = src->node[i].nparam;
1840 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
1841 dst->node[dst->n].sched_map =
1842 isl_map_copy(src->node[i].sched_map);
1843 dst->node[dst->n].band = src->node[i].band;
1844 dst->node[dst->n].band_id = src->node[i].band_id;
1845 dst->node[dst->n].zero = src->node[i].zero;
1846 dst->n++;
1849 return 0;
1852 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1853 * to the dst dependence graph.
1854 * If the source or destination node of the edge is not in the destination
1855 * graph, then it must be a backward proximity edge and it should simply
1856 * be ignored.
1858 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
1859 struct isl_sched_graph *src,
1860 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
1862 int i;
1863 enum isl_edge_type t;
1865 dst->n_edge = 0;
1866 for (i = 0; i < src->n_edge; ++i) {
1867 struct isl_sched_edge *edge = &src->edge[i];
1868 isl_map *map;
1869 struct isl_sched_node *dst_src, *dst_dst;
1871 if (!edge_pred(edge, data))
1872 continue;
1874 if (isl_map_plain_is_empty(edge->map))
1875 continue;
1877 dst_src = graph_find_node(ctx, dst, edge->src->dim);
1878 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
1879 if (!dst_src || !dst_dst) {
1880 if (edge->validity)
1881 isl_die(ctx, isl_error_internal,
1882 "backward validity edge", return -1);
1883 continue;
1886 map = isl_map_copy(edge->map);
1888 dst->edge[dst->n_edge].src = dst_src;
1889 dst->edge[dst->n_edge].dst = dst_dst;
1890 dst->edge[dst->n_edge].map = map;
1891 dst->edge[dst->n_edge].validity = edge->validity;
1892 dst->edge[dst->n_edge].proximity = edge->proximity;
1893 dst->n_edge++;
1895 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
1896 if (edge !=
1897 graph_find_edge(src, t, edge->src, edge->dst))
1898 continue;
1899 if (graph_edge_table_add(ctx, dst, t,
1900 &dst->edge[dst->n_edge - 1]) < 0)
1901 return -1;
1905 return 0;
1908 /* Given a "src" dependence graph that contains the nodes from "dst"
1909 * that satisfy node_pred, copy the schedule computed in "src"
1910 * for those nodes back to "dst".
1912 static int copy_schedule(struct isl_sched_graph *dst,
1913 struct isl_sched_graph *src,
1914 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1916 int i;
1918 src->n = 0;
1919 for (i = 0; i < dst->n; ++i) {
1920 if (!node_pred(&dst->node[i], data))
1921 continue;
1922 isl_mat_free(dst->node[i].sched);
1923 isl_map_free(dst->node[i].sched_map);
1924 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
1925 dst->node[i].sched_map =
1926 isl_map_copy(src->node[src->n].sched_map);
1927 src->n++;
1930 dst->max_row = src->max_row;
1931 dst->n_total_row = src->n_total_row;
1932 dst->n_band = src->n_band;
1934 return 0;
1937 /* Compute the maximal number of variables over all nodes.
1938 * This is the maximal number of linearly independent schedule
1939 * rows that we need to compute.
1940 * Just in case we end up in a part of the dependence graph
1941 * with only lower-dimensional domains, we make sure we will
1942 * compute the required amount of extra linearly independent rows.
1944 static int compute_maxvar(struct isl_sched_graph *graph)
1946 int i;
1948 graph->maxvar = 0;
1949 for (i = 0; i < graph->n; ++i) {
1950 struct isl_sched_node *node = &graph->node[i];
1951 int nvar;
1953 if (node_update_cmap(node) < 0)
1954 return -1;
1955 nvar = node->nvar + graph->n_row - node->rank;
1956 if (nvar > graph->maxvar)
1957 graph->maxvar = nvar;
1960 return 0;
1963 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
1964 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
1966 /* Compute a schedule for a subgraph of "graph". In particular, for
1967 * the graph composed of nodes that satisfy node_pred and edges that
1968 * that satisfy edge_pred. The caller should precompute the number
1969 * of nodes and edges that satisfy these predicates and pass them along
1970 * as "n" and "n_edge".
1971 * If the subgraph is known to consist of a single component, then wcc should
1972 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1973 * Otherwise, we call compute_schedule, which will check whether the subgraph
1974 * is connected.
1976 static int compute_sub_schedule(isl_ctx *ctx,
1977 struct isl_sched_graph *graph, int n, int n_edge,
1978 int (*node_pred)(struct isl_sched_node *node, int data),
1979 int (*edge_pred)(struct isl_sched_edge *edge, int data),
1980 int data, int wcc)
1982 struct isl_sched_graph split = { 0 };
1983 int t;
1985 if (graph_alloc(ctx, &split, n, n_edge) < 0)
1986 goto error;
1987 if (copy_nodes(&split, graph, node_pred, data) < 0)
1988 goto error;
1989 if (graph_init_table(ctx, &split) < 0)
1990 goto error;
1991 for (t = 0; t <= isl_edge_last; ++t)
1992 split.max_edge[t] = graph->max_edge[t];
1993 if (graph_init_edge_tables(ctx, &split) < 0)
1994 goto error;
1995 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
1996 goto error;
1997 split.n_row = graph->n_row;
1998 split.max_row = graph->max_row;
1999 split.n_total_row = graph->n_total_row;
2000 split.n_band = graph->n_band;
2001 split.band_start = graph->band_start;
2003 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2004 goto error;
2005 if (!wcc && compute_schedule(ctx, &split) < 0)
2006 goto error;
2008 copy_schedule(graph, &split, node_pred, data);
2010 graph_free(ctx, &split);
2011 return 0;
2012 error:
2013 graph_free(ctx, &split);
2014 return -1;
2017 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2019 return node->scc == scc;
2022 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2024 return node->scc <= scc;
2027 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2029 return node->scc >= scc;
2032 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2034 return edge->src->scc == scc && edge->dst->scc == scc;
2037 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2039 return edge->dst->scc <= scc;
2042 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2044 return edge->src->scc >= scc;
2047 /* Pad the schedules of all nodes with zero rows such that in the end
2048 * they all have graph->n_total_row rows.
2049 * The extra rows don't belong to any band, so they get assigned band number -1.
2051 static int pad_schedule(struct isl_sched_graph *graph)
2053 int i, j;
2055 for (i = 0; i < graph->n; ++i) {
2056 struct isl_sched_node *node = &graph->node[i];
2057 int row = isl_mat_rows(node->sched);
2058 if (graph->n_total_row > row) {
2059 isl_map_free(node->sched_map);
2060 node->sched_map = NULL;
2062 node->sched = isl_mat_add_zero_rows(node->sched,
2063 graph->n_total_row - row);
2064 if (!node->sched)
2065 return -1;
2066 for (j = row; j < graph->n_total_row; ++j)
2067 node->band[j] = -1;
2070 return 0;
2073 /* Split the current graph into two parts and compute a schedule for each
2074 * part individually. In particular, one part consists of all SCCs up
2075 * to and including graph->src_scc, while the other part contains the other
2076 * SCCS.
2078 * The split is enforced in the schedule by constant rows with two different
2079 * values (0 and 1). These constant rows replace the previously computed rows
2080 * in the current band.
2081 * It would be possible to reuse them as the first rows in the next
2082 * band, but recomputing them may result in better rows as we are looking
2083 * at a smaller part of the dependence graph.
2084 * compute_split_schedule is only called when no zero-distance schedule row
2085 * could be found on the entire graph, so we wark the splitting row as
2086 * non zero-distance.
2088 * The band_id of the second group is set to n, where n is the number
2089 * of nodes in the first group. This ensures that the band_ids over
2090 * the two groups remain disjoint, even if either or both of the two
2091 * groups contain independent components.
2093 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2095 int i, j, n, e1, e2;
2096 int n_total_row, orig_total_row;
2097 int n_band, orig_band;
2098 int drop;
2100 if (graph->n_total_row >= graph->max_row)
2101 isl_die(ctx, isl_error_internal,
2102 "too many schedule rows", return -1);
2104 drop = graph->n_total_row - graph->band_start;
2105 graph->n_total_row -= drop;
2106 graph->n_row -= drop;
2108 n = 0;
2109 for (i = 0; i < graph->n; ++i) {
2110 struct isl_sched_node *node = &graph->node[i];
2111 int row = isl_mat_rows(node->sched) - drop;
2112 int cols = isl_mat_cols(node->sched);
2113 int before = node->scc <= graph->src_scc;
2115 if (before)
2116 n++;
2118 isl_map_free(node->sched_map);
2119 node->sched_map = NULL;
2120 node->sched = isl_mat_drop_rows(node->sched,
2121 graph->band_start, drop);
2122 node->sched = isl_mat_add_rows(node->sched, 1);
2123 if (!node->sched)
2124 return -1;
2125 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2126 !before);
2127 for (j = 1; j < cols; ++j)
2128 node->sched = isl_mat_set_element_si(node->sched,
2129 row, j, 0);
2130 node->band[graph->n_total_row] = graph->n_band;
2131 node->zero[graph->n_total_row] = 0;
2134 e1 = e2 = 0;
2135 for (i = 0; i < graph->n_edge; ++i) {
2136 if (graph->edge[i].dst->scc <= graph->src_scc)
2137 e1++;
2138 if (graph->edge[i].src->scc > graph->src_scc)
2139 e2++;
2142 graph->n_total_row++;
2143 next_band(graph);
2145 for (i = 0; i < graph->n; ++i) {
2146 struct isl_sched_node *node = &graph->node[i];
2147 if (node->scc > graph->src_scc)
2148 node->band_id[graph->n_band] = n;
2151 orig_total_row = graph->n_total_row;
2152 orig_band = graph->n_band;
2153 if (compute_sub_schedule(ctx, graph, n, e1,
2154 &node_scc_at_most, &edge_dst_scc_at_most,
2155 graph->src_scc, 0) < 0)
2156 return -1;
2157 n_total_row = graph->n_total_row;
2158 graph->n_total_row = orig_total_row;
2159 n_band = graph->n_band;
2160 graph->n_band = orig_band;
2161 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2162 &node_scc_at_least, &edge_src_scc_at_least,
2163 graph->src_scc + 1, 0) < 0)
2164 return -1;
2165 if (n_total_row > graph->n_total_row)
2166 graph->n_total_row = n_total_row;
2167 if (n_band > graph->n_band)
2168 graph->n_band = n_band;
2170 return pad_schedule(graph);
2173 /* Compute the next band of the schedule after updating the dependence
2174 * relations based on the the current schedule.
2176 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2178 if (update_edges(ctx, graph) < 0)
2179 return -1;
2180 next_band(graph);
2182 return compute_schedule(ctx, graph);
2185 /* Add constraints to graph->lp that force the dependence "map" (which
2186 * is part of the dependence relation of "edge")
2187 * to be respected and attempt to carry it, where the edge is one from
2188 * a node j to itself. "pos" is the sequence number of the given map.
2189 * That is, add constraints that enforce
2191 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2192 * = c_j_x (y - x) >= e_i
2194 * for each (x,y) in R.
2195 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2196 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2197 * with each coefficient in c_j_x represented as a pair of non-negative
2198 * coefficients.
2200 static int add_intra_constraints(struct isl_sched_graph *graph,
2201 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2203 unsigned total;
2204 isl_ctx *ctx = isl_map_get_ctx(map);
2205 isl_space *dim;
2206 isl_dim_map *dim_map;
2207 isl_basic_set *coef;
2208 struct isl_sched_node *node = edge->src;
2210 coef = intra_coefficients(graph, map);
2211 if (!coef)
2212 return -1;
2214 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2216 total = isl_basic_set_total_dim(graph->lp);
2217 dim_map = isl_dim_map_alloc(ctx, total);
2218 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2219 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2220 isl_space_dim(dim, isl_dim_set), 1,
2221 node->nvar, -1);
2222 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2223 isl_space_dim(dim, isl_dim_set), 1,
2224 node->nvar, 1);
2225 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2226 coef->n_eq, coef->n_ineq);
2227 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2228 coef, dim_map);
2229 isl_space_free(dim);
2231 return 0;
2234 /* Add constraints to graph->lp that force the dependence "map" (which
2235 * is part of the dependence relation of "edge")
2236 * to be respected and attempt to carry it, where the edge is one from
2237 * node j to node k. "pos" is the sequence number of the given map.
2238 * That is, add constraints that enforce
2240 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2242 * for each (x,y) in R.
2243 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2244 * of valid constraints for R and then plug in
2245 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2246 * with each coefficient (except e_i, c_k_0 and c_j_0)
2247 * represented as a pair of non-negative coefficients.
2249 static int add_inter_constraints(struct isl_sched_graph *graph,
2250 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2252 unsigned total;
2253 isl_ctx *ctx = isl_map_get_ctx(map);
2254 isl_space *dim;
2255 isl_dim_map *dim_map;
2256 isl_basic_set *coef;
2257 struct isl_sched_node *src = edge->src;
2258 struct isl_sched_node *dst = edge->dst;
2260 coef = inter_coefficients(graph, map);
2261 if (!coef)
2262 return -1;
2264 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2266 total = isl_basic_set_total_dim(graph->lp);
2267 dim_map = isl_dim_map_alloc(ctx, total);
2269 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2271 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2272 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2273 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2274 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2275 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2276 dst->nvar, -1);
2277 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2278 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2279 dst->nvar, 1);
2281 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2282 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2283 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2284 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2285 isl_space_dim(dim, isl_dim_set), 1,
2286 src->nvar, 1);
2287 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2288 isl_space_dim(dim, isl_dim_set), 1,
2289 src->nvar, -1);
2291 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2292 coef->n_eq, coef->n_ineq);
2293 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2294 coef, dim_map);
2295 isl_space_free(dim);
2297 return 0;
2300 /* Add constraints to graph->lp that force all validity dependences
2301 * to be respected and attempt to carry them.
2303 static int add_all_constraints(struct isl_sched_graph *graph)
2305 int i, j;
2306 int pos;
2308 pos = 0;
2309 for (i = 0; i < graph->n_edge; ++i) {
2310 struct isl_sched_edge *edge= &graph->edge[i];
2312 if (!edge->validity)
2313 continue;
2315 for (j = 0; j < edge->map->n; ++j) {
2316 isl_basic_map *bmap;
2317 isl_map *map;
2319 bmap = isl_basic_map_copy(edge->map->p[j]);
2320 map = isl_map_from_basic_map(bmap);
2322 if (edge->src == edge->dst &&
2323 add_intra_constraints(graph, edge, map, pos) < 0)
2324 return -1;
2325 if (edge->src != edge->dst &&
2326 add_inter_constraints(graph, edge, map, pos) < 0)
2327 return -1;
2328 ++pos;
2332 return 0;
2335 /* Count the number of equality and inequality constraints
2336 * that will be added to the carry_lp problem.
2337 * We count each edge exactly once.
2339 static int count_all_constraints(struct isl_sched_graph *graph,
2340 int *n_eq, int *n_ineq)
2342 int i, j;
2344 *n_eq = *n_ineq = 0;
2345 for (i = 0; i < graph->n_edge; ++i) {
2346 struct isl_sched_edge *edge= &graph->edge[i];
2347 for (j = 0; j < edge->map->n; ++j) {
2348 isl_basic_map *bmap;
2349 isl_map *map;
2351 bmap = isl_basic_map_copy(edge->map->p[j]);
2352 map = isl_map_from_basic_map(bmap);
2354 if (count_map_constraints(graph, edge, map,
2355 n_eq, n_ineq, 1) < 0)
2356 return -1;
2360 return 0;
2363 /* Construct an LP problem for finding schedule coefficients
2364 * such that the schedule carries as many dependences as possible.
2365 * In particular, for each dependence i, we bound the dependence distance
2366 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2367 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2368 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2369 * Note that if the dependence relation is a union of basic maps,
2370 * then we have to consider each basic map individually as it may only
2371 * be possible to carry the dependences expressed by some of those
2372 * basic maps and not all off them.
2373 * Below, we consider each of those basic maps as a separate "edge".
2375 * All variables of the LP are non-negative. The actual coefficients
2376 * may be negative, so each coefficient is represented as the difference
2377 * of two non-negative variables. The negative part always appears
2378 * immediately before the positive part.
2379 * Other than that, the variables have the following order
2381 * - sum of (1 - e_i) over all edges
2382 * - sum of positive and negative parts of all c_n coefficients
2383 * (unconstrained when computing non-parametric schedules)
2384 * - sum of positive and negative parts of all c_x coefficients
2385 * - for each edge
2386 * - e_i
2387 * - for each node
2388 * - c_i_0
2389 * - positive and negative parts of c_i_n (if parametric)
2390 * - positive and negative parts of c_i_x
2392 * The constraints are those from the (validity) edges plus three equalities
2393 * to express the sums and n_edge inequalities to express e_i <= 1.
2395 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2397 int i, j;
2398 int k;
2399 isl_space *dim;
2400 unsigned total;
2401 int n_eq, n_ineq;
2402 int n_edge;
2404 n_edge = 0;
2405 for (i = 0; i < graph->n_edge; ++i)
2406 n_edge += graph->edge[i].map->n;
2408 total = 3 + n_edge;
2409 for (i = 0; i < graph->n; ++i) {
2410 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2411 node->start = total;
2412 total += 1 + 2 * (node->nparam + node->nvar);
2415 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2416 return -1;
2417 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2418 return -1;
2420 dim = isl_space_set_alloc(ctx, 0, total);
2421 isl_basic_set_free(graph->lp);
2422 n_eq += 3;
2423 n_ineq += n_edge;
2424 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2425 graph->lp = isl_basic_set_set_rational(graph->lp);
2427 k = isl_basic_set_alloc_equality(graph->lp);
2428 if (k < 0)
2429 return -1;
2430 isl_seq_clr(graph->lp->eq[k], 1 + total);
2431 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2432 isl_int_set_si(graph->lp->eq[k][1], 1);
2433 for (i = 0; i < n_edge; ++i)
2434 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2436 k = isl_basic_set_alloc_equality(graph->lp);
2437 if (k < 0)
2438 return -1;
2439 isl_seq_clr(graph->lp->eq[k], 1 + total);
2440 isl_int_set_si(graph->lp->eq[k][2], -1);
2441 for (i = 0; i < graph->n; ++i) {
2442 int pos = 1 + graph->node[i].start + 1;
2444 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2445 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2448 k = isl_basic_set_alloc_equality(graph->lp);
2449 if (k < 0)
2450 return -1;
2451 isl_seq_clr(graph->lp->eq[k], 1 + total);
2452 isl_int_set_si(graph->lp->eq[k][3], -1);
2453 for (i = 0; i < graph->n; ++i) {
2454 struct isl_sched_node *node = &graph->node[i];
2455 int pos = 1 + node->start + 1 + 2 * node->nparam;
2457 for (j = 0; j < 2 * node->nvar; ++j)
2458 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2461 for (i = 0; i < n_edge; ++i) {
2462 k = isl_basic_set_alloc_inequality(graph->lp);
2463 if (k < 0)
2464 return -1;
2465 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2466 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2467 isl_int_set_si(graph->lp->ineq[k][0], 1);
2470 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2471 return -1;
2472 if (add_all_constraints(graph) < 0)
2473 return -1;
2475 return 0;
2478 /* If the schedule_split_scaled option is set and if the linear
2479 * parts of the scheduling rows for all nodes in the graphs have
2480 * non-trivial common divisor, then split off the constant term
2481 * from the linear part.
2482 * The constant term is then placed in a separate band and
2483 * the linear part is reduced.
2485 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
2487 int i;
2488 int row;
2489 isl_int gcd, gcd_i;
2491 if (!ctx->opt->schedule_split_scaled)
2492 return 0;
2493 if (graph->n <= 1)
2494 return 0;
2496 if (graph->n_total_row >= graph->max_row)
2497 isl_die(ctx, isl_error_internal,
2498 "too many schedule rows", return -1);
2500 isl_int_init(gcd);
2501 isl_int_init(gcd_i);
2503 isl_int_set_si(gcd, 0);
2505 row = isl_mat_rows(graph->node[0].sched) - 1;
2507 for (i = 0; i < graph->n; ++i) {
2508 struct isl_sched_node *node = &graph->node[i];
2509 int cols = isl_mat_cols(node->sched);
2511 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
2512 isl_int_gcd(gcd, gcd, gcd_i);
2515 isl_int_clear(gcd_i);
2517 if (isl_int_cmp_si(gcd, 1) <= 0) {
2518 isl_int_clear(gcd);
2519 return 0;
2522 next_band(graph);
2524 for (i = 0; i < graph->n; ++i) {
2525 struct isl_sched_node *node = &graph->node[i];
2527 isl_map_free(node->sched_map);
2528 node->sched_map = NULL;
2529 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2530 if (!node->sched)
2531 goto error;
2532 isl_int_fdiv_r(node->sched->row[row + 1][0],
2533 node->sched->row[row][0], gcd);
2534 isl_int_fdiv_q(node->sched->row[row][0],
2535 node->sched->row[row][0], gcd);
2536 isl_int_mul(node->sched->row[row][0],
2537 node->sched->row[row][0], gcd);
2538 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
2539 if (!node->sched)
2540 goto error;
2541 node->band[graph->n_total_row] = graph->n_band;
2544 graph->n_total_row++;
2546 isl_int_clear(gcd);
2547 return 0;
2548 error:
2549 isl_int_clear(gcd);
2550 return -1;
2553 static int compute_component_schedule(isl_ctx *ctx,
2554 struct isl_sched_graph *graph);
2556 /* Is the schedule row "sol" trivial on node "node"?
2557 * That is, is the solution zero on the dimensions orthogonal to
2558 * the previously found solutions?
2559 * Each coefficient is represented as the difference between
2560 * two non-negative values in "sol". The coefficient is then
2561 * zero if those two values are equal to each other.
2563 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
2565 int i;
2566 int pos;
2567 int len;
2569 pos = 1 + node->start + 1 + 2 * (node->nparam + node->rank);
2570 len = 2 * (node->nvar - node->rank);
2572 if (len == 0)
2573 return 0;
2575 for (i = 0; i < len; i += 2)
2576 if (isl_int_ne(sol->el[pos + i], sol->el[pos + i + 1]))
2577 return 0;
2579 return 1;
2582 /* Is the schedule row "sol" trivial on any node where it should
2583 * not be trivial?
2585 static int is_any_trivial(struct isl_sched_graph *graph,
2586 __isl_keep isl_vec *sol)
2588 int i;
2590 for (i = 0; i < graph->n; ++i) {
2591 struct isl_sched_node *node = &graph->node[i];
2593 if (!needs_row(graph, node))
2594 continue;
2595 if (is_trivial(node, sol))
2596 return 1;
2599 return 0;
2602 /* Construct a schedule row for each node such that as many dependences
2603 * as possible are carried and then continue with the next band.
2605 * If the computed schedule row turns out to be trivial on one or
2606 * more nodes where it should not be trivial, then we throw it away
2607 * and try again on each component separately.
2609 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2611 int i;
2612 int n_edge;
2613 isl_vec *sol;
2614 isl_basic_set *lp;
2616 n_edge = 0;
2617 for (i = 0; i < graph->n_edge; ++i)
2618 n_edge += graph->edge[i].map->n;
2620 if (setup_carry_lp(ctx, graph) < 0)
2621 return -1;
2623 lp = isl_basic_set_copy(graph->lp);
2624 sol = isl_tab_basic_set_non_neg_lexmin(lp);
2625 if (!sol)
2626 return -1;
2628 if (sol->size == 0) {
2629 isl_vec_free(sol);
2630 isl_die(ctx, isl_error_internal,
2631 "error in schedule construction", return -1);
2634 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
2635 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
2636 isl_vec_free(sol);
2637 isl_die(ctx, isl_error_unknown,
2638 "unable to carry dependences", return -1);
2641 if (is_any_trivial(graph, sol)) {
2642 isl_vec_free(sol);
2643 if (graph->scc > 1)
2644 return compute_component_schedule(ctx, graph);
2645 isl_die(ctx, isl_error_unknown,
2646 "unable to construct non-trivial solution", return -1);
2649 if (update_schedule(graph, sol, 0, 0) < 0)
2650 return -1;
2652 if (split_scaled(ctx, graph) < 0)
2653 return -1;
2655 return compute_next_band(ctx, graph);
2658 /* Are there any (non-empty) validity edges in the graph?
2660 static int has_validity_edges(struct isl_sched_graph *graph)
2662 int i;
2664 for (i = 0; i < graph->n_edge; ++i) {
2665 int empty;
2667 empty = isl_map_plain_is_empty(graph->edge[i].map);
2668 if (empty < 0)
2669 return -1;
2670 if (empty)
2671 continue;
2672 if (graph->edge[i].validity)
2673 return 1;
2676 return 0;
2679 /* Should we apply a Feautrier step?
2680 * That is, did the user request the Feautrier algorithm and are
2681 * there any validity dependences (left)?
2683 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
2685 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
2686 return 0;
2688 return has_validity_edges(graph);
2691 /* Compute a schedule for a connected dependence graph using Feautrier's
2692 * multi-dimensional scheduling algorithm.
2693 * The original algorithm is described in [1].
2694 * The main idea is to minimize the number of scheduling dimensions, by
2695 * trying to satisfy as many dependences as possible per scheduling dimension.
2697 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2698 * Problem, Part II: Multi-Dimensional Time.
2699 * In Intl. Journal of Parallel Programming, 1992.
2701 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
2702 struct isl_sched_graph *graph)
2704 return carry_dependences(ctx, graph);
2707 /* Compute a schedule for a connected dependence graph.
2708 * We try to find a sequence of as many schedule rows as possible that result
2709 * in non-negative dependence distances (independent of the previous rows
2710 * in the sequence, i.e., such that the sequence is tilable).
2711 * If we can't find any more rows we either
2712 * - split between SCCs and start over (assuming we found an interesting
2713 * pair of SCCs between which to split)
2714 * - continue with the next band (assuming the current band has at least
2715 * one row)
2716 * - try to carry as many dependences as possible and continue with the next
2717 * band
2719 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2720 * as many validity dependences as possible. When all validity dependences
2721 * are satisfied we extend the schedule to a full-dimensional schedule.
2723 * If we manage to complete the schedule, we finish off by topologically
2724 * sorting the statements based on the remaining dependences.
2726 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2727 * outermost dimension in the current band to be zero distance. If this
2728 * turns out to be impossible, we fall back on the general scheme above
2729 * and try to carry as many dependences as possible.
2731 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2733 int force_zero = 0;
2735 if (detect_sccs(ctx, graph) < 0)
2736 return -1;
2737 if (sort_sccs(graph) < 0)
2738 return -1;
2740 if (compute_maxvar(graph) < 0)
2741 return -1;
2743 if (need_feautrier_step(ctx, graph))
2744 return compute_schedule_wcc_feautrier(ctx, graph);
2746 if (ctx->opt->schedule_outer_zero_distance)
2747 force_zero = 1;
2749 while (graph->n_row < graph->maxvar) {
2750 isl_vec *sol;
2752 graph->src_scc = -1;
2753 graph->dst_scc = -1;
2755 if (setup_lp(ctx, graph, force_zero) < 0)
2756 return -1;
2757 sol = solve_lp(graph);
2758 if (!sol)
2759 return -1;
2760 if (sol->size == 0) {
2761 isl_vec_free(sol);
2762 if (!ctx->opt->schedule_maximize_band_depth &&
2763 graph->n_total_row > graph->band_start)
2764 return compute_next_band(ctx, graph);
2765 if (graph->src_scc >= 0)
2766 return compute_split_schedule(ctx, graph);
2767 if (graph->n_total_row > graph->band_start)
2768 return compute_next_band(ctx, graph);
2769 return carry_dependences(ctx, graph);
2771 if (update_schedule(graph, sol, 1, 1) < 0)
2772 return -1;
2773 force_zero = 0;
2776 if (graph->n_total_row > graph->band_start)
2777 next_band(graph);
2778 return sort_statements(ctx, graph);
2781 /* Add a row to the schedules that separates the SCCs and move
2782 * to the next band.
2784 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
2786 int i;
2788 if (graph->n_total_row >= graph->max_row)
2789 isl_die(ctx, isl_error_internal,
2790 "too many schedule rows", return -1);
2792 for (i = 0; i < graph->n; ++i) {
2793 struct isl_sched_node *node = &graph->node[i];
2794 int row = isl_mat_rows(node->sched);
2796 isl_map_free(node->sched_map);
2797 node->sched_map = NULL;
2798 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2799 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2800 node->scc);
2801 if (!node->sched)
2802 return -1;
2803 node->band[graph->n_total_row] = graph->n_band;
2806 graph->n_total_row++;
2807 next_band(graph);
2809 return 0;
2812 /* Compute a schedule for each component (identified by node->scc)
2813 * of the dependence graph separately and then combine the results.
2814 * Depending on the setting of schedule_fuse, a component may be
2815 * either weakly or strongly connected.
2817 * The band_id is adjusted such that each component has a separate id.
2818 * Note that the band_id may have already been set to a value different
2819 * from zero by compute_split_schedule.
2821 static int compute_component_schedule(isl_ctx *ctx,
2822 struct isl_sched_graph *graph)
2824 int wcc, i;
2825 int n, n_edge;
2826 int n_total_row, orig_total_row;
2827 int n_band, orig_band;
2829 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
2830 ctx->opt->schedule_separate_components)
2831 if (split_on_scc(ctx, graph) < 0)
2832 return -1;
2834 n_total_row = 0;
2835 orig_total_row = graph->n_total_row;
2836 n_band = 0;
2837 orig_band = graph->n_band;
2838 for (i = 0; i < graph->n; ++i)
2839 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
2840 for (wcc = 0; wcc < graph->scc; ++wcc) {
2841 n = 0;
2842 for (i = 0; i < graph->n; ++i)
2843 if (graph->node[i].scc == wcc)
2844 n++;
2845 n_edge = 0;
2846 for (i = 0; i < graph->n_edge; ++i)
2847 if (graph->edge[i].src->scc == wcc &&
2848 graph->edge[i].dst->scc == wcc)
2849 n_edge++;
2851 if (compute_sub_schedule(ctx, graph, n, n_edge,
2852 &node_scc_exactly,
2853 &edge_scc_exactly, wcc, 1) < 0)
2854 return -1;
2855 if (graph->n_total_row > n_total_row)
2856 n_total_row = graph->n_total_row;
2857 graph->n_total_row = orig_total_row;
2858 if (graph->n_band > n_band)
2859 n_band = graph->n_band;
2860 graph->n_band = orig_band;
2863 graph->n_total_row = n_total_row;
2864 graph->n_band = n_band;
2866 return pad_schedule(graph);
2869 /* Compute a schedule for the given dependence graph.
2870 * We first check if the graph is connected (through validity dependences)
2871 * and, if not, compute a schedule for each component separately.
2872 * If schedule_fuse is set to minimal fusion, then we check for strongly
2873 * connected components instead and compute a separate schedule for
2874 * each such strongly connected component.
2876 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2878 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
2879 if (detect_sccs(ctx, graph) < 0)
2880 return -1;
2881 } else {
2882 if (detect_wccs(ctx, graph) < 0)
2883 return -1;
2886 if (graph->scc > 1)
2887 return compute_component_schedule(ctx, graph);
2889 return compute_schedule_wcc(ctx, graph);
2892 /* Compute a schedule for the given union of domains that respects
2893 * all the validity dependences.
2894 * If the default isl scheduling algorithm is used, it tries to minimize
2895 * the dependence distances over the proximity dependences.
2896 * If Feautrier's scheduling algorithm is used, the proximity dependence
2897 * distances are only minimized during the extension to a full-dimensional
2898 * schedule.
2900 __isl_give isl_schedule *isl_union_set_compute_schedule(
2901 __isl_take isl_union_set *domain,
2902 __isl_take isl_union_map *validity,
2903 __isl_take isl_union_map *proximity)
2905 isl_ctx *ctx = isl_union_set_get_ctx(domain);
2906 isl_space *dim;
2907 struct isl_sched_graph graph = { 0 };
2908 isl_schedule *sched;
2909 struct isl_extract_edge_data data;
2911 domain = isl_union_set_align_params(domain,
2912 isl_union_map_get_space(validity));
2913 domain = isl_union_set_align_params(domain,
2914 isl_union_map_get_space(proximity));
2915 dim = isl_union_set_get_space(domain);
2916 validity = isl_union_map_align_params(validity, isl_space_copy(dim));
2917 proximity = isl_union_map_align_params(proximity, dim);
2919 if (!domain)
2920 goto error;
2922 graph.n = isl_union_set_n_set(domain);
2923 if (graph.n == 0)
2924 goto empty;
2925 if (graph_alloc(ctx, &graph, graph.n,
2926 isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
2927 goto error;
2928 if (compute_max_row(&graph, domain) < 0)
2929 goto error;
2930 graph.root = 1;
2931 graph.n = 0;
2932 if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
2933 goto error;
2934 if (graph_init_table(ctx, &graph) < 0)
2935 goto error;
2936 graph.max_edge[isl_edge_validity] = isl_union_map_n_map(validity);
2937 graph.max_edge[isl_edge_proximity] = isl_union_map_n_map(proximity);
2938 if (graph_init_edge_tables(ctx, &graph) < 0)
2939 goto error;
2940 graph.n_edge = 0;
2941 data.graph = &graph;
2942 data.type = isl_edge_validity;
2943 if (isl_union_map_foreach_map(validity, &extract_edge, &data) < 0)
2944 goto error;
2945 data.type = isl_edge_proximity;
2946 if (isl_union_map_foreach_map(proximity, &extract_edge, &data) < 0)
2947 goto error;
2949 if (compute_schedule(ctx, &graph) < 0)
2950 goto error;
2952 empty:
2953 sched = extract_schedule(&graph, isl_union_set_get_space(domain));
2955 graph_free(ctx, &graph);
2956 isl_union_set_free(domain);
2957 isl_union_map_free(validity);
2958 isl_union_map_free(proximity);
2960 return sched;
2961 error:
2962 graph_free(ctx, &graph);
2963 isl_union_set_free(domain);
2964 isl_union_map_free(validity);
2965 isl_union_map_free(proximity);
2966 return NULL;
2969 void *isl_schedule_free(__isl_take isl_schedule *sched)
2971 int i;
2972 if (!sched)
2973 return NULL;
2975 if (--sched->ref > 0)
2976 return NULL;
2978 for (i = 0; i < sched->n; ++i) {
2979 isl_multi_aff_free(sched->node[i].sched);
2980 free(sched->node[i].band_end);
2981 free(sched->node[i].band_id);
2982 free(sched->node[i].zero);
2984 isl_space_free(sched->dim);
2985 isl_band_list_free(sched->band_forest);
2986 free(sched);
2987 return NULL;
2990 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
2992 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
2995 /* Set max_out to the maximal number of output dimensions over
2996 * all maps.
2998 static int update_max_out(__isl_take isl_map *map, void *user)
3000 int *max_out = user;
3001 int n_out = isl_map_dim(map, isl_dim_out);
3003 if (n_out > *max_out)
3004 *max_out = n_out;
3006 isl_map_free(map);
3007 return 0;
3010 /* Internal data structure for map_pad_range.
3012 * "max_out" is the maximal schedule dimension.
3013 * "res" collects the results.
3015 struct isl_pad_schedule_map_data {
3016 int max_out;
3017 isl_union_map *res;
3020 /* Pad the range of the given map with zeros to data->max_out and
3021 * then add the result to data->res.
3023 static int map_pad_range(__isl_take isl_map *map, void *user)
3025 struct isl_pad_schedule_map_data *data = user;
3026 int i;
3027 int n_out = isl_map_dim(map, isl_dim_out);
3029 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3030 for (i = n_out; i < data->max_out; ++i)
3031 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3033 data->res = isl_union_map_add_map(data->res, map);
3034 if (!data->res)
3035 return -1;
3037 return 0;
3040 /* Pad the ranges of the maps in the union map with zeros such they all have
3041 * the same dimension.
3043 static __isl_give isl_union_map *pad_schedule_map(
3044 __isl_take isl_union_map *umap)
3046 struct isl_pad_schedule_map_data data;
3048 if (!umap)
3049 return NULL;
3050 if (isl_union_map_n_map(umap) <= 1)
3051 return umap;
3053 data.max_out = 0;
3054 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3055 return isl_union_map_free(umap);
3057 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3058 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3059 data.res = isl_union_map_free(data.res);
3061 isl_union_map_free(umap);
3062 return data.res;
3065 /* Return an isl_union_map of the schedule. If we have already constructed
3066 * a band forest, then this band forest may have been modified so we need
3067 * to extract the isl_union_map from the forest rather than from
3068 * the originally computed schedule. This reconstructed schedule map
3069 * then needs to be padded with zeros to unify the schedule space
3070 * since the result of isl_band_list_get_suffix_schedule may not have
3071 * a unified schedule space.
3073 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3075 int i;
3076 isl_union_map *umap;
3078 if (!sched)
3079 return NULL;
3081 if (sched->band_forest) {
3082 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3083 return pad_schedule_map(umap);
3086 umap = isl_union_map_empty(isl_space_copy(sched->dim));
3087 for (i = 0; i < sched->n; ++i) {
3088 isl_multi_aff *ma;
3090 ma = isl_multi_aff_copy(sched->node[i].sched);
3091 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
3094 return umap;
3097 static __isl_give isl_band_list *construct_band_list(
3098 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3099 int band_nr, int *parent_active, int n_active);
3101 /* Construct an isl_band structure for the band in the given schedule
3102 * with sequence number band_nr for the n_active nodes marked by active.
3103 * If the nodes don't have a band with the given sequence number,
3104 * then a band without members is created.
3106 * Because of the way the schedule is constructed, we know that
3107 * the position of the band inside the schedule of a node is the same
3108 * for all active nodes.
3110 * The partial schedule for the band is created before the children
3111 * are created to that construct_band_list can refer to the partial
3112 * schedule of the parent.
3114 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
3115 __isl_keep isl_band *parent,
3116 int band_nr, int *active, int n_active)
3118 int i, j;
3119 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3120 isl_band *band;
3121 unsigned start, end;
3123 band = isl_band_alloc(ctx);
3124 if (!band)
3125 return NULL;
3127 band->schedule = schedule;
3128 band->parent = parent;
3130 for (i = 0; i < schedule->n; ++i)
3131 if (active[i])
3132 break;
3134 if (i >= schedule->n)
3135 isl_die(ctx, isl_error_internal,
3136 "band without active statements", goto error);
3138 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
3139 end = band_nr < schedule->node[i].n_band ?
3140 schedule->node[i].band_end[band_nr] : start;
3141 band->n = end - start;
3143 band->zero = isl_alloc_array(ctx, int, band->n);
3144 if (!band->zero)
3145 goto error;
3147 for (j = 0; j < band->n; ++j)
3148 band->zero[j] = schedule->node[i].zero[start + j];
3150 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
3151 for (i = 0; i < schedule->n; ++i) {
3152 isl_multi_aff *ma;
3153 isl_pw_multi_aff *pma;
3154 unsigned n_out;
3156 if (!active[i])
3157 continue;
3159 ma = isl_multi_aff_copy(schedule->node[i].sched);
3160 n_out = isl_multi_aff_dim(ma, isl_dim_out);
3161 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
3162 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
3163 pma = isl_pw_multi_aff_from_multi_aff(ma);
3164 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
3165 pma);
3167 if (!band->pma)
3168 goto error;
3170 for (i = 0; i < schedule->n; ++i)
3171 if (active[i] && schedule->node[i].n_band > band_nr + 1)
3172 break;
3174 if (i < schedule->n) {
3175 band->children = construct_band_list(schedule, band,
3176 band_nr + 1, active, n_active);
3177 if (!band->children)
3178 goto error;
3181 return band;
3182 error:
3183 isl_band_free(band);
3184 return NULL;
3187 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
3189 * r is set to a negative value if anything goes wrong.
3191 * c1 stores the result of extract_int.
3192 * c2 is a temporary value used inside cmp_band_in_ancestor.
3193 * t is a temporary value used inside extract_int.
3195 * first and equal are used inside extract_int.
3196 * first is set if we are looking at the first isl_multi_aff inside
3197 * the isl_union_pw_multi_aff.
3198 * equal is set if all the isl_multi_affs have been equal so far.
3200 struct isl_cmp_band_data {
3201 int r;
3203 int first;
3204 int equal;
3206 isl_int t;
3207 isl_int c1;
3208 isl_int c2;
3211 /* Check if "ma" assigns a constant value.
3212 * Note that this function is only called on isl_multi_affs
3213 * with a single output dimension.
3215 * If "ma" assigns a constant value then we compare it to data->c1
3216 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
3217 * If "ma" does not assign a constant value or if it assigns a value
3218 * that is different from data->c1, then we set data->equal to zero
3219 * and terminate the check.
3221 static int multi_aff_extract_int(__isl_take isl_set *set,
3222 __isl_take isl_multi_aff *ma, void *user)
3224 isl_aff *aff;
3225 struct isl_cmp_band_data *data = user;
3227 aff = isl_multi_aff_get_aff(ma, 0);
3228 data->r = isl_aff_is_cst(aff);
3229 if (data->r >= 0 && data->r) {
3230 isl_aff_get_constant(aff, &data->t);
3231 if (data->first) {
3232 isl_int_set(data->c1, data->t);
3233 data->first = 0;
3234 } else if (!isl_int_eq(data->c1, data->t))
3235 data->equal = 0;
3236 } else if (data->r >= 0 && !data->r)
3237 data->equal = 0;
3239 isl_aff_free(aff);
3240 isl_set_free(set);
3241 isl_multi_aff_free(ma);
3243 if (data->r < 0)
3244 return -1;
3245 if (!data->equal)
3246 return -1;
3247 return 0;
3250 /* This function is called for each isl_pw_multi_aff in
3251 * the isl_union_pw_multi_aff checked by extract_int.
3252 * Check all the isl_multi_affs inside "pma".
3254 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
3255 void *user)
3257 int r;
3259 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
3260 isl_pw_multi_aff_free(pma);
3262 return r;
3265 /* Check if "upma" assigns a single constant value to its domain.
3266 * If so, return 1 and store the result in data->c1.
3267 * If not, return 0.
3269 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
3270 * means that either an error occurred or that we have broken off the check
3271 * because we already know the result is going to be negative.
3272 * In the latter case, data->equal is set to zero.
3274 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
3275 struct isl_cmp_band_data *data)
3277 data->first = 1;
3278 data->equal = 1;
3280 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
3281 &pw_multi_aff_extract_int, data) < 0) {
3282 if (!data->equal)
3283 return 0;
3284 return -1;
3287 return !data->first && data->equal;
3290 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
3291 * "ancestor".
3293 * If the parent of "ancestor" also has a single member, then we
3294 * first try to compare the two band based on the partial schedule
3295 * of this parent.
3297 * Otherwise, or if the result is inconclusive, we look at the partial schedule
3298 * of "ancestor" itself.
3299 * In particular, we specialize the parent schedule based
3300 * on the domains of the child schedules, check if both assign
3301 * a single constant value and, if so, compare the two constant values.
3302 * If the specialized parent schedules do not assign a constant value,
3303 * then they cannot be used to order the two bands and so in this case
3304 * we return 0.
3306 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
3307 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
3308 __isl_keep isl_band *ancestor)
3310 isl_union_pw_multi_aff *upma;
3311 isl_union_set *domain;
3312 int r;
3314 if (data->r < 0)
3315 return 0;
3317 if (ancestor->parent && ancestor->parent->n == 1) {
3318 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
3319 if (data->r < 0)
3320 return 0;
3321 if (r)
3322 return r;
3325 upma = isl_union_pw_multi_aff_copy(b1->pma);
3326 domain = isl_union_pw_multi_aff_domain(upma);
3327 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3328 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3329 r = extract_int(upma, data);
3330 isl_union_pw_multi_aff_free(upma);
3332 if (r < 0)
3333 data->r = -1;
3334 if (r < 0 || !r)
3335 return 0;
3337 isl_int_set(data->c2, data->c1);
3339 upma = isl_union_pw_multi_aff_copy(b2->pma);
3340 domain = isl_union_pw_multi_aff_domain(upma);
3341 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3342 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3343 r = extract_int(upma, data);
3344 isl_union_pw_multi_aff_free(upma);
3346 if (r < 0)
3347 data->r = -1;
3348 if (r < 0 || !r)
3349 return 0;
3351 return isl_int_cmp(data->c2, data->c1);
3354 /* Compare "a" and "b" based on the parent schedule of their parent.
3356 static int cmp_band(const void *a, const void *b, void *user)
3358 isl_band *b1 = *(isl_band * const *) a;
3359 isl_band *b2 = *(isl_band * const *) b;
3360 struct isl_cmp_band_data *data = user;
3362 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
3365 /* Sort the elements in "list" based on the partial schedules of its parent
3366 * (and ancestors). In particular if the parent assigns constant values
3367 * to the domains of the bands in "list", then the elements are sorted
3368 * according to that order.
3369 * This order should be a more "natural" order for the user, but otherwise
3370 * shouldn't have any effect.
3371 * If we would be constructing an isl_band forest directly in
3372 * isl_union_set_compute_schedule then there wouldn't be any need
3373 * for a reordering, since the children would be added to the list
3374 * in their natural order automatically.
3376 * If there is only one element in the list, then there is no need to sort
3377 * anything.
3378 * If the partial schedule of the parent has more than one member
3379 * (or if there is no parent), then it's
3380 * defnitely not assigning constant values to the different children in
3381 * the list and so we wouldn't be able to use it to sort the list.
3383 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
3384 __isl_keep isl_band *parent)
3386 struct isl_cmp_band_data data;
3388 if (!list)
3389 return NULL;
3390 if (list->n <= 1)
3391 return list;
3392 if (!parent || parent->n != 1)
3393 return list;
3395 data.r = 0;
3396 isl_int_init(data.c1);
3397 isl_int_init(data.c2);
3398 isl_int_init(data.t);
3399 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
3400 if (data.r < 0)
3401 list = isl_band_list_free(list);
3402 isl_int_clear(data.c1);
3403 isl_int_clear(data.c2);
3404 isl_int_clear(data.t);
3406 return list;
3409 /* Construct a list of bands that start at the same position (with
3410 * sequence number band_nr) in the schedules of the nodes that
3411 * were active in the parent band.
3413 * A separate isl_band structure is created for each band_id
3414 * and for each node that does not have a band with sequence
3415 * number band_nr. In the latter case, a band without members
3416 * is created.
3417 * This ensures that if a band has any children, then each node
3418 * that was active in the band is active in exactly one of the children.
3420 static __isl_give isl_band_list *construct_band_list(
3421 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3422 int band_nr, int *parent_active, int n_active)
3424 int i, j;
3425 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3426 int *active;
3427 int n_band;
3428 isl_band_list *list;
3430 n_band = 0;
3431 for (i = 0; i < n_active; ++i) {
3432 for (j = 0; j < schedule->n; ++j) {
3433 if (!parent_active[j])
3434 continue;
3435 if (schedule->node[j].n_band <= band_nr)
3436 continue;
3437 if (schedule->node[j].band_id[band_nr] == i) {
3438 n_band++;
3439 break;
3443 for (j = 0; j < schedule->n; ++j)
3444 if (schedule->node[j].n_band <= band_nr)
3445 n_band++;
3447 if (n_band == 1) {
3448 isl_band *band;
3449 list = isl_band_list_alloc(ctx, n_band);
3450 band = construct_band(schedule, parent, band_nr,
3451 parent_active, n_active);
3452 return isl_band_list_add(list, band);
3455 active = isl_alloc_array(ctx, int, schedule->n);
3456 if (!active)
3457 return NULL;
3459 list = isl_band_list_alloc(ctx, n_band);
3461 for (i = 0; i < n_active; ++i) {
3462 int n = 0;
3463 isl_band *band;
3465 for (j = 0; j < schedule->n; ++j) {
3466 active[j] = parent_active[j] &&
3467 schedule->node[j].n_band > band_nr &&
3468 schedule->node[j].band_id[band_nr] == i;
3469 if (active[j])
3470 n++;
3472 if (n == 0)
3473 continue;
3475 band = construct_band(schedule, parent, band_nr, active, n);
3477 list = isl_band_list_add(list, band);
3479 for (i = 0; i < schedule->n; ++i) {
3480 isl_band *band;
3481 if (!parent_active[i])
3482 continue;
3483 if (schedule->node[i].n_band > band_nr)
3484 continue;
3485 for (j = 0; j < schedule->n; ++j)
3486 active[j] = j == i;
3487 band = construct_band(schedule, parent, band_nr, active, 1);
3488 list = isl_band_list_add(list, band);
3491 free(active);
3493 list = sort_band_list(list, parent);
3495 return list;
3498 /* Construct a band forest representation of the schedule and
3499 * return the list of roots.
3501 static __isl_give isl_band_list *construct_forest(
3502 __isl_keep isl_schedule *schedule)
3504 int i;
3505 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3506 isl_band_list *forest;
3507 int *active;
3509 active = isl_alloc_array(ctx, int, schedule->n);
3510 if (!active)
3511 return NULL;
3513 for (i = 0; i < schedule->n; ++i)
3514 active[i] = 1;
3516 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
3518 free(active);
3520 return forest;
3523 /* Return the roots of a band forest representation of the schedule.
3525 __isl_give isl_band_list *isl_schedule_get_band_forest(
3526 __isl_keep isl_schedule *schedule)
3528 if (!schedule)
3529 return NULL;
3530 if (!schedule->band_forest)
3531 schedule->band_forest = construct_forest(schedule);
3532 return isl_band_list_dup(schedule->band_forest);
3535 /* Call "fn" on each band in the schedule in depth-first post-order.
3537 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
3538 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
3540 int r;
3541 isl_band_list *forest;
3543 if (!sched)
3544 return -1;
3546 forest = isl_schedule_get_band_forest(sched);
3547 r = isl_band_list_foreach_band(forest, fn, user);
3548 isl_band_list_free(forest);
3550 return r;
3553 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3554 __isl_keep isl_band_list *list);
3556 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
3557 __isl_keep isl_band *band)
3559 isl_band_list *children;
3561 p = isl_printer_start_line(p);
3562 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
3563 p = isl_printer_end_line(p);
3565 if (!isl_band_has_children(band))
3566 return p;
3568 children = isl_band_get_children(band);
3570 p = isl_printer_indent(p, 4);
3571 p = print_band_list(p, children);
3572 p = isl_printer_indent(p, -4);
3574 isl_band_list_free(children);
3576 return p;
3579 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3580 __isl_keep isl_band_list *list)
3582 int i, n;
3584 n = isl_band_list_n_band(list);
3585 for (i = 0; i < n; ++i) {
3586 isl_band *band;
3587 band = isl_band_list_get_band(list, i);
3588 p = print_band(p, band);
3589 isl_band_free(band);
3592 return p;
3595 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
3596 __isl_keep isl_schedule *schedule)
3598 isl_band_list *forest;
3600 forest = isl_schedule_get_band_forest(schedule);
3602 p = print_band_list(p, forest);
3604 isl_band_list_free(forest);
3606 return p;
3609 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
3611 isl_printer *printer;
3613 if (!schedule)
3614 return;
3616 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
3617 printer = isl_printer_print_schedule(printer, schedule);
3619 isl_printer_free(printer);