isl 0.12
[isl.git] / isl_ilp.c
blob63261bff4ba364fc2ab8c8dd2c4d2cd0ad2d10ff
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include <isl/ilp.h>
13 #include "isl_sample.h"
14 #include <isl/seq.h>
15 #include "isl_equalities.h"
16 #include <isl_aff_private.h>
17 #include <isl_local_space_private.h>
18 #include <isl_mat_private.h>
19 #include <isl_val_private.h>
21 /* Given a basic set "bset", construct a basic set U such that for
22 * each element x in U, the whole unit box positioned at x is inside
23 * the given basic set.
24 * Note that U may not contain all points that satisfy this property.
26 * We simply add the sum of all negative coefficients to the constant
27 * term. This ensures that if x satisfies the resulting constraints,
28 * then x plus any sum of unit vectors satisfies the original constraints.
30 static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset)
32 int i, j, k;
33 struct isl_basic_set *unit_box = NULL;
34 unsigned total;
36 if (!bset)
37 goto error;
39 if (bset->n_eq != 0) {
40 unit_box = isl_basic_set_empty_like(bset);
41 isl_basic_set_free(bset);
42 return unit_box;
45 total = isl_basic_set_total_dim(bset);
46 unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset),
47 0, 0, bset->n_ineq);
49 for (i = 0; i < bset->n_ineq; ++i) {
50 k = isl_basic_set_alloc_inequality(unit_box);
51 if (k < 0)
52 goto error;
53 isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
54 for (j = 0; j < total; ++j) {
55 if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
56 continue;
57 isl_int_add(unit_box->ineq[k][0],
58 unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
62 isl_basic_set_free(bset);
63 return unit_box;
64 error:
65 isl_basic_set_free(bset);
66 isl_basic_set_free(unit_box);
67 return NULL;
70 /* Find an integer point in "bset", preferably one that is
71 * close to minimizing "f".
73 * We first check if we can easily put unit boxes inside bset.
74 * If so, we take the best base point of any of the unit boxes we can find
75 * and round it up to the nearest integer.
76 * If not, we simply pick any integer point in "bset".
78 static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f)
80 enum isl_lp_result res;
81 struct isl_basic_set *unit_box;
82 struct isl_vec *sol;
84 unit_box = unit_box_base_points(isl_basic_set_copy(bset));
86 res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
87 NULL, NULL, &sol);
88 if (res == isl_lp_ok) {
89 isl_basic_set_free(unit_box);
90 return isl_vec_ceil(sol);
93 isl_basic_set_free(unit_box);
95 return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
98 /* Restrict "bset" to those points with values for f in the interval [l, u].
100 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
101 isl_int *f, isl_int l, isl_int u)
103 int k;
104 unsigned total;
106 total = isl_basic_set_total_dim(bset);
107 bset = isl_basic_set_extend_constraints(bset, 0, 2);
109 k = isl_basic_set_alloc_inequality(bset);
110 if (k < 0)
111 goto error;
112 isl_seq_cpy(bset->ineq[k], f, 1 + total);
113 isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);
115 k = isl_basic_set_alloc_inequality(bset);
116 if (k < 0)
117 goto error;
118 isl_seq_neg(bset->ineq[k], f, 1 + total);
119 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);
121 return bset;
122 error:
123 isl_basic_set_free(bset);
124 return NULL;
127 /* Find an integer point in "bset" that minimizes f (in any) such that
128 * the value of f lies inside the interval [l, u].
129 * Return this integer point if it can be found.
130 * Otherwise, return sol.
132 * We perform a number of steps until l > u.
133 * In each step, we look for an integer point with value in either
134 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
135 * The choice depends on whether we have found an integer point in the
136 * previous step. If so, we look for the next point in half of the remaining
137 * interval.
138 * If we find a point, the current solution is updated and u is set
139 * to its value minus 1.
140 * If no point can be found, we update l to the upper bound of the interval
141 * we checked (u or l+floor(u-l-1/2)) plus 1.
143 static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset,
144 isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u)
146 isl_int tmp;
147 int divide = 1;
149 isl_int_init(tmp);
151 while (isl_int_le(l, u)) {
152 struct isl_basic_set *slice;
153 struct isl_vec *sample;
155 if (!divide)
156 isl_int_set(tmp, u);
157 else {
158 isl_int_sub(tmp, u, l);
159 isl_int_fdiv_q_ui(tmp, tmp, 2);
160 isl_int_add(tmp, tmp, l);
162 slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
163 sample = isl_basic_set_sample_vec(slice);
164 if (!sample) {
165 isl_vec_free(sol);
166 sol = NULL;
167 break;
169 if (sample->size > 0) {
170 isl_vec_free(sol);
171 sol = sample;
172 isl_seq_inner_product(f, sol->el, sol->size, opt);
173 isl_int_sub_ui(u, *opt, 1);
174 divide = 1;
175 } else {
176 isl_vec_free(sample);
177 if (!divide)
178 break;
179 isl_int_add_ui(l, tmp, 1);
180 divide = 0;
184 isl_int_clear(tmp);
186 return sol;
189 /* Find an integer point in "bset" that minimizes f (if any).
190 * If sol_p is not NULL then the integer point is returned in *sol_p.
191 * The optimal value of f is returned in *opt.
193 * The algorithm maintains a currently best solution and an interval [l, u]
194 * of values of f for which integer solutions could potentially still be found.
195 * The initial value of the best solution so far is any solution.
196 * The initial value of l is minimal value of f over the rationals
197 * (rounded up to the nearest integer).
198 * The initial value of u is the value of f at the initial solution minus 1.
200 * We then call solve_ilp_search to perform a binary search on the interval.
202 static enum isl_lp_result solve_ilp(struct isl_basic_set *bset,
203 isl_int *f, isl_int *opt,
204 struct isl_vec **sol_p)
206 enum isl_lp_result res;
207 isl_int l, u;
208 struct isl_vec *sol;
210 res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
211 opt, NULL, &sol);
212 if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
213 if (sol_p)
214 *sol_p = sol;
215 else
216 isl_vec_free(sol);
217 return isl_lp_ok;
219 isl_vec_free(sol);
220 if (res == isl_lp_error || res == isl_lp_empty)
221 return res;
223 sol = initial_solution(bset, f);
224 if (!sol)
225 return isl_lp_error;
226 if (sol->size == 0) {
227 isl_vec_free(sol);
228 return isl_lp_empty;
230 if (res == isl_lp_unbounded) {
231 isl_vec_free(sol);
232 return isl_lp_unbounded;
235 isl_int_init(l);
236 isl_int_init(u);
238 isl_int_set(l, *opt);
240 isl_seq_inner_product(f, sol->el, sol->size, opt);
241 isl_int_sub_ui(u, *opt, 1);
243 sol = solve_ilp_search(bset, f, opt, sol, l, u);
244 if (!sol)
245 res = isl_lp_error;
247 isl_int_clear(l);
248 isl_int_clear(u);
250 if (sol_p)
251 *sol_p = sol;
252 else
253 isl_vec_free(sol);
255 return res;
258 static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max,
259 isl_int *f, isl_int *opt,
260 struct isl_vec **sol_p)
262 unsigned dim;
263 enum isl_lp_result res;
264 struct isl_mat *T = NULL;
265 struct isl_vec *v;
267 bset = isl_basic_set_copy(bset);
268 dim = isl_basic_set_total_dim(bset);
269 v = isl_vec_alloc(bset->ctx, 1 + dim);
270 if (!v)
271 goto error;
272 isl_seq_cpy(v->el, f, 1 + dim);
273 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
274 v = isl_vec_mat_product(v, isl_mat_copy(T));
275 if (!v)
276 goto error;
277 res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
278 isl_vec_free(v);
279 if (res == isl_lp_ok && sol_p) {
280 *sol_p = isl_mat_vec_product(T, *sol_p);
281 if (!*sol_p)
282 res = isl_lp_error;
283 } else
284 isl_mat_free(T);
285 isl_basic_set_free(bset);
286 return res;
287 error:
288 isl_mat_free(T);
289 isl_basic_set_free(bset);
290 return isl_lp_error;
293 /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
294 * f (if any).
295 * If sol_p is not NULL then the integer point is returned in *sol_p.
296 * The optimal value of f is returned in *opt.
298 * If there is any equality among the points in "bset", then we first
299 * project it out. Otherwise, we continue with solve_ilp above.
301 enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max,
302 isl_int *f, isl_int *opt,
303 struct isl_vec **sol_p)
305 unsigned dim;
306 enum isl_lp_result res;
308 if (!bset)
309 return isl_lp_error;
310 if (sol_p)
311 *sol_p = NULL;
313 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
315 if (isl_basic_set_plain_is_empty(bset))
316 return isl_lp_empty;
318 if (bset->n_eq)
319 return solve_ilp_with_eq(bset, max, f, opt, sol_p);
321 dim = isl_basic_set_total_dim(bset);
323 if (max)
324 isl_seq_neg(f, f, 1 + dim);
326 res = solve_ilp(bset, f, opt, sol_p);
328 if (max) {
329 isl_seq_neg(f, f, 1 + dim);
330 isl_int_neg(*opt, *opt);
333 return res;
334 error:
335 isl_basic_set_free(bset);
336 return isl_lp_error;
339 static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max,
340 __isl_keep isl_aff *obj, isl_int *opt)
342 enum isl_lp_result res;
344 if (!obj)
345 return isl_lp_error;
346 bset = isl_basic_set_copy(bset);
347 bset = isl_basic_set_underlying_set(bset);
348 res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL);
349 isl_basic_set_free(bset);
350 return res;
353 static __isl_give isl_mat *extract_divs(__isl_keep isl_basic_set *bset)
355 int i;
356 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
357 isl_mat *div;
359 div = isl_mat_alloc(ctx, bset->n_div,
360 1 + 1 + isl_basic_set_total_dim(bset));
361 if (!div)
362 return NULL;
364 for (i = 0; i < bset->n_div; ++i)
365 isl_seq_cpy(div->row[i], bset->div[i], div->n_col);
367 return div;
370 enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max,
371 __isl_keep isl_aff *obj, isl_int *opt)
373 int *exp1 = NULL;
374 int *exp2 = NULL;
375 isl_ctx *ctx;
376 isl_mat *bset_div = NULL;
377 isl_mat *div = NULL;
378 enum isl_lp_result res;
379 int bset_n_div;
381 if (!bset || !obj)
382 return isl_lp_error;
384 ctx = isl_aff_get_ctx(obj);
385 if (!isl_space_is_equal(bset->dim, obj->ls->dim))
386 isl_die(ctx, isl_error_invalid,
387 "spaces don't match", return isl_lp_error);
388 if (!isl_int_is_one(obj->v->el[0]))
389 isl_die(ctx, isl_error_unsupported,
390 "expecting integer affine expression",
391 return isl_lp_error);
393 bset_n_div = isl_basic_set_dim(bset, isl_dim_div);
394 if (bset_n_div == 0 && obj->ls->div->n_row == 0)
395 return basic_set_opt(bset, max, obj, opt);
397 bset = isl_basic_set_copy(bset);
398 obj = isl_aff_copy(obj);
400 bset_div = extract_divs(bset);
401 exp1 = isl_alloc_array(ctx, int, bset_n_div);
402 exp2 = isl_alloc_array(ctx, int, obj->ls->div->n_row);
403 if (!bset_div || !exp1 || !exp2)
404 goto error;
406 div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2);
408 bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1);
409 obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2);
411 res = basic_set_opt(bset, max, obj, opt);
413 isl_mat_free(bset_div);
414 isl_mat_free(div);
415 free(exp1);
416 free(exp2);
417 isl_basic_set_free(bset);
418 isl_aff_free(obj);
420 return res;
421 error:
422 isl_mat_free(div);
423 isl_mat_free(bset_div);
424 free(exp1);
425 free(exp2);
426 isl_basic_set_free(bset);
427 isl_aff_free(obj);
428 return isl_lp_error;
431 /* Compute the minimum (maximum if max is set) of the integer affine
432 * expression obj over the points in set and put the result in *opt.
434 * The parameters are assumed to have been aligned.
436 static enum isl_lp_result isl_set_opt_aligned(__isl_keep isl_set *set, int max,
437 __isl_keep isl_aff *obj, isl_int *opt)
439 int i;
440 enum isl_lp_result res;
441 int empty = 1;
442 isl_int opt_i;
444 if (!set || !obj)
445 return isl_lp_error;
446 if (set->n == 0)
447 return isl_lp_empty;
449 res = isl_basic_set_opt(set->p[0], max, obj, opt);
450 if (res == isl_lp_error || res == isl_lp_unbounded)
451 return res;
452 if (set->n == 1)
453 return res;
454 if (res == isl_lp_ok)
455 empty = 0;
457 isl_int_init(opt_i);
458 for (i = 1; i < set->n; ++i) {
459 res = isl_basic_set_opt(set->p[i], max, obj, &opt_i);
460 if (res == isl_lp_error || res == isl_lp_unbounded) {
461 isl_int_clear(opt_i);
462 return res;
464 if (res == isl_lp_ok)
465 empty = 0;
466 if (isl_int_gt(opt_i, *opt))
467 isl_int_set(*opt, opt_i);
469 isl_int_clear(opt_i);
471 return empty ? isl_lp_empty : isl_lp_ok;
474 /* Compute the minimum (maximum if max is set) of the integer affine
475 * expression obj over the points in set and put the result in *opt.
477 enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max,
478 __isl_keep isl_aff *obj, isl_int *opt)
480 enum isl_lp_result res;
482 if (!set || !obj)
483 return isl_lp_error;
485 if (isl_space_match(set->dim, isl_dim_param,
486 obj->ls->dim, isl_dim_param))
487 return isl_set_opt_aligned(set, max, obj, opt);
489 set = isl_set_copy(set);
490 obj = isl_aff_copy(obj);
491 set = isl_set_align_params(set, isl_aff_get_domain_space(obj));
492 obj = isl_aff_align_params(obj, isl_set_get_space(set));
494 res = isl_set_opt_aligned(set, max, obj, opt);
496 isl_set_free(set);
497 isl_aff_free(obj);
499 return res;
502 enum isl_lp_result isl_basic_set_max(__isl_keep isl_basic_set *bset,
503 __isl_keep isl_aff *obj, isl_int *opt)
505 return isl_basic_set_opt(bset, 1, obj, opt);
508 enum isl_lp_result isl_set_max(__isl_keep isl_set *set,
509 __isl_keep isl_aff *obj, isl_int *opt)
511 return isl_set_opt(set, 1, obj, opt);
514 enum isl_lp_result isl_set_min(__isl_keep isl_set *set,
515 __isl_keep isl_aff *obj, isl_int *opt)
517 return isl_set_opt(set, 0, obj, opt);
520 /* Convert the result of a function that returns an isl_lp_result
521 * to an isl_val. The numerator of "v" is set to the optimal value
522 * if lp_res is isl_lp_ok. "max" is set if a maximum was computed.
524 * Return "v" with denominator set to 1 if lp_res is isl_lp_ok.
525 * Return NULL on error.
526 * Return a NaN if lp_res is isl_lp_empty.
527 * Return infinity or negative infinity if lp_res is isl_lp_unbounded,
528 * depending on "max".
530 static __isl_give isl_val *convert_lp_result(enum isl_lp_result lp_res,
531 __isl_take isl_val *v, int max)
533 isl_ctx *ctx;
535 if (lp_res == isl_lp_ok) {
536 isl_int_set_si(v->d, 1);
537 return isl_val_normalize(v);
539 ctx = isl_val_get_ctx(v);
540 isl_val_free(v);
541 if (lp_res == isl_lp_error)
542 return NULL;
543 if (lp_res == isl_lp_empty)
544 return isl_val_nan(ctx);
545 if (max)
546 return isl_val_infty(ctx);
547 else
548 return isl_val_neginfty(ctx);
551 /* Return the minimum (maximum if max is set) of the integer affine
552 * expression "obj" over the points in "bset".
554 * Return infinity or negative infinity if the optimal value is unbounded and
555 * NaN if "bset" is empty.
557 * Call isl_basic_set_opt and translate the results.
559 __isl_give isl_val *isl_basic_set_opt_val(__isl_keep isl_basic_set *bset,
560 int max, __isl_keep isl_aff *obj)
562 isl_ctx *ctx;
563 isl_val *res;
564 enum isl_lp_result lp_res;
566 if (!bset || !obj)
567 return NULL;
569 ctx = isl_aff_get_ctx(obj);
570 res = isl_val_alloc(ctx);
571 if (!res)
572 return NULL;
573 lp_res = isl_basic_set_opt(bset, max, obj, &res->n);
574 return convert_lp_result(lp_res, res, max);
577 /* Return the maximum of the integer affine
578 * expression "obj" over the points in "bset".
580 * Return infinity or negative infinity if the optimal value is unbounded and
581 * NaN if "bset" is empty.
583 __isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset,
584 __isl_keep isl_aff *obj)
586 return isl_basic_set_opt_val(bset, 1, obj);
589 /* Return the minimum (maximum if max is set) of the integer affine
590 * expression "obj" over the points in "set".
592 * Return infinity or negative infinity if the optimal value is unbounded and
593 * NaN if "bset" is empty.
595 * Call isl_set_opt and translate the results.
597 __isl_give isl_val *isl_set_opt_val(__isl_keep isl_set *set, int max,
598 __isl_keep isl_aff *obj)
600 isl_ctx *ctx;
601 isl_val *res;
602 enum isl_lp_result lp_res;
604 if (!set || !obj)
605 return NULL;
607 ctx = isl_aff_get_ctx(obj);
608 res = isl_val_alloc(ctx);
609 if (!res)
610 return NULL;
611 lp_res = isl_set_opt(set, max, obj, &res->n);
612 return convert_lp_result(lp_res, res, max);
615 /* Return the minimum of the integer affine
616 * expression "obj" over the points in "set".
618 * Return infinity or negative infinity if the optimal value is unbounded and
619 * NaN if "bset" is empty.
621 __isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set,
622 __isl_keep isl_aff *obj)
624 return isl_set_opt_val(set, 0, obj);
627 /* Return the maximum of the integer affine
628 * expression "obj" over the points in "set".
630 * Return infinity or negative infinity if the optimal value is unbounded and
631 * NaN if "bset" is empty.
633 __isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set,
634 __isl_keep isl_aff *obj)
636 return isl_set_opt_val(set, 1, obj);