Makefile.am: avoid use of INCLUDES variable
[isl.git] / isl_schedule.c
blob472c7f57e3cc6da13435500d590c3dd9341ac874
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl/map_to_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
39 /* Construct an isl_schedule_constraints object for computing a schedule
40 * on "domain". The initial object does not impose any constraints.
42 __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain(
43 __isl_take isl_union_set *domain)
45 isl_ctx *ctx;
46 isl_space *space;
47 isl_schedule_constraints *sc;
48 isl_union_map *empty;
49 enum isl_edge_type i;
51 if (!domain)
52 return NULL;
54 ctx = isl_union_set_get_ctx(domain);
55 sc = isl_calloc_type(ctx, struct isl_schedule_constraints);
56 if (!sc)
57 return isl_union_set_free(domain);
59 space = isl_union_set_get_space(domain);
60 sc->domain = domain;
61 empty = isl_union_map_empty(space);
62 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
63 sc->constraint[i] = isl_union_map_copy(empty);
64 if (!sc->constraint[i])
65 sc->domain = isl_union_set_free(sc->domain);
67 isl_union_map_free(empty);
69 if (!sc->domain)
70 return isl_schedule_constraints_free(sc);
72 return sc;
75 /* Replace the validity constraints of "sc" by "validity".
77 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity(
78 __isl_take isl_schedule_constraints *sc,
79 __isl_take isl_union_map *validity)
81 if (!sc || !validity)
82 goto error;
84 isl_union_map_free(sc->constraint[isl_edge_validity]);
85 sc->constraint[isl_edge_validity] = validity;
87 return sc;
88 error:
89 isl_schedule_constraints_free(sc);
90 isl_union_map_free(validity);
91 return NULL;
94 /* Replace the coincidence constraints of "sc" by "coincidence".
96 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence(
97 __isl_take isl_schedule_constraints *sc,
98 __isl_take isl_union_map *coincidence)
100 if (!sc || !coincidence)
101 goto error;
103 isl_union_map_free(sc->constraint[isl_edge_coincidence]);
104 sc->constraint[isl_edge_coincidence] = coincidence;
106 return sc;
107 error:
108 isl_schedule_constraints_free(sc);
109 isl_union_map_free(coincidence);
110 return NULL;
113 /* Replace the proximity constraints of "sc" by "proximity".
115 __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity(
116 __isl_take isl_schedule_constraints *sc,
117 __isl_take isl_union_map *proximity)
119 if (!sc || !proximity)
120 goto error;
122 isl_union_map_free(sc->constraint[isl_edge_proximity]);
123 sc->constraint[isl_edge_proximity] = proximity;
125 return sc;
126 error:
127 isl_schedule_constraints_free(sc);
128 isl_union_map_free(proximity);
129 return NULL;
132 /* Replace the conditional validity constraints of "sc" by "condition"
133 * and "validity".
135 __isl_give isl_schedule_constraints *
136 isl_schedule_constraints_set_conditional_validity(
137 __isl_take isl_schedule_constraints *sc,
138 __isl_take isl_union_map *condition,
139 __isl_take isl_union_map *validity)
141 if (!sc || !condition || !validity)
142 goto error;
144 isl_union_map_free(sc->constraint[isl_edge_condition]);
145 sc->constraint[isl_edge_condition] = condition;
146 isl_union_map_free(sc->constraint[isl_edge_conditional_validity]);
147 sc->constraint[isl_edge_conditional_validity] = validity;
149 return sc;
150 error:
151 isl_schedule_constraints_free(sc);
152 isl_union_map_free(condition);
153 isl_union_map_free(validity);
154 return NULL;
157 void *isl_schedule_constraints_free(__isl_take isl_schedule_constraints *sc)
159 enum isl_edge_type i;
161 if (!sc)
162 return NULL;
164 isl_union_set_free(sc->domain);
165 for (i = isl_edge_first; i <= isl_edge_last; ++i)
166 isl_union_map_free(sc->constraint[i]);
168 free(sc);
170 return NULL;
173 isl_ctx *isl_schedule_constraints_get_ctx(
174 __isl_keep isl_schedule_constraints *sc)
176 return sc ? isl_union_set_get_ctx(sc->domain) : NULL;
179 void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc)
181 if (!sc)
182 return;
184 fprintf(stderr, "domain: ");
185 isl_union_set_dump(sc->domain);
186 fprintf(stderr, "validity: ");
187 isl_union_map_dump(sc->constraint[isl_edge_validity]);
188 fprintf(stderr, "proximity: ");
189 isl_union_map_dump(sc->constraint[isl_edge_proximity]);
190 fprintf(stderr, "coincidence: ");
191 isl_union_map_dump(sc->constraint[isl_edge_coincidence]);
192 fprintf(stderr, "condition: ");
193 isl_union_map_dump(sc->constraint[isl_edge_condition]);
194 fprintf(stderr, "conditional_validity: ");
195 isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]);
198 /* Align the parameters of the fields of "sc".
200 static __isl_give isl_schedule_constraints *
201 isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc)
203 isl_space *space;
204 enum isl_edge_type i;
206 if (!sc)
207 return NULL;
209 space = isl_union_set_get_space(sc->domain);
210 for (i = isl_edge_first; i <= isl_edge_last; ++i)
211 space = isl_space_align_params(space,
212 isl_union_map_get_space(sc->constraint[i]));
214 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
215 sc->constraint[i] = isl_union_map_align_params(
216 sc->constraint[i], isl_space_copy(space));
217 if (!sc->constraint[i])
218 space = isl_space_free(space);
220 sc->domain = isl_union_set_align_params(sc->domain, space);
221 if (!sc->domain)
222 return isl_schedule_constraints_free(sc);
224 return sc;
227 /* Return the total number of isl_maps in the constraints of "sc".
229 static __isl_give int isl_schedule_constraints_n_map(
230 __isl_keep isl_schedule_constraints *sc)
232 enum isl_edge_type i;
233 int n = 0;
235 for (i = isl_edge_first; i <= isl_edge_last; ++i)
236 n += isl_union_map_n_map(sc->constraint[i]);
238 return n;
241 /* Internal information about a node that is used during the construction
242 * of a schedule.
243 * dim represents the space in which the domain lives
244 * sched is a matrix representation of the schedule being constructed
245 * for this node
246 * sched_map is an isl_map representation of the same (partial) schedule
247 * sched_map may be NULL
248 * rank is the number of linearly independent rows in the linear part
249 * of sched
250 * the columns of cmap represent a change of basis for the schedule
251 * coefficients; the first rank columns span the linear part of
252 * the schedule rows
253 * cinv is the inverse of cmap.
254 * start is the first variable in the LP problem in the sequences that
255 * represents the schedule coefficients of this node
256 * nvar is the dimension of the domain
257 * nparam is the number of parameters or 0 if we are not constructing
258 * a parametric schedule
260 * scc is the index of SCC (or WCC) this node belongs to
262 * band contains the band index for each of the rows of the schedule.
263 * band_id is used to differentiate between separate bands at the same
264 * level within the same parent band, i.e., bands that are separated
265 * by the parent band or bands that are independent of each other.
266 * coincident contains a boolean for each of the rows of the schedule,
267 * indicating whether the corresponding scheduling dimension satisfies
268 * the coincidence constraints in the sense that the corresponding
269 * dependence distances are zero.
271 struct isl_sched_node {
272 isl_space *dim;
273 isl_mat *sched;
274 isl_map *sched_map;
275 int rank;
276 isl_mat *cmap;
277 isl_mat *cinv;
278 int start;
279 int nvar;
280 int nparam;
282 int scc;
284 int *band;
285 int *band_id;
286 int *coincident;
289 static int node_has_dim(const void *entry, const void *val)
291 struct isl_sched_node *node = (struct isl_sched_node *)entry;
292 isl_space *dim = (isl_space *)val;
294 return isl_space_is_equal(node->dim, dim);
297 /* An edge in the dependence graph. An edge may be used to
298 * ensure validity of the generated schedule, to minimize the dependence
299 * distance or both
301 * map is the dependence relation, with i -> j in the map if j depends on i
302 * tagged_condition and tagged_validity contain the union of all tagged
303 * condition or conditional validity dependence relations that
304 * specialize the dependence relation "map"; that is,
305 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
306 * or "tagged_validity", then i -> j is an element of "map".
307 * If these fields are NULL, then they represent the empty relation.
308 * src is the source node
309 * dst is the sink node
310 * validity is set if the edge is used to ensure correctness
311 * coincidence is used to enforce zero dependence distances
312 * proximity is set if the edge is used to minimize dependence distances
313 * condition is set if the edge represents a condition
314 * for a conditional validity schedule constraint
315 * local can only be set for condition edges and indicates that
316 * the dependence distance over the edge should be zero
317 * conditional_validity is set if the edge is used to conditionally
318 * ensure correctness
320 * For validity edges, start and end mark the sequence of inequality
321 * constraints in the LP problem that encode the validity constraint
322 * corresponding to this edge.
324 struct isl_sched_edge {
325 isl_map *map;
326 isl_union_map *tagged_condition;
327 isl_union_map *tagged_validity;
329 struct isl_sched_node *src;
330 struct isl_sched_node *dst;
332 unsigned validity : 1;
333 unsigned coincidence : 1;
334 unsigned proximity : 1;
335 unsigned local : 1;
336 unsigned condition : 1;
337 unsigned conditional_validity : 1;
339 int start;
340 int end;
343 /* Internal information about the dependence graph used during
344 * the construction of the schedule.
346 * intra_hmap is a cache, mapping dependence relations to their dual,
347 * for dependences from a node to itself
348 * inter_hmap is a cache, mapping dependence relations to their dual,
349 * for dependences between distinct nodes
351 * n is the number of nodes
352 * node is the list of nodes
353 * maxvar is the maximal number of variables over all nodes
354 * max_row is the allocated number of rows in the schedule
355 * n_row is the current (maximal) number of linearly independent
356 * rows in the node schedules
357 * n_total_row is the current number of rows in the node schedules
358 * n_band is the current number of completed bands
359 * band_start is the starting row in the node schedules of the current band
360 * root is set if this graph is the original dependence graph,
361 * without any splitting
363 * sorted contains a list of node indices sorted according to the
364 * SCC to which a node belongs
366 * n_edge is the number of edges
367 * edge is the list of edges
368 * max_edge contains the maximal number of edges of each type;
369 * in particular, it contains the number of edges in the inital graph.
370 * edge_table contains pointers into the edge array, hashed on the source
371 * and sink spaces; there is one such table for each type;
372 * a given edge may be referenced from more than one table
373 * if the corresponding relation appears in more than of the
374 * sets of dependences
376 * node_table contains pointers into the node array, hashed on the space
378 * region contains a list of variable sequences that should be non-trivial
380 * lp contains the (I)LP problem used to obtain new schedule rows
382 * src_scc and dst_scc are the source and sink SCCs of an edge with
383 * conflicting constraints
385 * scc represents the number of components
387 struct isl_sched_graph {
388 isl_map_to_basic_set *intra_hmap;
389 isl_map_to_basic_set *inter_hmap;
391 struct isl_sched_node *node;
392 int n;
393 int maxvar;
394 int max_row;
395 int n_row;
397 int *sorted;
399 int n_band;
400 int n_total_row;
401 int band_start;
403 int root;
405 struct isl_sched_edge *edge;
406 int n_edge;
407 int max_edge[isl_edge_last + 1];
408 struct isl_hash_table *edge_table[isl_edge_last + 1];
410 struct isl_hash_table *node_table;
411 struct isl_region *region;
413 isl_basic_set *lp;
415 int src_scc;
416 int dst_scc;
418 int scc;
421 /* Initialize node_table based on the list of nodes.
423 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
425 int i;
427 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
428 if (!graph->node_table)
429 return -1;
431 for (i = 0; i < graph->n; ++i) {
432 struct isl_hash_table_entry *entry;
433 uint32_t hash;
435 hash = isl_space_get_hash(graph->node[i].dim);
436 entry = isl_hash_table_find(ctx, graph->node_table, hash,
437 &node_has_dim,
438 graph->node[i].dim, 1);
439 if (!entry)
440 return -1;
441 entry->data = &graph->node[i];
444 return 0;
447 /* Return a pointer to the node that lives within the given space,
448 * or NULL if there is no such node.
450 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
451 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
453 struct isl_hash_table_entry *entry;
454 uint32_t hash;
456 hash = isl_space_get_hash(dim);
457 entry = isl_hash_table_find(ctx, graph->node_table, hash,
458 &node_has_dim, dim, 0);
460 return entry ? entry->data : NULL;
463 static int edge_has_src_and_dst(const void *entry, const void *val)
465 const struct isl_sched_edge *edge = entry;
466 const struct isl_sched_edge *temp = val;
468 return edge->src == temp->src && edge->dst == temp->dst;
471 /* Add the given edge to graph->edge_table[type].
473 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
474 enum isl_edge_type type, struct isl_sched_edge *edge)
476 struct isl_hash_table_entry *entry;
477 uint32_t hash;
479 hash = isl_hash_init();
480 hash = isl_hash_builtin(hash, edge->src);
481 hash = isl_hash_builtin(hash, edge->dst);
482 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
483 &edge_has_src_and_dst, edge, 1);
484 if (!entry)
485 return -1;
486 entry->data = edge;
488 return 0;
491 /* Allocate the edge_tables based on the maximal number of edges of
492 * each type.
494 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
496 int i;
498 for (i = 0; i <= isl_edge_last; ++i) {
499 graph->edge_table[i] = isl_hash_table_alloc(ctx,
500 graph->max_edge[i]);
501 if (!graph->edge_table[i])
502 return -1;
505 return 0;
508 /* If graph->edge_table[type] contains an edge from the given source
509 * to the given destination, then return the hash table entry of this edge.
510 * Otherwise, return NULL.
512 static struct isl_hash_table_entry *graph_find_edge_entry(
513 struct isl_sched_graph *graph,
514 enum isl_edge_type type,
515 struct isl_sched_node *src, struct isl_sched_node *dst)
517 isl_ctx *ctx = isl_space_get_ctx(src->dim);
518 uint32_t hash;
519 struct isl_sched_edge temp = { .src = src, .dst = dst };
521 hash = isl_hash_init();
522 hash = isl_hash_builtin(hash, temp.src);
523 hash = isl_hash_builtin(hash, temp.dst);
524 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
525 &edge_has_src_and_dst, &temp, 0);
529 /* If graph->edge_table[type] contains an edge from the given source
530 * to the given destination, then return this edge.
531 * Otherwise, return NULL.
533 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
534 enum isl_edge_type type,
535 struct isl_sched_node *src, struct isl_sched_node *dst)
537 struct isl_hash_table_entry *entry;
539 entry = graph_find_edge_entry(graph, type, src, dst);
540 if (!entry)
541 return NULL;
543 return entry->data;
546 /* Check whether the dependence graph has an edge of the given type
547 * between the given two nodes.
549 static int graph_has_edge(struct isl_sched_graph *graph,
550 enum isl_edge_type type,
551 struct isl_sched_node *src, struct isl_sched_node *dst)
553 struct isl_sched_edge *edge;
554 int empty;
556 edge = graph_find_edge(graph, type, src, dst);
557 if (!edge)
558 return 0;
560 empty = isl_map_plain_is_empty(edge->map);
561 if (empty < 0)
562 return -1;
564 return !empty;
567 /* Look for any edge with the same src, dst and map fields as "model".
569 * Return the matching edge if one can be found.
570 * Return "model" if no matching edge is found.
571 * Return NULL on error.
573 static struct isl_sched_edge *graph_find_matching_edge(
574 struct isl_sched_graph *graph, struct isl_sched_edge *model)
576 enum isl_edge_type i;
577 struct isl_sched_edge *edge;
579 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
580 int is_equal;
582 edge = graph_find_edge(graph, i, model->src, model->dst);
583 if (!edge)
584 continue;
585 is_equal = isl_map_plain_is_equal(model->map, edge->map);
586 if (is_equal < 0)
587 return NULL;
588 if (is_equal)
589 return edge;
592 return model;
595 /* Remove the given edge from all the edge_tables that refer to it.
597 static void graph_remove_edge(struct isl_sched_graph *graph,
598 struct isl_sched_edge *edge)
600 isl_ctx *ctx = isl_map_get_ctx(edge->map);
601 enum isl_edge_type i;
603 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
604 struct isl_hash_table_entry *entry;
606 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
607 if (!entry)
608 continue;
609 if (entry->data != edge)
610 continue;
611 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
615 /* Check whether the dependence graph has any edge
616 * between the given two nodes.
618 static int graph_has_any_edge(struct isl_sched_graph *graph,
619 struct isl_sched_node *src, struct isl_sched_node *dst)
621 enum isl_edge_type i;
622 int r;
624 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
625 r = graph_has_edge(graph, i, src, dst);
626 if (r < 0 || r)
627 return r;
630 return r;
633 /* Check whether the dependence graph has a validity edge
634 * between the given two nodes.
636 * Conditional validity edges are essentially validity edges that
637 * can be ignored if the corresponding condition edges are iteration private.
638 * Here, we are only checking for the presence of validity
639 * edges, so we need to consider the conditional validity edges too.
640 * In particular, this function is used during the detection
641 * of strongly connected components and we cannot ignore
642 * conditional validity edges during this detection.
644 static int graph_has_validity_edge(struct isl_sched_graph *graph,
645 struct isl_sched_node *src, struct isl_sched_node *dst)
647 int r;
649 r = graph_has_edge(graph, isl_edge_validity, src, dst);
650 if (r < 0 || r)
651 return r;
653 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
656 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
657 int n_node, int n_edge)
659 int i;
661 graph->n = n_node;
662 graph->n_edge = n_edge;
663 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
664 graph->sorted = isl_calloc_array(ctx, int, graph->n);
665 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
666 graph->edge = isl_calloc_array(ctx,
667 struct isl_sched_edge, graph->n_edge);
669 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
670 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
672 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
673 !graph->sorted)
674 return -1;
676 for(i = 0; i < graph->n; ++i)
677 graph->sorted[i] = i;
679 return 0;
682 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
684 int i;
686 isl_map_to_basic_set_free(graph->intra_hmap);
687 isl_map_to_basic_set_free(graph->inter_hmap);
689 for (i = 0; i < graph->n; ++i) {
690 isl_space_free(graph->node[i].dim);
691 isl_mat_free(graph->node[i].sched);
692 isl_map_free(graph->node[i].sched_map);
693 isl_mat_free(graph->node[i].cmap);
694 isl_mat_free(graph->node[i].cinv);
695 if (graph->root) {
696 free(graph->node[i].band);
697 free(graph->node[i].band_id);
698 free(graph->node[i].coincident);
701 free(graph->node);
702 free(graph->sorted);
703 for (i = 0; i < graph->n_edge; ++i) {
704 isl_map_free(graph->edge[i].map);
705 isl_union_map_free(graph->edge[i].tagged_condition);
706 isl_union_map_free(graph->edge[i].tagged_validity);
708 free(graph->edge);
709 free(graph->region);
710 for (i = 0; i <= isl_edge_last; ++i)
711 isl_hash_table_free(ctx, graph->edge_table[i]);
712 isl_hash_table_free(ctx, graph->node_table);
713 isl_basic_set_free(graph->lp);
716 /* For each "set" on which this function is called, increment
717 * graph->n by one and update graph->maxvar.
719 static int init_n_maxvar(__isl_take isl_set *set, void *user)
721 struct isl_sched_graph *graph = user;
722 int nvar = isl_set_dim(set, isl_dim_set);
724 graph->n++;
725 if (nvar > graph->maxvar)
726 graph->maxvar = nvar;
728 isl_set_free(set);
730 return 0;
733 /* Compute the number of rows that should be allocated for the schedule.
734 * The graph can be split at most "n - 1" times, there can be at most
735 * two rows for each dimension in the iteration domains (in particular,
736 * we usually have one row, but it may be split by split_scaled),
737 * and there can be one extra row for ordering the statements.
738 * Note that if we have actually split "n - 1" times, then no ordering
739 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
741 static int compute_max_row(struct isl_sched_graph *graph,
742 __isl_keep isl_union_set *domain)
744 graph->n = 0;
745 graph->maxvar = 0;
746 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
747 return -1;
748 graph->max_row = graph->n + 2 * graph->maxvar;
750 return 0;
753 /* Add a new node to the graph representing the given set.
755 static int extract_node(__isl_take isl_set *set, void *user)
757 int nvar, nparam;
758 isl_ctx *ctx;
759 isl_space *dim;
760 isl_mat *sched;
761 struct isl_sched_graph *graph = user;
762 int *band, *band_id, *coincident;
764 ctx = isl_set_get_ctx(set);
765 dim = isl_set_get_space(set);
766 isl_set_free(set);
767 nvar = isl_space_dim(dim, isl_dim_set);
768 nparam = isl_space_dim(dim, isl_dim_param);
769 if (!ctx->opt->schedule_parametric)
770 nparam = 0;
771 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
772 graph->node[graph->n].dim = dim;
773 graph->node[graph->n].nvar = nvar;
774 graph->node[graph->n].nparam = nparam;
775 graph->node[graph->n].sched = sched;
776 graph->node[graph->n].sched_map = NULL;
777 band = isl_alloc_array(ctx, int, graph->max_row);
778 graph->node[graph->n].band = band;
779 band_id = isl_calloc_array(ctx, int, graph->max_row);
780 graph->node[graph->n].band_id = band_id;
781 coincident = isl_calloc_array(ctx, int, graph->max_row);
782 graph->node[graph->n].coincident = coincident;
783 graph->n++;
785 if (!sched || (graph->max_row && (!band || !band_id || !coincident)))
786 return -1;
788 return 0;
791 struct isl_extract_edge_data {
792 enum isl_edge_type type;
793 struct isl_sched_graph *graph;
796 /* Merge edge2 into edge1, freeing the contents of edge2.
797 * "type" is the type of the schedule constraint from which edge2 was
798 * extracted.
799 * Return 0 on success and -1 on failure.
801 * edge1 and edge2 are assumed to have the same value for the map field.
803 static int merge_edge(enum isl_edge_type type, struct isl_sched_edge *edge1,
804 struct isl_sched_edge *edge2)
806 edge1->validity |= edge2->validity;
807 edge1->coincidence |= edge2->coincidence;
808 edge1->proximity |= edge2->proximity;
809 edge1->condition |= edge2->condition;
810 edge1->conditional_validity |= edge2->conditional_validity;
811 isl_map_free(edge2->map);
813 if (type == isl_edge_condition) {
814 if (!edge1->tagged_condition)
815 edge1->tagged_condition = edge2->tagged_condition;
816 else
817 edge1->tagged_condition =
818 isl_union_map_union(edge1->tagged_condition,
819 edge2->tagged_condition);
822 if (type == isl_edge_conditional_validity) {
823 if (!edge1->tagged_validity)
824 edge1->tagged_validity = edge2->tagged_validity;
825 else
826 edge1->tagged_validity =
827 isl_union_map_union(edge1->tagged_validity,
828 edge2->tagged_validity);
831 if (type == isl_edge_condition && !edge1->tagged_condition)
832 return -1;
833 if (type == isl_edge_conditional_validity && !edge1->tagged_validity)
834 return -1;
836 return 0;
839 /* Insert dummy tags in domain and range of "map".
841 * In particular, if "map" is of the form
843 * A -> B
845 * then return
847 * [A -> dummy_tag] -> [B -> dummy_tag]
849 * where the dummy_tags are identical and equal to any dummy tags
850 * introduced by any other call to this function.
852 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
854 static char dummy;
855 isl_ctx *ctx;
856 isl_id *id;
857 isl_space *space;
858 isl_set *domain, *range;
860 ctx = isl_map_get_ctx(map);
862 id = isl_id_alloc(ctx, NULL, &dummy);
863 space = isl_space_params(isl_map_get_space(map));
864 space = isl_space_set_from_params(space);
865 space = isl_space_set_tuple_id(space, isl_dim_set, id);
866 space = isl_space_map_from_set(space);
868 domain = isl_map_wrap(map);
869 range = isl_map_wrap(isl_map_universe(space));
870 map = isl_map_from_domain_and_range(domain, range);
871 map = isl_map_zip(map);
873 return map;
876 /* Add a new edge to the graph based on the given map
877 * and add it to data->graph->edge_table[data->type].
878 * If a dependence relation of a given type happens to be identical
879 * to one of the dependence relations of a type that was added before,
880 * then we don't create a new edge, but instead mark the original edge
881 * as also representing a dependence of the current type.
883 * Edges of type isl_edge_condition or isl_edge_conditional_validity
884 * may be specified as "tagged" dependence relations. That is, "map"
885 * may contain elements * (i -> a) -> (j -> b), where i -> j denotes
886 * the dependence on iterations and a and b are tags.
887 * edge->map is set to the relation containing the elements i -> j,
888 * while edge->tagged_condition and edge->tagged_validity contain
889 * the union of all the "map" relations
890 * for which extract_edge is called that result in the same edge->map.
892 static int extract_edge(__isl_take isl_map *map, void *user)
894 isl_ctx *ctx = isl_map_get_ctx(map);
895 struct isl_extract_edge_data *data = user;
896 struct isl_sched_graph *graph = data->graph;
897 struct isl_sched_node *src, *dst;
898 isl_space *dim;
899 struct isl_sched_edge *edge;
900 isl_map *tagged = NULL;
902 if (data->type == isl_edge_condition ||
903 data->type == isl_edge_conditional_validity) {
904 if (isl_map_can_zip(map)) {
905 tagged = isl_map_copy(map);
906 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
907 } else {
908 tagged = insert_dummy_tags(isl_map_copy(map));
912 dim = isl_space_domain(isl_map_get_space(map));
913 src = graph_find_node(ctx, graph, dim);
914 isl_space_free(dim);
915 dim = isl_space_range(isl_map_get_space(map));
916 dst = graph_find_node(ctx, graph, dim);
917 isl_space_free(dim);
919 if (!src || !dst) {
920 isl_map_free(map);
921 isl_map_free(tagged);
922 return 0;
925 graph->edge[graph->n_edge].src = src;
926 graph->edge[graph->n_edge].dst = dst;
927 graph->edge[graph->n_edge].map = map;
928 graph->edge[graph->n_edge].validity = 0;
929 graph->edge[graph->n_edge].coincidence = 0;
930 graph->edge[graph->n_edge].proximity = 0;
931 graph->edge[graph->n_edge].condition = 0;
932 graph->edge[graph->n_edge].local = 0;
933 graph->edge[graph->n_edge].conditional_validity = 0;
934 graph->edge[graph->n_edge].tagged_condition = NULL;
935 graph->edge[graph->n_edge].tagged_validity = NULL;
936 if (data->type == isl_edge_validity)
937 graph->edge[graph->n_edge].validity = 1;
938 if (data->type == isl_edge_coincidence)
939 graph->edge[graph->n_edge].coincidence = 1;
940 if (data->type == isl_edge_proximity)
941 graph->edge[graph->n_edge].proximity = 1;
942 if (data->type == isl_edge_condition) {
943 graph->edge[graph->n_edge].condition = 1;
944 graph->edge[graph->n_edge].tagged_condition =
945 isl_union_map_from_map(tagged);
947 if (data->type == isl_edge_conditional_validity) {
948 graph->edge[graph->n_edge].conditional_validity = 1;
949 graph->edge[graph->n_edge].tagged_validity =
950 isl_union_map_from_map(tagged);
953 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
954 if (edge == &graph->edge[graph->n_edge])
955 return graph_edge_table_add(ctx, graph, data->type,
956 &graph->edge[graph->n_edge++]);
958 if (merge_edge(data->type, edge, &graph->edge[graph->n_edge]) < 0)
959 return -1;
961 return graph_edge_table_add(ctx, graph, data->type, edge);
964 /* Check whether there is any dependence from node[j] to node[i]
965 * or from node[i] to node[j].
967 static int node_follows_weak(int i, int j, void *user)
969 int f;
970 struct isl_sched_graph *graph = user;
972 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
973 if (f < 0 || f)
974 return f;
975 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
978 /* Check whether there is a (conditional) validity dependence from node[j]
979 * to node[i], forcing node[i] to follow node[j].
981 static int node_follows_strong(int i, int j, void *user)
983 struct isl_sched_graph *graph = user;
985 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
988 /* Use Tarjan's algorithm for computing the strongly connected components
989 * in the dependence graph (only validity edges).
990 * If weak is set, we consider the graph to be undirected and
991 * we effectively compute the (weakly) connected components.
992 * Additionally, we also consider other edges when weak is set.
994 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
996 int i, n;
997 struct isl_tarjan_graph *g = NULL;
999 g = isl_tarjan_graph_init(ctx, graph->n,
1000 weak ? &node_follows_weak : &node_follows_strong, graph);
1001 if (!g)
1002 return -1;
1004 graph->scc = 0;
1005 i = 0;
1006 n = graph->n;
1007 while (n) {
1008 while (g->order[i] != -1) {
1009 graph->node[g->order[i]].scc = graph->scc;
1010 --n;
1011 ++i;
1013 ++i;
1014 graph->scc++;
1017 isl_tarjan_graph_free(g);
1019 return 0;
1022 /* Apply Tarjan's algorithm to detect the strongly connected components
1023 * in the dependence graph.
1025 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1027 return detect_ccs(ctx, graph, 0);
1030 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1031 * in the dependence graph.
1033 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1035 return detect_ccs(ctx, graph, 1);
1038 static int cmp_scc(const void *a, const void *b, void *data)
1040 struct isl_sched_graph *graph = data;
1041 const int *i1 = a;
1042 const int *i2 = b;
1044 return graph->node[*i1].scc - graph->node[*i2].scc;
1047 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1049 static int sort_sccs(struct isl_sched_graph *graph)
1051 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1054 /* Given a dependence relation R from a node to itself,
1055 * construct the set of coefficients of valid constraints for elements
1056 * in that dependence relation.
1057 * In particular, the result contains tuples of coefficients
1058 * c_0, c_n, c_x such that
1060 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1062 * or, equivalently,
1064 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1066 * We choose here to compute the dual of delta R.
1067 * Alternatively, we could have computed the dual of R, resulting
1068 * in a set of tuples c_0, c_n, c_x, c_y, and then
1069 * plugged in (c_0, c_n, c_x, -c_x).
1071 static __isl_give isl_basic_set *intra_coefficients(
1072 struct isl_sched_graph *graph, __isl_take isl_map *map)
1074 isl_set *delta;
1075 isl_basic_set *coef;
1077 if (isl_map_to_basic_set_has(graph->intra_hmap, map))
1078 return isl_map_to_basic_set_get(graph->intra_hmap, map);
1080 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
1081 coef = isl_set_coefficients(delta);
1082 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, map,
1083 isl_basic_set_copy(coef));
1085 return coef;
1088 /* Given a dependence relation R, * construct the set of coefficients
1089 * of valid constraints for elements in that dependence relation.
1090 * In particular, the result contains tuples of coefficients
1091 * c_0, c_n, c_x, c_y such that
1093 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1096 static __isl_give isl_basic_set *inter_coefficients(
1097 struct isl_sched_graph *graph, __isl_take isl_map *map)
1099 isl_set *set;
1100 isl_basic_set *coef;
1102 if (isl_map_to_basic_set_has(graph->inter_hmap, map))
1103 return isl_map_to_basic_set_get(graph->inter_hmap, map);
1105 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
1106 coef = isl_set_coefficients(set);
1107 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, map,
1108 isl_basic_set_copy(coef));
1110 return coef;
1113 /* Add constraints to graph->lp that force validity for the given
1114 * dependence from a node i to itself.
1115 * That is, add constraints that enforce
1117 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1118 * = c_i_x (y - x) >= 0
1120 * for each (x,y) in R.
1121 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1122 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1123 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1124 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1126 * Actually, we do not construct constraints for the c_i_x themselves,
1127 * but for the coefficients of c_i_x written as a linear combination
1128 * of the columns in node->cmap.
1130 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
1131 struct isl_sched_edge *edge)
1133 unsigned total;
1134 isl_map *map = isl_map_copy(edge->map);
1135 isl_ctx *ctx = isl_map_get_ctx(map);
1136 isl_space *dim;
1137 isl_dim_map *dim_map;
1138 isl_basic_set *coef;
1139 struct isl_sched_node *node = edge->src;
1141 coef = intra_coefficients(graph, map);
1143 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1145 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1146 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1147 if (!coef)
1148 goto error;
1150 total = isl_basic_set_total_dim(graph->lp);
1151 dim_map = isl_dim_map_alloc(ctx, total);
1152 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1153 isl_space_dim(dim, isl_dim_set), 1,
1154 node->nvar, -1);
1155 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1156 isl_space_dim(dim, isl_dim_set), 1,
1157 node->nvar, 1);
1158 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1159 coef->n_eq, coef->n_ineq);
1160 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1161 coef, dim_map);
1162 isl_space_free(dim);
1164 return 0;
1165 error:
1166 isl_space_free(dim);
1167 return -1;
1170 /* Add constraints to graph->lp that force validity for the given
1171 * dependence from node i to node j.
1172 * That is, add constraints that enforce
1174 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1176 * for each (x,y) in R.
1177 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1178 * of valid constraints for R and then plug in
1179 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
1180 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
1181 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1182 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1184 * Actually, we do not construct constraints for the c_*_x themselves,
1185 * but for the coefficients of c_*_x written as a linear combination
1186 * of the columns in node->cmap.
1188 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
1189 struct isl_sched_edge *edge)
1191 unsigned total;
1192 isl_map *map = isl_map_copy(edge->map);
1193 isl_ctx *ctx = isl_map_get_ctx(map);
1194 isl_space *dim;
1195 isl_dim_map *dim_map;
1196 isl_basic_set *coef;
1197 struct isl_sched_node *src = edge->src;
1198 struct isl_sched_node *dst = edge->dst;
1200 coef = inter_coefficients(graph, map);
1202 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1204 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1205 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1206 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1207 isl_space_dim(dim, isl_dim_set) + src->nvar,
1208 isl_mat_copy(dst->cmap));
1209 if (!coef)
1210 goto error;
1212 total = isl_basic_set_total_dim(graph->lp);
1213 dim_map = isl_dim_map_alloc(ctx, total);
1215 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
1216 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
1217 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
1218 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1219 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1220 dst->nvar, -1);
1221 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1222 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1223 dst->nvar, 1);
1225 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
1226 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
1227 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
1228 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1229 isl_space_dim(dim, isl_dim_set), 1,
1230 src->nvar, 1);
1231 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1232 isl_space_dim(dim, isl_dim_set), 1,
1233 src->nvar, -1);
1235 edge->start = graph->lp->n_ineq;
1236 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1237 coef->n_eq, coef->n_ineq);
1238 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1239 coef, dim_map);
1240 if (!graph->lp)
1241 goto error;
1242 isl_space_free(dim);
1243 edge->end = graph->lp->n_ineq;
1245 return 0;
1246 error:
1247 isl_space_free(dim);
1248 return -1;
1251 /* Add constraints to graph->lp that bound the dependence distance for the given
1252 * dependence from a node i to itself.
1253 * If s = 1, we add the constraint
1255 * c_i_x (y - x) <= m_0 + m_n n
1257 * or
1259 * -c_i_x (y - x) + m_0 + m_n n >= 0
1261 * for each (x,y) in R.
1262 * If s = -1, we add the constraint
1264 * -c_i_x (y - x) <= m_0 + m_n n
1266 * or
1268 * c_i_x (y - x) + m_0 + m_n n >= 0
1270 * for each (x,y) in R.
1271 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1272 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1273 * with each coefficient (except m_0) represented as a pair of non-negative
1274 * coefficients.
1276 * Actually, we do not construct constraints for the c_i_x themselves,
1277 * but for the coefficients of c_i_x written as a linear combination
1278 * of the columns in node->cmap.
1281 * If "local" is set, then we add constraints
1283 * c_i_x (y - x) <= 0
1285 * or
1287 * -c_i_x (y - x) <= 0
1289 * instead, forcing the dependence distance to be (less than or) equal to 0.
1290 * That is, we plug in (0, 0, -s * c_i_x),
1291 * Note that dependences marked local are treated as validity constraints
1292 * by add_all_validity_constraints and therefore also have
1293 * their distances bounded by 0 from below.
1295 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
1296 struct isl_sched_edge *edge, int s, int local)
1298 unsigned total;
1299 unsigned nparam;
1300 isl_map *map = isl_map_copy(edge->map);
1301 isl_ctx *ctx = isl_map_get_ctx(map);
1302 isl_space *dim;
1303 isl_dim_map *dim_map;
1304 isl_basic_set *coef;
1305 struct isl_sched_node *node = edge->src;
1307 coef = intra_coefficients(graph, map);
1309 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1311 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1312 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
1313 if (!coef)
1314 goto error;
1316 nparam = isl_space_dim(node->dim, isl_dim_param);
1317 total = isl_basic_set_total_dim(graph->lp);
1318 dim_map = isl_dim_map_alloc(ctx, total);
1320 if (!local) {
1321 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1322 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1323 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1325 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
1326 isl_space_dim(dim, isl_dim_set), 1,
1327 node->nvar, s);
1328 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
1329 isl_space_dim(dim, isl_dim_set), 1,
1330 node->nvar, -s);
1331 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1332 coef->n_eq, coef->n_ineq);
1333 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1334 coef, dim_map);
1335 isl_space_free(dim);
1337 return 0;
1338 error:
1339 isl_space_free(dim);
1340 return -1;
1343 /* Add constraints to graph->lp that bound the dependence distance for the given
1344 * dependence from node i to node j.
1345 * If s = 1, we add the constraint
1347 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1348 * <= m_0 + m_n n
1350 * or
1352 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1353 * m_0 + m_n n >= 0
1355 * for each (x,y) in R.
1356 * If s = -1, we add the constraint
1358 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1359 * <= m_0 + m_n n
1361 * or
1363 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1364 * m_0 + m_n n >= 0
1366 * for each (x,y) in R.
1367 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1368 * of valid constraints for R and then plug in
1369 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1370 * -s*c_j_x+s*c_i_x)
1371 * with each coefficient (except m_0, c_j_0 and c_i_0)
1372 * represented as a pair of non-negative coefficients.
1374 * Actually, we do not construct constraints for the c_*_x themselves,
1375 * but for the coefficients of c_*_x written as a linear combination
1376 * of the columns in node->cmap.
1379 * If "local" is set, then we add constraints
1381 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1383 * or
1385 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0
1387 * instead, forcing the dependence distance to be (less than or) equal to 0.
1388 * That is, we plug in
1389 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x).
1390 * Note that dependences marked local are treated as validity constraints
1391 * by add_all_validity_constraints and therefore also have
1392 * their distances bounded by 0 from below.
1394 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1395 struct isl_sched_edge *edge, int s, int local)
1397 unsigned total;
1398 unsigned nparam;
1399 isl_map *map = isl_map_copy(edge->map);
1400 isl_ctx *ctx = isl_map_get_ctx(map);
1401 isl_space *dim;
1402 isl_dim_map *dim_map;
1403 isl_basic_set *coef;
1404 struct isl_sched_node *src = edge->src;
1405 struct isl_sched_node *dst = edge->dst;
1407 coef = inter_coefficients(graph, map);
1409 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1411 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1412 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1413 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1414 isl_space_dim(dim, isl_dim_set) + src->nvar,
1415 isl_mat_copy(dst->cmap));
1416 if (!coef)
1417 goto error;
1419 nparam = isl_space_dim(src->dim, isl_dim_param);
1420 total = isl_basic_set_total_dim(graph->lp);
1421 dim_map = isl_dim_map_alloc(ctx, total);
1423 if (!local) {
1424 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1425 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1426 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1429 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1430 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1431 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1432 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1433 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1434 dst->nvar, s);
1435 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1436 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1437 dst->nvar, -s);
1439 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1440 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1441 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1442 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1443 isl_space_dim(dim, isl_dim_set), 1,
1444 src->nvar, -s);
1445 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1446 isl_space_dim(dim, isl_dim_set), 1,
1447 src->nvar, s);
1449 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1450 coef->n_eq, coef->n_ineq);
1451 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1452 coef, dim_map);
1453 isl_space_free(dim);
1455 return 0;
1456 error:
1457 isl_space_free(dim);
1458 return -1;
1461 /* Add all validity constraints to graph->lp.
1463 * An edge that is forced to be local needs to have its dependence
1464 * distances equal to zero. We take care of bounding them by 0 from below
1465 * here. add_all_proximity_constraints takes care of bounding them by 0
1466 * from above.
1468 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1469 * Otherwise, we ignore them.
1471 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1472 int use_coincidence)
1474 int i;
1476 for (i = 0; i < graph->n_edge; ++i) {
1477 struct isl_sched_edge *edge= &graph->edge[i];
1478 int local;
1480 local = edge->local || (edge->coincidence && use_coincidence);
1481 if (!edge->validity && !local)
1482 continue;
1483 if (edge->src != edge->dst)
1484 continue;
1485 if (add_intra_validity_constraints(graph, edge) < 0)
1486 return -1;
1489 for (i = 0; i < graph->n_edge; ++i) {
1490 struct isl_sched_edge *edge = &graph->edge[i];
1491 int local;
1493 local = edge->local || (edge->coincidence && use_coincidence);
1494 if (!edge->validity && !local)
1495 continue;
1496 if (edge->src == edge->dst)
1497 continue;
1498 if (add_inter_validity_constraints(graph, edge) < 0)
1499 return -1;
1502 return 0;
1505 /* Add constraints to graph->lp that bound the dependence distance
1506 * for all dependence relations.
1507 * If a given proximity dependence is identical to a validity
1508 * dependence, then the dependence distance is already bounded
1509 * from below (by zero), so we only need to bound the distance
1510 * from above. (This includes the case of "local" dependences
1511 * which are treated as validity dependence by add_all_validity_constraints.)
1512 * Otherwise, we need to bound the distance both from above and from below.
1514 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1515 * Otherwise, we ignore them.
1517 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1518 int use_coincidence)
1520 int i;
1522 for (i = 0; i < graph->n_edge; ++i) {
1523 struct isl_sched_edge *edge= &graph->edge[i];
1524 int local;
1526 local = edge->local || (edge->coincidence && use_coincidence);
1527 if (!edge->proximity && !local)
1528 continue;
1529 if (edge->src == edge->dst &&
1530 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1531 return -1;
1532 if (edge->src != edge->dst &&
1533 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1534 return -1;
1535 if (edge->validity || local)
1536 continue;
1537 if (edge->src == edge->dst &&
1538 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1539 return -1;
1540 if (edge->src != edge->dst &&
1541 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1542 return -1;
1545 return 0;
1548 /* Compute a basis for the rows in the linear part of the schedule
1549 * and extend this basis to a full basis. The remaining rows
1550 * can then be used to force linear independence from the rows
1551 * in the schedule.
1553 * In particular, given the schedule rows S, we compute
1555 * S = H Q
1556 * S U = H
1558 * with H the Hermite normal form of S. That is, all but the
1559 * first rank columns of H are zero and so each row in S is
1560 * a linear combination of the first rank rows of Q.
1561 * The matrix Q is then transposed because we will write the
1562 * coefficients of the next schedule row as a column vector s
1563 * and express this s as a linear combination s = Q c of the
1564 * computed basis.
1565 * Similarly, the matrix U is transposed such that we can
1566 * compute the coefficients c = U s from a schedule row s.
1568 static int node_update_cmap(struct isl_sched_node *node)
1570 isl_mat *H, *U, *Q;
1571 int n_row = isl_mat_rows(node->sched);
1573 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1574 1 + node->nparam, node->nvar);
1576 H = isl_mat_left_hermite(H, 0, &U, &Q);
1577 isl_mat_free(node->cmap);
1578 isl_mat_free(node->cinv);
1579 node->cmap = isl_mat_transpose(Q);
1580 node->cinv = isl_mat_transpose(U);
1581 node->rank = isl_mat_initial_non_zero_cols(H);
1582 isl_mat_free(H);
1584 if (!node->cmap || !node->cinv || node->rank < 0)
1585 return -1;
1586 return 0;
1589 /* How many times should we count the constraints in "edge"?
1591 * If carry is set, then we are counting the number of
1592 * (validity or conditional validity) constraints that will be added
1593 * in setup_carry_lp and we count each edge exactly once.
1595 * Otherwise, we count as follows
1596 * validity -> 1 (>= 0)
1597 * validity+proximity -> 2 (>= 0 and upper bound)
1598 * proximity -> 2 (lower and upper bound)
1599 * local(+any) -> 2 (>= 0 and <= 0)
1601 * If an edge is only marked conditional_validity then it counts
1602 * as zero since it is only checked afterwards.
1604 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1605 * Otherwise, we ignore them.
1607 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
1608 int use_coincidence)
1610 if (carry && !edge->validity && !edge->conditional_validity)
1611 return 0;
1612 if (carry)
1613 return 1;
1614 if (edge->proximity || edge->local)
1615 return 2;
1616 if (use_coincidence && edge->coincidence)
1617 return 2;
1618 if (edge->validity)
1619 return 1;
1620 return 0;
1623 /* Count the number of equality and inequality constraints
1624 * that will be added for the given map.
1626 * "use_coincidence" is set if we should take into account coincidence edges.
1628 static int count_map_constraints(struct isl_sched_graph *graph,
1629 struct isl_sched_edge *edge, __isl_take isl_map *map,
1630 int *n_eq, int *n_ineq, int carry, int use_coincidence)
1632 isl_basic_set *coef;
1633 int f = edge_multiplicity(edge, carry, use_coincidence);
1635 if (f == 0) {
1636 isl_map_free(map);
1637 return 0;
1640 if (edge->src == edge->dst)
1641 coef = intra_coefficients(graph, map);
1642 else
1643 coef = inter_coefficients(graph, map);
1644 if (!coef)
1645 return -1;
1646 *n_eq += f * coef->n_eq;
1647 *n_ineq += f * coef->n_ineq;
1648 isl_basic_set_free(coef);
1650 return 0;
1653 /* Count the number of equality and inequality constraints
1654 * that will be added to the main lp problem.
1655 * We count as follows
1656 * validity -> 1 (>= 0)
1657 * validity+proximity -> 2 (>= 0 and upper bound)
1658 * proximity -> 2 (lower and upper bound)
1659 * local(+any) -> 2 (>= 0 and <= 0)
1661 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1662 * Otherwise, we ignore them.
1664 static int count_constraints(struct isl_sched_graph *graph,
1665 int *n_eq, int *n_ineq, int use_coincidence)
1667 int i;
1669 *n_eq = *n_ineq = 0;
1670 for (i = 0; i < graph->n_edge; ++i) {
1671 struct isl_sched_edge *edge= &graph->edge[i];
1672 isl_map *map = isl_map_copy(edge->map);
1674 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
1675 0, use_coincidence) < 0)
1676 return -1;
1679 return 0;
1682 /* Count the number of constraints that will be added by
1683 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1684 * accordingly.
1686 * In practice, add_bound_coefficient_constraints only adds inequalities.
1688 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1689 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1691 int i;
1693 if (ctx->opt->schedule_max_coefficient == -1)
1694 return 0;
1696 for (i = 0; i < graph->n; ++i)
1697 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1699 return 0;
1702 /* Add constraints that bound the values of the variable and parameter
1703 * coefficients of the schedule.
1705 * The maximal value of the coefficients is defined by the option
1706 * 'schedule_max_coefficient'.
1708 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1709 struct isl_sched_graph *graph)
1711 int i, j, k;
1712 int max_coefficient;
1713 int total;
1715 max_coefficient = ctx->opt->schedule_max_coefficient;
1717 if (max_coefficient == -1)
1718 return 0;
1720 total = isl_basic_set_total_dim(graph->lp);
1722 for (i = 0; i < graph->n; ++i) {
1723 struct isl_sched_node *node = &graph->node[i];
1724 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1725 int dim;
1726 k = isl_basic_set_alloc_inequality(graph->lp);
1727 if (k < 0)
1728 return -1;
1729 dim = 1 + node->start + 1 + j;
1730 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1731 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1732 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1736 return 0;
1739 /* Construct an ILP problem for finding schedule coefficients
1740 * that result in non-negative, but small dependence distances
1741 * over all dependences.
1742 * In particular, the dependence distances over proximity edges
1743 * are bounded by m_0 + m_n n and we compute schedule coefficients
1744 * with small values (preferably zero) of m_n and m_0.
1746 * All variables of the ILP are non-negative. The actual coefficients
1747 * may be negative, so each coefficient is represented as the difference
1748 * of two non-negative variables. The negative part always appears
1749 * immediately before the positive part.
1750 * Other than that, the variables have the following order
1752 * - sum of positive and negative parts of m_n coefficients
1753 * - m_0
1754 * - sum of positive and negative parts of all c_n coefficients
1755 * (unconstrained when computing non-parametric schedules)
1756 * - sum of positive and negative parts of all c_x coefficients
1757 * - positive and negative parts of m_n coefficients
1758 * - for each node
1759 * - c_i_0
1760 * - positive and negative parts of c_i_n (if parametric)
1761 * - positive and negative parts of c_i_x
1763 * The c_i_x are not represented directly, but through the columns of
1764 * node->cmap. That is, the computed values are for variable t_i_x
1765 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1767 * The constraints are those from the edges plus two or three equalities
1768 * to express the sums.
1770 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1771 * Otherwise, we ignore them.
1773 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1774 int use_coincidence)
1776 int i, j;
1777 int k;
1778 unsigned nparam;
1779 unsigned total;
1780 isl_space *dim;
1781 int parametric;
1782 int param_pos;
1783 int n_eq, n_ineq;
1784 int max_constant_term;
1786 max_constant_term = ctx->opt->schedule_max_constant_term;
1788 parametric = ctx->opt->schedule_parametric;
1789 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1790 param_pos = 4;
1791 total = param_pos + 2 * nparam;
1792 for (i = 0; i < graph->n; ++i) {
1793 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1794 if (node_update_cmap(node) < 0)
1795 return -1;
1796 node->start = total;
1797 total += 1 + 2 * (node->nparam + node->nvar);
1800 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
1801 return -1;
1802 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
1803 return -1;
1805 dim = isl_space_set_alloc(ctx, 0, total);
1806 isl_basic_set_free(graph->lp);
1807 n_eq += 2 + parametric;
1808 if (max_constant_term != -1)
1809 n_ineq += graph->n;
1811 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1813 k = isl_basic_set_alloc_equality(graph->lp);
1814 if (k < 0)
1815 return -1;
1816 isl_seq_clr(graph->lp->eq[k], 1 + total);
1817 isl_int_set_si(graph->lp->eq[k][1], -1);
1818 for (i = 0; i < 2 * nparam; ++i)
1819 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1821 if (parametric) {
1822 k = isl_basic_set_alloc_equality(graph->lp);
1823 if (k < 0)
1824 return -1;
1825 isl_seq_clr(graph->lp->eq[k], 1 + total);
1826 isl_int_set_si(graph->lp->eq[k][3], -1);
1827 for (i = 0; i < graph->n; ++i) {
1828 int pos = 1 + graph->node[i].start + 1;
1830 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1831 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1835 k = isl_basic_set_alloc_equality(graph->lp);
1836 if (k < 0)
1837 return -1;
1838 isl_seq_clr(graph->lp->eq[k], 1 + total);
1839 isl_int_set_si(graph->lp->eq[k][4], -1);
1840 for (i = 0; i < graph->n; ++i) {
1841 struct isl_sched_node *node = &graph->node[i];
1842 int pos = 1 + node->start + 1 + 2 * node->nparam;
1844 for (j = 0; j < 2 * node->nvar; ++j)
1845 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1848 if (max_constant_term != -1)
1849 for (i = 0; i < graph->n; ++i) {
1850 struct isl_sched_node *node = &graph->node[i];
1851 k = isl_basic_set_alloc_inequality(graph->lp);
1852 if (k < 0)
1853 return -1;
1854 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1855 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1856 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1859 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1860 return -1;
1861 if (add_all_validity_constraints(graph, use_coincidence) < 0)
1862 return -1;
1863 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
1864 return -1;
1866 return 0;
1869 /* Analyze the conflicting constraint found by
1870 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1871 * constraint of one of the edges between distinct nodes, living, moreover
1872 * in distinct SCCs, then record the source and sink SCC as this may
1873 * be a good place to cut between SCCs.
1875 static int check_conflict(int con, void *user)
1877 int i;
1878 struct isl_sched_graph *graph = user;
1880 if (graph->src_scc >= 0)
1881 return 0;
1883 con -= graph->lp->n_eq;
1885 if (con >= graph->lp->n_ineq)
1886 return 0;
1888 for (i = 0; i < graph->n_edge; ++i) {
1889 if (!graph->edge[i].validity)
1890 continue;
1891 if (graph->edge[i].src == graph->edge[i].dst)
1892 continue;
1893 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1894 continue;
1895 if (graph->edge[i].start > con)
1896 continue;
1897 if (graph->edge[i].end <= con)
1898 continue;
1899 graph->src_scc = graph->edge[i].src->scc;
1900 graph->dst_scc = graph->edge[i].dst->scc;
1903 return 0;
1906 /* Check whether the next schedule row of the given node needs to be
1907 * non-trivial. Lower-dimensional domains may have some trivial rows,
1908 * but as soon as the number of remaining required non-trivial rows
1909 * is as large as the number or remaining rows to be computed,
1910 * all remaining rows need to be non-trivial.
1912 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1914 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1917 /* Solve the ILP problem constructed in setup_lp.
1918 * For each node such that all the remaining rows of its schedule
1919 * need to be non-trivial, we construct a non-triviality region.
1920 * This region imposes that the next row is independent of previous rows.
1921 * In particular the coefficients c_i_x are represented by t_i_x
1922 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1923 * its first columns span the rows of the previously computed part
1924 * of the schedule. The non-triviality region enforces that at least
1925 * one of the remaining components of t_i_x is non-zero, i.e.,
1926 * that the new schedule row depends on at least one of the remaining
1927 * columns of Q.
1929 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1931 int i;
1932 isl_vec *sol;
1933 isl_basic_set *lp;
1935 for (i = 0; i < graph->n; ++i) {
1936 struct isl_sched_node *node = &graph->node[i];
1937 int skip = node->rank;
1938 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1939 if (needs_row(graph, node))
1940 graph->region[i].len = 2 * (node->nvar - skip);
1941 else
1942 graph->region[i].len = 0;
1944 lp = isl_basic_set_copy(graph->lp);
1945 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1946 graph->region, &check_conflict, graph);
1947 return sol;
1950 /* Update the schedules of all nodes based on the given solution
1951 * of the LP problem.
1952 * The new row is added to the current band.
1953 * All possibly negative coefficients are encoded as a difference
1954 * of two non-negative variables, so we need to perform the subtraction
1955 * here. Moreover, if use_cmap is set, then the solution does
1956 * not refer to the actual coefficients c_i_x, but instead to variables
1957 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1958 * In this case, we then also need to perform this multiplication
1959 * to obtain the values of c_i_x.
1961 * If coincident is set, then the caller guarantees that the new
1962 * row satisfies the coincidence constraints.
1964 static int update_schedule(struct isl_sched_graph *graph,
1965 __isl_take isl_vec *sol, int use_cmap, int coincident)
1967 int i, j;
1968 isl_vec *csol = NULL;
1970 if (!sol)
1971 goto error;
1972 if (sol->size == 0)
1973 isl_die(sol->ctx, isl_error_internal,
1974 "no solution found", goto error);
1975 if (graph->n_total_row >= graph->max_row)
1976 isl_die(sol->ctx, isl_error_internal,
1977 "too many schedule rows", goto error);
1979 for (i = 0; i < graph->n; ++i) {
1980 struct isl_sched_node *node = &graph->node[i];
1981 int pos = node->start;
1982 int row = isl_mat_rows(node->sched);
1984 isl_vec_free(csol);
1985 csol = isl_vec_alloc(sol->ctx, node->nvar);
1986 if (!csol)
1987 goto error;
1989 isl_map_free(node->sched_map);
1990 node->sched_map = NULL;
1991 node->sched = isl_mat_add_rows(node->sched, 1);
1992 if (!node->sched)
1993 goto error;
1994 node->sched = isl_mat_set_element(node->sched, row, 0,
1995 sol->el[1 + pos]);
1996 for (j = 0; j < node->nparam + node->nvar; ++j)
1997 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1998 sol->el[1 + pos + 1 + 2 * j + 1],
1999 sol->el[1 + pos + 1 + 2 * j]);
2000 for (j = 0; j < node->nparam; ++j)
2001 node->sched = isl_mat_set_element(node->sched,
2002 row, 1 + j, sol->el[1+pos+1+2*j+1]);
2003 for (j = 0; j < node->nvar; ++j)
2004 isl_int_set(csol->el[j],
2005 sol->el[1+pos+1+2*(node->nparam+j)+1]);
2006 if (use_cmap)
2007 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2008 csol);
2009 if (!csol)
2010 goto error;
2011 for (j = 0; j < node->nvar; ++j)
2012 node->sched = isl_mat_set_element(node->sched,
2013 row, 1 + node->nparam + j, csol->el[j]);
2014 node->band[graph->n_total_row] = graph->n_band;
2015 node->coincident[graph->n_total_row] = coincident;
2017 isl_vec_free(sol);
2018 isl_vec_free(csol);
2020 graph->n_row++;
2021 graph->n_total_row++;
2023 return 0;
2024 error:
2025 isl_vec_free(sol);
2026 isl_vec_free(csol);
2027 return -1;
2030 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2031 * and return this isl_aff.
2033 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2034 struct isl_sched_node *node, int row)
2036 int j;
2037 isl_int v;
2038 isl_aff *aff;
2040 isl_int_init(v);
2042 aff = isl_aff_zero_on_domain(ls);
2043 isl_mat_get_element(node->sched, row, 0, &v);
2044 aff = isl_aff_set_constant(aff, v);
2045 for (j = 0; j < node->nparam; ++j) {
2046 isl_mat_get_element(node->sched, row, 1 + j, &v);
2047 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2049 for (j = 0; j < node->nvar; ++j) {
2050 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2051 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2054 isl_int_clear(v);
2056 return aff;
2059 /* Convert node->sched into a multi_aff and return this multi_aff.
2061 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2062 struct isl_sched_node *node)
2064 int i;
2065 isl_space *space;
2066 isl_local_space *ls;
2067 isl_aff *aff;
2068 isl_multi_aff *ma;
2069 int nrow, ncol;
2071 nrow = isl_mat_rows(node->sched);
2072 ncol = isl_mat_cols(node->sched) - 1;
2073 space = isl_space_from_domain(isl_space_copy(node->dim));
2074 space = isl_space_add_dims(space, isl_dim_out, nrow);
2075 ma = isl_multi_aff_zero(space);
2076 ls = isl_local_space_from_space(isl_space_copy(node->dim));
2078 for (i = 0; i < nrow; ++i) {
2079 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2080 ma = isl_multi_aff_set_aff(ma, i, aff);
2083 isl_local_space_free(ls);
2085 return ma;
2088 /* Convert node->sched into a map and return this map.
2090 * The result is cached in node->sched_map, which needs to be released
2091 * whenever node->sched is updated.
2093 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2095 if (!node->sched_map) {
2096 isl_multi_aff *ma;
2098 ma = node_extract_schedule_multi_aff(node);
2099 node->sched_map = isl_map_from_multi_aff(ma);
2102 return isl_map_copy(node->sched_map);
2105 /* Construct a map that can be used to update dependence relation
2106 * based on the current schedule.
2107 * That is, construct a map expressing that source and sink
2108 * are executed within the same iteration of the current schedule.
2109 * This map can then be intersected with the dependence relation.
2110 * This is not the most efficient way, but this shouldn't be a critical
2111 * operation.
2113 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2114 struct isl_sched_node *dst)
2116 isl_map *src_sched, *dst_sched;
2118 src_sched = node_extract_schedule(src);
2119 dst_sched = node_extract_schedule(dst);
2120 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2123 /* Intersect the domains of the nested relations in domain and range
2124 * of "umap" with "map".
2126 static __isl_give isl_union_map *intersect_domains(
2127 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2129 isl_union_set *uset;
2131 umap = isl_union_map_zip(umap);
2132 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2133 umap = isl_union_map_intersect_domain(umap, uset);
2134 umap = isl_union_map_zip(umap);
2135 return umap;
2138 /* Update the dependence relation of the given edge based
2139 * on the current schedule.
2140 * If the dependence is carried completely by the current schedule, then
2141 * it is removed from the edge_tables. It is kept in the list of edges
2142 * as otherwise all edge_tables would have to be recomputed.
2144 static int update_edge(struct isl_sched_graph *graph,
2145 struct isl_sched_edge *edge)
2147 isl_map *id;
2149 id = specializer(edge->src, edge->dst);
2150 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2151 if (!edge->map)
2152 goto error;
2154 if (edge->tagged_condition) {
2155 edge->tagged_condition =
2156 intersect_domains(edge->tagged_condition, id);
2157 if (!edge->tagged_condition)
2158 goto error;
2160 if (edge->tagged_validity) {
2161 edge->tagged_validity =
2162 intersect_domains(edge->tagged_validity, id);
2163 if (!edge->tagged_validity)
2164 goto error;
2167 isl_map_free(id);
2168 if (isl_map_plain_is_empty(edge->map))
2169 graph_remove_edge(graph, edge);
2171 return 0;
2172 error:
2173 isl_map_free(id);
2174 return -1;
2177 /* Update the dependence relations of all edges based on the current schedule.
2179 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2181 int i;
2183 for (i = graph->n_edge - 1; i >= 0; --i) {
2184 if (update_edge(graph, &graph->edge[i]) < 0)
2185 return -1;
2188 return 0;
2191 static void next_band(struct isl_sched_graph *graph)
2193 graph->band_start = graph->n_total_row;
2194 graph->n_band++;
2197 /* Topologically sort statements mapped to the same schedule iteration
2198 * and add a row to the schedule corresponding to this order.
2200 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
2202 int i, j;
2204 if (graph->n <= 1)
2205 return 0;
2207 if (update_edges(ctx, graph) < 0)
2208 return -1;
2210 if (graph->n_edge == 0)
2211 return 0;
2213 if (detect_sccs(ctx, graph) < 0)
2214 return -1;
2216 if (graph->n_total_row >= graph->max_row)
2217 isl_die(ctx, isl_error_internal,
2218 "too many schedule rows", return -1);
2220 for (i = 0; i < graph->n; ++i) {
2221 struct isl_sched_node *node = &graph->node[i];
2222 int row = isl_mat_rows(node->sched);
2223 int cols = isl_mat_cols(node->sched);
2225 isl_map_free(node->sched_map);
2226 node->sched_map = NULL;
2227 node->sched = isl_mat_add_rows(node->sched, 1);
2228 if (!node->sched)
2229 return -1;
2230 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2231 node->scc);
2232 for (j = 1; j < cols; ++j)
2233 node->sched = isl_mat_set_element_si(node->sched,
2234 row, j, 0);
2235 node->band[graph->n_total_row] = graph->n_band;
2238 graph->n_total_row++;
2239 next_band(graph);
2241 return 0;
2244 /* Construct an isl_schedule based on the computed schedule stored
2245 * in graph and with parameters specified by dim.
2247 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
2248 __isl_take isl_space *dim)
2250 int i;
2251 isl_ctx *ctx;
2252 isl_schedule *sched = NULL;
2254 if (!dim)
2255 return NULL;
2257 ctx = isl_space_get_ctx(dim);
2258 sched = isl_calloc(ctx, struct isl_schedule,
2259 sizeof(struct isl_schedule) +
2260 (graph->n - 1) * sizeof(struct isl_schedule_node));
2261 if (!sched)
2262 goto error;
2264 sched->ref = 1;
2265 sched->n = graph->n;
2266 sched->n_band = graph->n_band;
2267 sched->n_total_row = graph->n_total_row;
2269 for (i = 0; i < sched->n; ++i) {
2270 int r, b;
2271 int *band_end, *band_id, *coincident;
2273 sched->node[i].sched =
2274 node_extract_schedule_multi_aff(&graph->node[i]);
2275 if (!sched->node[i].sched)
2276 goto error;
2278 sched->node[i].n_band = graph->n_band;
2279 if (graph->n_band == 0)
2280 continue;
2282 band_end = isl_alloc_array(ctx, int, graph->n_band);
2283 band_id = isl_alloc_array(ctx, int, graph->n_band);
2284 coincident = isl_alloc_array(ctx, int, graph->n_total_row);
2285 sched->node[i].band_end = band_end;
2286 sched->node[i].band_id = band_id;
2287 sched->node[i].coincident = coincident;
2288 if (!band_end || !band_id || !coincident)
2289 goto error;
2291 for (r = 0; r < graph->n_total_row; ++r)
2292 coincident[r] = graph->node[i].coincident[r];
2293 for (r = b = 0; r < graph->n_total_row; ++r) {
2294 if (graph->node[i].band[r] == b)
2295 continue;
2296 band_end[b++] = r;
2297 if (graph->node[i].band[r] == -1)
2298 break;
2300 if (r == graph->n_total_row)
2301 band_end[b++] = r;
2302 sched->node[i].n_band = b;
2303 for (--b; b >= 0; --b)
2304 band_id[b] = graph->node[i].band_id[b];
2307 sched->dim = dim;
2309 return sched;
2310 error:
2311 isl_space_free(dim);
2312 isl_schedule_free(sched);
2313 return NULL;
2316 /* Copy nodes that satisfy node_pred from the src dependence graph
2317 * to the dst dependence graph.
2319 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
2320 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2322 int i;
2324 dst->n = 0;
2325 for (i = 0; i < src->n; ++i) {
2326 if (!node_pred(&src->node[i], data))
2327 continue;
2328 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
2329 dst->node[dst->n].nvar = src->node[i].nvar;
2330 dst->node[dst->n].nparam = src->node[i].nparam;
2331 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
2332 dst->node[dst->n].sched_map =
2333 isl_map_copy(src->node[i].sched_map);
2334 dst->node[dst->n].band = src->node[i].band;
2335 dst->node[dst->n].band_id = src->node[i].band_id;
2336 dst->node[dst->n].coincident = src->node[i].coincident;
2337 dst->n++;
2340 return 0;
2343 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
2344 * to the dst dependence graph.
2345 * If the source or destination node of the edge is not in the destination
2346 * graph, then it must be a backward proximity edge and it should simply
2347 * be ignored.
2349 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
2350 struct isl_sched_graph *src,
2351 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
2353 int i;
2354 enum isl_edge_type t;
2356 dst->n_edge = 0;
2357 for (i = 0; i < src->n_edge; ++i) {
2358 struct isl_sched_edge *edge = &src->edge[i];
2359 isl_map *map;
2360 isl_union_map *tagged_condition;
2361 isl_union_map *tagged_validity;
2362 struct isl_sched_node *dst_src, *dst_dst;
2364 if (!edge_pred(edge, data))
2365 continue;
2367 if (isl_map_plain_is_empty(edge->map))
2368 continue;
2370 dst_src = graph_find_node(ctx, dst, edge->src->dim);
2371 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
2372 if (!dst_src || !dst_dst) {
2373 if (edge->validity || edge->conditional_validity)
2374 isl_die(ctx, isl_error_internal,
2375 "backward (conditional) validity edge",
2376 return -1);
2377 continue;
2380 map = isl_map_copy(edge->map);
2381 tagged_condition = isl_union_map_copy(edge->tagged_condition);
2382 tagged_validity = isl_union_map_copy(edge->tagged_validity);
2384 dst->edge[dst->n_edge].src = dst_src;
2385 dst->edge[dst->n_edge].dst = dst_dst;
2386 dst->edge[dst->n_edge].map = map;
2387 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
2388 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
2389 dst->edge[dst->n_edge].validity = edge->validity;
2390 dst->edge[dst->n_edge].proximity = edge->proximity;
2391 dst->edge[dst->n_edge].coincidence = edge->coincidence;
2392 dst->edge[dst->n_edge].condition = edge->condition;
2393 dst->edge[dst->n_edge].conditional_validity =
2394 edge->conditional_validity;
2395 dst->n_edge++;
2397 if (edge->tagged_condition && !tagged_condition)
2398 return -1;
2399 if (edge->tagged_validity && !tagged_validity)
2400 return -1;
2402 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
2403 if (edge !=
2404 graph_find_edge(src, t, edge->src, edge->dst))
2405 continue;
2406 if (graph_edge_table_add(ctx, dst, t,
2407 &dst->edge[dst->n_edge - 1]) < 0)
2408 return -1;
2412 return 0;
2415 /* Given a "src" dependence graph that contains the nodes from "dst"
2416 * that satisfy node_pred, copy the schedule computed in "src"
2417 * for those nodes back to "dst".
2419 static int copy_schedule(struct isl_sched_graph *dst,
2420 struct isl_sched_graph *src,
2421 int (*node_pred)(struct isl_sched_node *node, int data), int data)
2423 int i;
2425 src->n = 0;
2426 for (i = 0; i < dst->n; ++i) {
2427 if (!node_pred(&dst->node[i], data))
2428 continue;
2429 isl_mat_free(dst->node[i].sched);
2430 isl_map_free(dst->node[i].sched_map);
2431 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
2432 dst->node[i].sched_map =
2433 isl_map_copy(src->node[src->n].sched_map);
2434 src->n++;
2437 dst->max_row = src->max_row;
2438 dst->n_total_row = src->n_total_row;
2439 dst->n_band = src->n_band;
2441 return 0;
2444 /* Compute the maximal number of variables over all nodes.
2445 * This is the maximal number of linearly independent schedule
2446 * rows that we need to compute.
2447 * Just in case we end up in a part of the dependence graph
2448 * with only lower-dimensional domains, we make sure we will
2449 * compute the required amount of extra linearly independent rows.
2451 static int compute_maxvar(struct isl_sched_graph *graph)
2453 int i;
2455 graph->maxvar = 0;
2456 for (i = 0; i < graph->n; ++i) {
2457 struct isl_sched_node *node = &graph->node[i];
2458 int nvar;
2460 if (node_update_cmap(node) < 0)
2461 return -1;
2462 nvar = node->nvar + graph->n_row - node->rank;
2463 if (nvar > graph->maxvar)
2464 graph->maxvar = nvar;
2467 return 0;
2470 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
2471 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
2473 /* Compute a schedule for a subgraph of "graph". In particular, for
2474 * the graph composed of nodes that satisfy node_pred and edges that
2475 * that satisfy edge_pred. The caller should precompute the number
2476 * of nodes and edges that satisfy these predicates and pass them along
2477 * as "n" and "n_edge".
2478 * If the subgraph is known to consist of a single component, then wcc should
2479 * be set and then we call compute_schedule_wcc on the constructed subgraph.
2480 * Otherwise, we call compute_schedule, which will check whether the subgraph
2481 * is connected.
2483 static int compute_sub_schedule(isl_ctx *ctx,
2484 struct isl_sched_graph *graph, int n, int n_edge,
2485 int (*node_pred)(struct isl_sched_node *node, int data),
2486 int (*edge_pred)(struct isl_sched_edge *edge, int data),
2487 int data, int wcc)
2489 struct isl_sched_graph split = { 0 };
2490 int t;
2492 if (graph_alloc(ctx, &split, n, n_edge) < 0)
2493 goto error;
2494 if (copy_nodes(&split, graph, node_pred, data) < 0)
2495 goto error;
2496 if (graph_init_table(ctx, &split) < 0)
2497 goto error;
2498 for (t = 0; t <= isl_edge_last; ++t)
2499 split.max_edge[t] = graph->max_edge[t];
2500 if (graph_init_edge_tables(ctx, &split) < 0)
2501 goto error;
2502 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
2503 goto error;
2504 split.n_row = graph->n_row;
2505 split.max_row = graph->max_row;
2506 split.n_total_row = graph->n_total_row;
2507 split.n_band = graph->n_band;
2508 split.band_start = graph->band_start;
2510 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2511 goto error;
2512 if (!wcc && compute_schedule(ctx, &split) < 0)
2513 goto error;
2515 copy_schedule(graph, &split, node_pred, data);
2517 graph_free(ctx, &split);
2518 return 0;
2519 error:
2520 graph_free(ctx, &split);
2521 return -1;
2524 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2526 return node->scc == scc;
2529 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2531 return node->scc <= scc;
2534 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2536 return node->scc >= scc;
2539 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2541 return edge->src->scc == scc && edge->dst->scc == scc;
2544 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2546 return edge->dst->scc <= scc;
2549 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2551 return edge->src->scc >= scc;
2554 /* Pad the schedules of all nodes with zero rows such that in the end
2555 * they all have graph->n_total_row rows.
2556 * The extra rows don't belong to any band, so they get assigned band number -1.
2558 static int pad_schedule(struct isl_sched_graph *graph)
2560 int i, j;
2562 for (i = 0; i < graph->n; ++i) {
2563 struct isl_sched_node *node = &graph->node[i];
2564 int row = isl_mat_rows(node->sched);
2565 if (graph->n_total_row > row) {
2566 isl_map_free(node->sched_map);
2567 node->sched_map = NULL;
2569 node->sched = isl_mat_add_zero_rows(node->sched,
2570 graph->n_total_row - row);
2571 if (!node->sched)
2572 return -1;
2573 for (j = row; j < graph->n_total_row; ++j)
2574 node->band[j] = -1;
2577 return 0;
2580 /* Reset the current band by dropping all its schedule rows.
2582 static int reset_band(struct isl_sched_graph *graph)
2584 int i;
2585 int drop;
2587 drop = graph->n_total_row - graph->band_start;
2588 graph->n_total_row -= drop;
2589 graph->n_row -= drop;
2591 for (i = 0; i < graph->n; ++i) {
2592 struct isl_sched_node *node = &graph->node[i];
2594 isl_map_free(node->sched_map);
2595 node->sched_map = NULL;
2597 node->sched = isl_mat_drop_rows(node->sched,
2598 graph->band_start, drop);
2600 if (!node->sched)
2601 return -1;
2604 return 0;
2607 /* Split the current graph into two parts and compute a schedule for each
2608 * part individually. In particular, one part consists of all SCCs up
2609 * to and including graph->src_scc, while the other part contains the other
2610 * SCCS.
2612 * The split is enforced in the schedule by constant rows with two different
2613 * values (0 and 1). These constant rows replace the previously computed rows
2614 * in the current band.
2615 * It would be possible to reuse them as the first rows in the next
2616 * band, but recomputing them may result in better rows as we are looking
2617 * at a smaller part of the dependence graph.
2619 * Since we do not enforce coincidence, we conservatively mark the
2620 * splitting row as not coincident.
2622 * The band_id of the second group is set to n, where n is the number
2623 * of nodes in the first group. This ensures that the band_ids over
2624 * the two groups remain disjoint, even if either or both of the two
2625 * groups contain independent components.
2627 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2629 int i, j, n, e1, e2;
2630 int n_total_row, orig_total_row;
2631 int n_band, orig_band;
2633 if (graph->n_total_row >= graph->max_row)
2634 isl_die(ctx, isl_error_internal,
2635 "too many schedule rows", return -1);
2637 if (reset_band(graph) < 0)
2638 return -1;
2640 n = 0;
2641 for (i = 0; i < graph->n; ++i) {
2642 struct isl_sched_node *node = &graph->node[i];
2643 int row = isl_mat_rows(node->sched);
2644 int cols = isl_mat_cols(node->sched);
2645 int before = node->scc <= graph->src_scc;
2647 if (before)
2648 n++;
2650 isl_map_free(node->sched_map);
2651 node->sched_map = NULL;
2652 node->sched = isl_mat_add_rows(node->sched, 1);
2653 if (!node->sched)
2654 return -1;
2655 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2656 !before);
2657 for (j = 1; j < cols; ++j)
2658 node->sched = isl_mat_set_element_si(node->sched,
2659 row, j, 0);
2660 node->band[graph->n_total_row] = graph->n_band;
2661 node->coincident[graph->n_total_row] = 0;
2664 e1 = e2 = 0;
2665 for (i = 0; i < graph->n_edge; ++i) {
2666 if (graph->edge[i].dst->scc <= graph->src_scc)
2667 e1++;
2668 if (graph->edge[i].src->scc > graph->src_scc)
2669 e2++;
2672 graph->n_total_row++;
2673 next_band(graph);
2675 for (i = 0; i < graph->n; ++i) {
2676 struct isl_sched_node *node = &graph->node[i];
2677 if (node->scc > graph->src_scc)
2678 node->band_id[graph->n_band] = n;
2681 orig_total_row = graph->n_total_row;
2682 orig_band = graph->n_band;
2683 if (compute_sub_schedule(ctx, graph, n, e1,
2684 &node_scc_at_most, &edge_dst_scc_at_most,
2685 graph->src_scc, 0) < 0)
2686 return -1;
2687 n_total_row = graph->n_total_row;
2688 graph->n_total_row = orig_total_row;
2689 n_band = graph->n_band;
2690 graph->n_band = orig_band;
2691 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2692 &node_scc_at_least, &edge_src_scc_at_least,
2693 graph->src_scc + 1, 0) < 0)
2694 return -1;
2695 if (n_total_row > graph->n_total_row)
2696 graph->n_total_row = n_total_row;
2697 if (n_band > graph->n_band)
2698 graph->n_band = n_band;
2700 return pad_schedule(graph);
2703 /* Compute the next band of the schedule after updating the dependence
2704 * relations based on the the current schedule.
2706 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2708 if (update_edges(ctx, graph) < 0)
2709 return -1;
2710 next_band(graph);
2712 return compute_schedule(ctx, graph);
2715 /* Add constraints to graph->lp that force the dependence "map" (which
2716 * is part of the dependence relation of "edge")
2717 * to be respected and attempt to carry it, where the edge is one from
2718 * a node j to itself. "pos" is the sequence number of the given map.
2719 * That is, add constraints that enforce
2721 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2722 * = c_j_x (y - x) >= e_i
2724 * for each (x,y) in R.
2725 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2726 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2727 * with each coefficient in c_j_x represented as a pair of non-negative
2728 * coefficients.
2730 static int add_intra_constraints(struct isl_sched_graph *graph,
2731 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2733 unsigned total;
2734 isl_ctx *ctx = isl_map_get_ctx(map);
2735 isl_space *dim;
2736 isl_dim_map *dim_map;
2737 isl_basic_set *coef;
2738 struct isl_sched_node *node = edge->src;
2740 coef = intra_coefficients(graph, map);
2741 if (!coef)
2742 return -1;
2744 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2746 total = isl_basic_set_total_dim(graph->lp);
2747 dim_map = isl_dim_map_alloc(ctx, total);
2748 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2749 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2750 isl_space_dim(dim, isl_dim_set), 1,
2751 node->nvar, -1);
2752 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2753 isl_space_dim(dim, isl_dim_set), 1,
2754 node->nvar, 1);
2755 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2756 coef->n_eq, coef->n_ineq);
2757 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2758 coef, dim_map);
2759 isl_space_free(dim);
2761 return 0;
2764 /* Add constraints to graph->lp that force the dependence "map" (which
2765 * is part of the dependence relation of "edge")
2766 * to be respected and attempt to carry it, where the edge is one from
2767 * node j to node k. "pos" is the sequence number of the given map.
2768 * That is, add constraints that enforce
2770 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2772 * for each (x,y) in R.
2773 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2774 * of valid constraints for R and then plug in
2775 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2776 * with each coefficient (except e_i, c_k_0 and c_j_0)
2777 * represented as a pair of non-negative coefficients.
2779 static int add_inter_constraints(struct isl_sched_graph *graph,
2780 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2782 unsigned total;
2783 isl_ctx *ctx = isl_map_get_ctx(map);
2784 isl_space *dim;
2785 isl_dim_map *dim_map;
2786 isl_basic_set *coef;
2787 struct isl_sched_node *src = edge->src;
2788 struct isl_sched_node *dst = edge->dst;
2790 coef = inter_coefficients(graph, map);
2791 if (!coef)
2792 return -1;
2794 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2796 total = isl_basic_set_total_dim(graph->lp);
2797 dim_map = isl_dim_map_alloc(ctx, total);
2799 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2801 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2802 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2803 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2804 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2805 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2806 dst->nvar, -1);
2807 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2808 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2809 dst->nvar, 1);
2811 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2812 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2813 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2814 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2815 isl_space_dim(dim, isl_dim_set), 1,
2816 src->nvar, 1);
2817 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2818 isl_space_dim(dim, isl_dim_set), 1,
2819 src->nvar, -1);
2821 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2822 coef->n_eq, coef->n_ineq);
2823 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2824 coef, dim_map);
2825 isl_space_free(dim);
2827 return 0;
2830 /* Add constraints to graph->lp that force all (conditional) validity
2831 * dependences to be respected and attempt to carry them.
2833 static int add_all_constraints(struct isl_sched_graph *graph)
2835 int i, j;
2836 int pos;
2838 pos = 0;
2839 for (i = 0; i < graph->n_edge; ++i) {
2840 struct isl_sched_edge *edge= &graph->edge[i];
2842 if (!edge->validity && !edge->conditional_validity)
2843 continue;
2845 for (j = 0; j < edge->map->n; ++j) {
2846 isl_basic_map *bmap;
2847 isl_map *map;
2849 bmap = isl_basic_map_copy(edge->map->p[j]);
2850 map = isl_map_from_basic_map(bmap);
2852 if (edge->src == edge->dst &&
2853 add_intra_constraints(graph, edge, map, pos) < 0)
2854 return -1;
2855 if (edge->src != edge->dst &&
2856 add_inter_constraints(graph, edge, map, pos) < 0)
2857 return -1;
2858 ++pos;
2862 return 0;
2865 /* Count the number of equality and inequality constraints
2866 * that will be added to the carry_lp problem.
2867 * We count each edge exactly once.
2869 static int count_all_constraints(struct isl_sched_graph *graph,
2870 int *n_eq, int *n_ineq)
2872 int i, j;
2874 *n_eq = *n_ineq = 0;
2875 for (i = 0; i < graph->n_edge; ++i) {
2876 struct isl_sched_edge *edge= &graph->edge[i];
2877 for (j = 0; j < edge->map->n; ++j) {
2878 isl_basic_map *bmap;
2879 isl_map *map;
2881 bmap = isl_basic_map_copy(edge->map->p[j]);
2882 map = isl_map_from_basic_map(bmap);
2884 if (count_map_constraints(graph, edge, map,
2885 n_eq, n_ineq, 1, 0) < 0)
2886 return -1;
2890 return 0;
2893 /* Construct an LP problem for finding schedule coefficients
2894 * such that the schedule carries as many dependences as possible.
2895 * In particular, for each dependence i, we bound the dependence distance
2896 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2897 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2898 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2899 * Note that if the dependence relation is a union of basic maps,
2900 * then we have to consider each basic map individually as it may only
2901 * be possible to carry the dependences expressed by some of those
2902 * basic maps and not all off them.
2903 * Below, we consider each of those basic maps as a separate "edge".
2905 * All variables of the LP are non-negative. The actual coefficients
2906 * may be negative, so each coefficient is represented as the difference
2907 * of two non-negative variables. The negative part always appears
2908 * immediately before the positive part.
2909 * Other than that, the variables have the following order
2911 * - sum of (1 - e_i) over all edges
2912 * - sum of positive and negative parts of all c_n coefficients
2913 * (unconstrained when computing non-parametric schedules)
2914 * - sum of positive and negative parts of all c_x coefficients
2915 * - for each edge
2916 * - e_i
2917 * - for each node
2918 * - c_i_0
2919 * - positive and negative parts of c_i_n (if parametric)
2920 * - positive and negative parts of c_i_x
2922 * The constraints are those from the (validity) edges plus three equalities
2923 * to express the sums and n_edge inequalities to express e_i <= 1.
2925 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2927 int i, j;
2928 int k;
2929 isl_space *dim;
2930 unsigned total;
2931 int n_eq, n_ineq;
2932 int n_edge;
2934 n_edge = 0;
2935 for (i = 0; i < graph->n_edge; ++i)
2936 n_edge += graph->edge[i].map->n;
2938 total = 3 + n_edge;
2939 for (i = 0; i < graph->n; ++i) {
2940 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2941 node->start = total;
2942 total += 1 + 2 * (node->nparam + node->nvar);
2945 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2946 return -1;
2947 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2948 return -1;
2950 dim = isl_space_set_alloc(ctx, 0, total);
2951 isl_basic_set_free(graph->lp);
2952 n_eq += 3;
2953 n_ineq += n_edge;
2954 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2955 graph->lp = isl_basic_set_set_rational(graph->lp);
2957 k = isl_basic_set_alloc_equality(graph->lp);
2958 if (k < 0)
2959 return -1;
2960 isl_seq_clr(graph->lp->eq[k], 1 + total);
2961 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2962 isl_int_set_si(graph->lp->eq[k][1], 1);
2963 for (i = 0; i < n_edge; ++i)
2964 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2966 k = isl_basic_set_alloc_equality(graph->lp);
2967 if (k < 0)
2968 return -1;
2969 isl_seq_clr(graph->lp->eq[k], 1 + total);
2970 isl_int_set_si(graph->lp->eq[k][2], -1);
2971 for (i = 0; i < graph->n; ++i) {
2972 int pos = 1 + graph->node[i].start + 1;
2974 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2975 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2978 k = isl_basic_set_alloc_equality(graph->lp);
2979 if (k < 0)
2980 return -1;
2981 isl_seq_clr(graph->lp->eq[k], 1 + total);
2982 isl_int_set_si(graph->lp->eq[k][3], -1);
2983 for (i = 0; i < graph->n; ++i) {
2984 struct isl_sched_node *node = &graph->node[i];
2985 int pos = 1 + node->start + 1 + 2 * node->nparam;
2987 for (j = 0; j < 2 * node->nvar; ++j)
2988 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2991 for (i = 0; i < n_edge; ++i) {
2992 k = isl_basic_set_alloc_inequality(graph->lp);
2993 if (k < 0)
2994 return -1;
2995 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2996 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2997 isl_int_set_si(graph->lp->ineq[k][0], 1);
3000 if (add_bound_coefficient_constraints(ctx, graph) < 0)
3001 return -1;
3002 if (add_all_constraints(graph) < 0)
3003 return -1;
3005 return 0;
3008 /* If the schedule_split_scaled option is set and if the linear
3009 * parts of the scheduling rows for all nodes in the graphs have
3010 * non-trivial common divisor, then split off the constant term
3011 * from the linear part.
3012 * The constant term is then placed in a separate band and
3013 * the linear part is reduced.
3015 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
3017 int i;
3018 int row;
3019 isl_int gcd, gcd_i;
3021 if (!ctx->opt->schedule_split_scaled)
3022 return 0;
3023 if (graph->n <= 1)
3024 return 0;
3026 if (graph->n_total_row >= graph->max_row)
3027 isl_die(ctx, isl_error_internal,
3028 "too many schedule rows", return -1);
3030 isl_int_init(gcd);
3031 isl_int_init(gcd_i);
3033 isl_int_set_si(gcd, 0);
3035 row = isl_mat_rows(graph->node[0].sched) - 1;
3037 for (i = 0; i < graph->n; ++i) {
3038 struct isl_sched_node *node = &graph->node[i];
3039 int cols = isl_mat_cols(node->sched);
3041 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3042 isl_int_gcd(gcd, gcd, gcd_i);
3045 isl_int_clear(gcd_i);
3047 if (isl_int_cmp_si(gcd, 1) <= 0) {
3048 isl_int_clear(gcd);
3049 return 0;
3052 next_band(graph);
3054 for (i = 0; i < graph->n; ++i) {
3055 struct isl_sched_node *node = &graph->node[i];
3057 isl_map_free(node->sched_map);
3058 node->sched_map = NULL;
3059 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3060 if (!node->sched)
3061 goto error;
3062 isl_int_fdiv_r(node->sched->row[row + 1][0],
3063 node->sched->row[row][0], gcd);
3064 isl_int_fdiv_q(node->sched->row[row][0],
3065 node->sched->row[row][0], gcd);
3066 isl_int_mul(node->sched->row[row][0],
3067 node->sched->row[row][0], gcd);
3068 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3069 if (!node->sched)
3070 goto error;
3071 node->band[graph->n_total_row] = graph->n_band;
3074 graph->n_total_row++;
3076 isl_int_clear(gcd);
3077 return 0;
3078 error:
3079 isl_int_clear(gcd);
3080 return -1;
3083 static int compute_component_schedule(isl_ctx *ctx,
3084 struct isl_sched_graph *graph);
3086 /* Is the schedule row "sol" trivial on node "node"?
3087 * That is, is the solution zero on the dimensions orthogonal to
3088 * the previously found solutions?
3089 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3091 * Each coefficient is represented as the difference between
3092 * two non-negative values in "sol". "sol" has been computed
3093 * in terms of the original iterators (i.e., without use of cmap).
3094 * We construct the schedule row s and write it as a linear
3095 * combination of (linear combinations of) previously computed schedule rows.
3096 * s = Q c or c = U s.
3097 * If the final entries of c are all zero, then the solution is trivial.
3099 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3101 int i;
3102 int pos;
3103 int trivial;
3104 isl_ctx *ctx;
3105 isl_vec *node_sol;
3107 if (!sol)
3108 return -1;
3109 if (node->nvar == node->rank)
3110 return 0;
3112 ctx = isl_vec_get_ctx(sol);
3113 node_sol = isl_vec_alloc(ctx, node->nvar);
3114 if (!node_sol)
3115 return -1;
3117 pos = 1 + node->start + 1 + 2 * node->nparam;
3119 for (i = 0; i < node->nvar; ++i)
3120 isl_int_sub(node_sol->el[i],
3121 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
3123 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3125 if (!node_sol)
3126 return -1;
3128 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3129 node->nvar - node->rank) == -1;
3131 isl_vec_free(node_sol);
3133 return trivial;
3136 /* Is the schedule row "sol" trivial on any node where it should
3137 * not be trivial?
3138 * "sol" has been computed in terms of the original iterators
3139 * (i.e., without use of cmap).
3140 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3142 static int is_any_trivial(struct isl_sched_graph *graph,
3143 __isl_keep isl_vec *sol)
3145 int i;
3147 for (i = 0; i < graph->n; ++i) {
3148 struct isl_sched_node *node = &graph->node[i];
3149 int trivial;
3151 if (!needs_row(graph, node))
3152 continue;
3153 trivial = is_trivial(node, sol);
3154 if (trivial < 0 || trivial)
3155 return trivial;
3158 return 0;
3161 /* Construct a schedule row for each node such that as many dependences
3162 * as possible are carried and then continue with the next band.
3164 * If the computed schedule row turns out to be trivial on one or
3165 * more nodes where it should not be trivial, then we throw it away
3166 * and try again on each component separately.
3168 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
3170 int i;
3171 int n_edge;
3172 int trivial;
3173 isl_vec *sol;
3174 isl_basic_set *lp;
3176 n_edge = 0;
3177 for (i = 0; i < graph->n_edge; ++i)
3178 n_edge += graph->edge[i].map->n;
3180 if (setup_carry_lp(ctx, graph) < 0)
3181 return -1;
3183 lp = isl_basic_set_copy(graph->lp);
3184 sol = isl_tab_basic_set_non_neg_lexmin(lp);
3185 if (!sol)
3186 return -1;
3188 if (sol->size == 0) {
3189 isl_vec_free(sol);
3190 isl_die(ctx, isl_error_internal,
3191 "error in schedule construction", return -1);
3194 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
3195 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
3196 isl_vec_free(sol);
3197 isl_die(ctx, isl_error_unknown,
3198 "unable to carry dependences", return -1);
3201 trivial = is_any_trivial(graph, sol);
3202 if (trivial < 0) {
3203 sol = isl_vec_free(sol);
3204 } else if (trivial) {
3205 isl_vec_free(sol);
3206 if (graph->scc > 1)
3207 return compute_component_schedule(ctx, graph);
3208 isl_die(ctx, isl_error_unknown,
3209 "unable to construct non-trivial solution", return -1);
3212 if (update_schedule(graph, sol, 0, 0) < 0)
3213 return -1;
3215 if (split_scaled(ctx, graph) < 0)
3216 return -1;
3218 return compute_next_band(ctx, graph);
3221 /* Are there any (non-empty) (conditional) validity edges in the graph?
3223 static int has_validity_edges(struct isl_sched_graph *graph)
3225 int i;
3227 for (i = 0; i < graph->n_edge; ++i) {
3228 int empty;
3230 empty = isl_map_plain_is_empty(graph->edge[i].map);
3231 if (empty < 0)
3232 return -1;
3233 if (empty)
3234 continue;
3235 if (graph->edge[i].validity ||
3236 graph->edge[i].conditional_validity)
3237 return 1;
3240 return 0;
3243 /* Should we apply a Feautrier step?
3244 * That is, did the user request the Feautrier algorithm and are
3245 * there any validity dependences (left)?
3247 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
3249 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
3250 return 0;
3252 return has_validity_edges(graph);
3255 /* Compute a schedule for a connected dependence graph using Feautrier's
3256 * multi-dimensional scheduling algorithm.
3257 * The original algorithm is described in [1].
3258 * The main idea is to minimize the number of scheduling dimensions, by
3259 * trying to satisfy as many dependences as possible per scheduling dimension.
3261 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
3262 * Problem, Part II: Multi-Dimensional Time.
3263 * In Intl. Journal of Parallel Programming, 1992.
3265 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
3266 struct isl_sched_graph *graph)
3268 return carry_dependences(ctx, graph);
3271 /* Turn off the "local" bit on all (condition) edges.
3273 static void clear_local_edges(struct isl_sched_graph *graph)
3275 int i;
3277 for (i = 0; i < graph->n_edge; ++i)
3278 if (graph->edge[i].condition)
3279 graph->edge[i].local = 0;
3282 /* Does "graph" have both condition and conditional validity edges?
3284 static int need_condition_check(struct isl_sched_graph *graph)
3286 int i;
3287 int any_condition = 0;
3288 int any_conditional_validity = 0;
3290 for (i = 0; i < graph->n_edge; ++i) {
3291 if (graph->edge[i].condition)
3292 any_condition = 1;
3293 if (graph->edge[i].conditional_validity)
3294 any_conditional_validity = 1;
3297 return any_condition && any_conditional_validity;
3300 /* Does "graph" contain any coincidence edge?
3302 static int has_any_coincidence(struct isl_sched_graph *graph)
3304 int i;
3306 for (i = 0; i < graph->n_edge; ++i)
3307 if (graph->edge[i].coincidence)
3308 return 1;
3310 return 0;
3313 /* Extract the final schedule row as a map with the iteration domain
3314 * of "node" as domain.
3316 static __isl_give isl_map *final_row(struct isl_sched_node *node)
3318 isl_local_space *ls;
3319 isl_aff *aff;
3320 int row;
3322 row = isl_mat_rows(node->sched) - 1;
3323 ls = isl_local_space_from_space(isl_space_copy(node->dim));
3324 aff = extract_schedule_row(ls, node, row);
3325 return isl_map_from_aff(aff);
3328 /* Is the conditional validity dependence in the edge with index "edge_index"
3329 * violated by the latest (i.e., final) row of the schedule?
3330 * That is, is i scheduled after j
3331 * for any conditional validity dependence i -> j?
3333 static int is_violated(struct isl_sched_graph *graph, int edge_index)
3335 isl_map *src_sched, *dst_sched, *map;
3336 struct isl_sched_edge *edge = &graph->edge[edge_index];
3337 int empty;
3339 src_sched = final_row(edge->src);
3340 dst_sched = final_row(edge->dst);
3341 map = isl_map_copy(edge->map);
3342 map = isl_map_apply_domain(map, src_sched);
3343 map = isl_map_apply_range(map, dst_sched);
3344 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
3345 empty = isl_map_is_empty(map);
3346 isl_map_free(map);
3348 if (empty < 0)
3349 return -1;
3351 return !empty;
3354 /* Does the domain of "umap" intersect "uset"?
3356 static int domain_intersects(__isl_keep isl_union_map *umap,
3357 __isl_keep isl_union_set *uset)
3359 int empty;
3361 umap = isl_union_map_copy(umap);
3362 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3363 empty = isl_union_map_is_empty(umap);
3364 isl_union_map_free(umap);
3366 return empty < 0 ? -1 : !empty;
3369 /* Does the range of "umap" intersect "uset"?
3371 static int range_intersects(__isl_keep isl_union_map *umap,
3372 __isl_keep isl_union_set *uset)
3374 int empty;
3376 umap = isl_union_map_copy(umap);
3377 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3378 empty = isl_union_map_is_empty(umap);
3379 isl_union_map_free(umap);
3381 return empty < 0 ? -1 : !empty;
3384 /* Are the condition dependences of "edge" local with respect to
3385 * the current schedule?
3387 * That is, are domain and range of the condition dependences mapped
3388 * to the same point?
3390 * In other words, is the condition false?
3392 static int is_condition_false(struct isl_sched_edge *edge)
3394 isl_union_map *umap;
3395 isl_map *map, *sched, *test;
3396 int local;
3398 umap = isl_union_map_copy(edge->tagged_condition);
3399 umap = isl_union_map_zip(umap);
3400 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3401 map = isl_map_from_union_map(umap);
3403 sched = node_extract_schedule(edge->src);
3404 map = isl_map_apply_domain(map, sched);
3405 sched = node_extract_schedule(edge->dst);
3406 map = isl_map_apply_range(map, sched);
3408 test = isl_map_identity(isl_map_get_space(map));
3409 local = isl_map_is_subset(map, test);
3410 isl_map_free(map);
3411 isl_map_free(test);
3413 return local;
3416 /* Does "graph" have any satisfied condition edges that
3417 * are adjacent to the conditional validity constraint with
3418 * domain "conditional_source" and range "conditional_sink"?
3420 * A satisfied condition is one that is not local.
3421 * If a condition was forced to be local already (i.e., marked as local)
3422 * then there is no need to check if it is in fact local.
3424 * Additionally, mark all adjacent condition edges found as local.
3426 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
3427 __isl_keep isl_union_set *conditional_source,
3428 __isl_keep isl_union_set *conditional_sink)
3430 int i;
3431 int any = 0;
3433 for (i = 0; i < graph->n_edge; ++i) {
3434 int adjacent, local;
3435 isl_union_map *condition;
3437 if (!graph->edge[i].condition)
3438 continue;
3439 if (graph->edge[i].local)
3440 continue;
3442 condition = graph->edge[i].tagged_condition;
3443 adjacent = domain_intersects(condition, conditional_sink);
3444 if (adjacent >= 0 && !adjacent)
3445 adjacent = range_intersects(condition,
3446 conditional_source);
3447 if (adjacent < 0)
3448 return -1;
3449 if (!adjacent)
3450 continue;
3452 graph->edge[i].local = 1;
3454 local = is_condition_false(&graph->edge[i]);
3455 if (local < 0)
3456 return -1;
3457 if (!local)
3458 any = 1;
3461 return any;
3464 /* Are there any violated conditional validity dependences with
3465 * adjacent condition dependences that are not local with respect
3466 * to the current schedule?
3467 * That is, is the conditional validity constraint violated?
3469 * Additionally, mark all those adjacent condition dependences as local.
3470 * We also mark those adjacent condition dependences that were not marked
3471 * as local before, but just happened to be local already. This ensures
3472 * that they remain local if the schedule is recomputed.
3474 * We first collect domain and range of all violated conditional validity
3475 * dependences and then check if there are any adjacent non-local
3476 * condition dependences.
3478 static int has_violated_conditional_constraint(isl_ctx *ctx,
3479 struct isl_sched_graph *graph)
3481 int i;
3482 int any = 0;
3483 isl_union_set *source, *sink;
3485 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3486 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3487 for (i = 0; i < graph->n_edge; ++i) {
3488 isl_union_set *uset;
3489 isl_union_map *umap;
3490 int violated;
3492 if (!graph->edge[i].conditional_validity)
3493 continue;
3495 violated = is_violated(graph, i);
3496 if (violated < 0)
3497 goto error;
3498 if (!violated)
3499 continue;
3501 any = 1;
3503 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3504 uset = isl_union_map_domain(umap);
3505 source = isl_union_set_union(source, uset);
3506 source = isl_union_set_coalesce(source);
3508 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
3509 uset = isl_union_map_range(umap);
3510 sink = isl_union_set_union(sink, uset);
3511 sink = isl_union_set_coalesce(sink);
3514 if (any)
3515 any = has_adjacent_true_conditions(graph, source, sink);
3517 isl_union_set_free(source);
3518 isl_union_set_free(sink);
3519 return any;
3520 error:
3521 isl_union_set_free(source);
3522 isl_union_set_free(sink);
3523 return -1;
3526 /* Compute a schedule for a connected dependence graph.
3527 * We try to find a sequence of as many schedule rows as possible that result
3528 * in non-negative dependence distances (independent of the previous rows
3529 * in the sequence, i.e., such that the sequence is tilable), with as
3530 * many of the initial rows as possible satisfying the coincidence constraints.
3531 * If we can't find any more rows we either
3532 * - split between SCCs and start over (assuming we found an interesting
3533 * pair of SCCs between which to split)
3534 * - continue with the next band (assuming the current band has at least
3535 * one row)
3536 * - try to carry as many dependences as possible and continue with the next
3537 * band
3539 * If Feautrier's algorithm is selected, we first recursively try to satisfy
3540 * as many validity dependences as possible. When all validity dependences
3541 * are satisfied we extend the schedule to a full-dimensional schedule.
3543 * If we manage to complete the schedule, we finish off by topologically
3544 * sorting the statements based on the remaining dependences.
3546 * If ctx->opt->schedule_outer_coincidence is set, then we force the
3547 * outermost dimension to satisfy the coincidence constraints. If this
3548 * turns out to be impossible, we fall back on the general scheme above
3549 * and try to carry as many dependences as possible.
3551 * If "graph" contains both condition and conditional validity dependences,
3552 * then we need to check that that the conditional schedule constraint
3553 * is satisfied, i.e., there are no violated conditional validity dependences
3554 * that are adjacent to any non-local condition dependences.
3555 * If there are, then we mark all those adjacent condition dependences
3556 * as local and recompute the current band. Those dependences that
3557 * are marked local will then be forced to be local.
3558 * The initial computation is performed with no dependences marked as local.
3559 * If we are lucky, then there will be no violated conditional validity
3560 * dependences adjacent to any non-local condition dependences.
3561 * Otherwise, we mark some additional condition dependences as local and
3562 * recompute. We continue this process until there are no violations left or
3563 * until we are no longer able to compute a schedule.
3564 * Since there are only a finite number of dependences,
3565 * there will only be a finite number of iterations.
3567 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
3569 int has_coincidence;
3570 int use_coincidence;
3571 int force_coincidence = 0;
3572 int check_conditional;
3574 if (detect_sccs(ctx, graph) < 0)
3575 return -1;
3576 if (sort_sccs(graph) < 0)
3577 return -1;
3579 if (compute_maxvar(graph) < 0)
3580 return -1;
3582 if (need_feautrier_step(ctx, graph))
3583 return compute_schedule_wcc_feautrier(ctx, graph);
3585 clear_local_edges(graph);
3586 check_conditional = need_condition_check(graph);
3587 has_coincidence = has_any_coincidence(graph);
3589 if (ctx->opt->schedule_outer_coincidence)
3590 force_coincidence = 1;
3592 use_coincidence = has_coincidence;
3593 while (graph->n_row < graph->maxvar) {
3594 isl_vec *sol;
3595 int violated;
3596 int coincident;
3598 graph->src_scc = -1;
3599 graph->dst_scc = -1;
3601 if (setup_lp(ctx, graph, use_coincidence) < 0)
3602 return -1;
3603 sol = solve_lp(graph);
3604 if (!sol)
3605 return -1;
3606 if (sol->size == 0) {
3607 int empty = graph->n_total_row == graph->band_start;
3609 isl_vec_free(sol);
3610 if (use_coincidence && (!force_coincidence || !empty)) {
3611 use_coincidence = 0;
3612 continue;
3614 if (!ctx->opt->schedule_maximize_band_depth && !empty)
3615 return compute_next_band(ctx, graph);
3616 if (graph->src_scc >= 0)
3617 return compute_split_schedule(ctx, graph);
3618 if (!empty)
3619 return compute_next_band(ctx, graph);
3620 return carry_dependences(ctx, graph);
3622 coincident = !has_coincidence || use_coincidence;
3623 if (update_schedule(graph, sol, 1, coincident) < 0)
3624 return -1;
3626 if (!check_conditional)
3627 continue;
3628 violated = has_violated_conditional_constraint(ctx, graph);
3629 if (violated < 0)
3630 return -1;
3631 if (!violated)
3632 continue;
3633 if (reset_band(graph) < 0)
3634 return -1;
3635 use_coincidence = has_coincidence;
3638 if (graph->n_total_row > graph->band_start)
3639 next_band(graph);
3640 return sort_statements(ctx, graph);
3643 /* Add a row to the schedules that separates the SCCs and move
3644 * to the next band.
3646 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
3648 int i;
3650 if (graph->n_total_row >= graph->max_row)
3651 isl_die(ctx, isl_error_internal,
3652 "too many schedule rows", return -1);
3654 for (i = 0; i < graph->n; ++i) {
3655 struct isl_sched_node *node = &graph->node[i];
3656 int row = isl_mat_rows(node->sched);
3658 isl_map_free(node->sched_map);
3659 node->sched_map = NULL;
3660 node->sched = isl_mat_add_zero_rows(node->sched, 1);
3661 node->sched = isl_mat_set_element_si(node->sched, row, 0,
3662 node->scc);
3663 if (!node->sched)
3664 return -1;
3665 node->band[graph->n_total_row] = graph->n_band;
3668 graph->n_total_row++;
3669 next_band(graph);
3671 return 0;
3674 /* Compute a schedule for each component (identified by node->scc)
3675 * of the dependence graph separately and then combine the results.
3676 * Depending on the setting of schedule_fuse, a component may be
3677 * either weakly or strongly connected.
3679 * The band_id is adjusted such that each component has a separate id.
3680 * Note that the band_id may have already been set to a value different
3681 * from zero by compute_split_schedule.
3683 static int compute_component_schedule(isl_ctx *ctx,
3684 struct isl_sched_graph *graph)
3686 int wcc, i;
3687 int n, n_edge;
3688 int n_total_row, orig_total_row;
3689 int n_band, orig_band;
3691 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
3692 ctx->opt->schedule_separate_components)
3693 if (split_on_scc(ctx, graph) < 0)
3694 return -1;
3696 n_total_row = 0;
3697 orig_total_row = graph->n_total_row;
3698 n_band = 0;
3699 orig_band = graph->n_band;
3700 for (i = 0; i < graph->n; ++i)
3701 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
3702 for (wcc = 0; wcc < graph->scc; ++wcc) {
3703 n = 0;
3704 for (i = 0; i < graph->n; ++i)
3705 if (graph->node[i].scc == wcc)
3706 n++;
3707 n_edge = 0;
3708 for (i = 0; i < graph->n_edge; ++i)
3709 if (graph->edge[i].src->scc == wcc &&
3710 graph->edge[i].dst->scc == wcc)
3711 n_edge++;
3713 if (compute_sub_schedule(ctx, graph, n, n_edge,
3714 &node_scc_exactly,
3715 &edge_scc_exactly, wcc, 1) < 0)
3716 return -1;
3717 if (graph->n_total_row > n_total_row)
3718 n_total_row = graph->n_total_row;
3719 graph->n_total_row = orig_total_row;
3720 if (graph->n_band > n_band)
3721 n_band = graph->n_band;
3722 graph->n_band = orig_band;
3725 graph->n_total_row = n_total_row;
3726 graph->n_band = n_band;
3728 return pad_schedule(graph);
3731 /* Compute a schedule for the given dependence graph.
3732 * We first check if the graph is connected (through validity and conditional
3733 * validity dependences) and, if not, compute a schedule
3734 * for each component separately.
3735 * If schedule_fuse is set to minimal fusion, then we check for strongly
3736 * connected components instead and compute a separate schedule for
3737 * each such strongly connected component.
3739 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
3741 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
3742 if (detect_sccs(ctx, graph) < 0)
3743 return -1;
3744 } else {
3745 if (detect_wccs(ctx, graph) < 0)
3746 return -1;
3749 if (graph->scc > 1)
3750 return compute_component_schedule(ctx, graph);
3752 return compute_schedule_wcc(ctx, graph);
3755 /* Compute a schedule on sc->domain that respects the given schedule
3756 * constraints.
3758 * In particular, the schedule respects all the validity dependences.
3759 * If the default isl scheduling algorithm is used, it tries to minimize
3760 * the dependence distances over the proximity dependences.
3761 * If Feautrier's scheduling algorithm is used, the proximity dependence
3762 * distances are only minimized during the extension to a full-dimensional
3763 * schedule.
3765 * If there are any condition and conditional validity dependences,
3766 * then the conditional validity dependences may be violated inside
3767 * a tilable band, provided they have no adjacent non-local
3768 * condition dependences.
3770 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
3771 __isl_take isl_schedule_constraints *sc)
3773 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
3774 struct isl_sched_graph graph = { 0 };
3775 isl_schedule *sched;
3776 struct isl_extract_edge_data data;
3777 enum isl_edge_type i;
3779 sc = isl_schedule_constraints_align_params(sc);
3780 if (!sc)
3781 return NULL;
3783 graph.n = isl_union_set_n_set(sc->domain);
3784 if (graph.n == 0)
3785 goto empty;
3786 if (graph_alloc(ctx, &graph, graph.n,
3787 isl_schedule_constraints_n_map(sc)) < 0)
3788 goto error;
3789 if (compute_max_row(&graph, sc->domain) < 0)
3790 goto error;
3791 graph.root = 1;
3792 graph.n = 0;
3793 if (isl_union_set_foreach_set(sc->domain, &extract_node, &graph) < 0)
3794 goto error;
3795 if (graph_init_table(ctx, &graph) < 0)
3796 goto error;
3797 for (i = isl_edge_first; i <= isl_edge_last; ++i)
3798 graph.max_edge[i] = isl_union_map_n_map(sc->constraint[i]);
3799 if (graph_init_edge_tables(ctx, &graph) < 0)
3800 goto error;
3801 graph.n_edge = 0;
3802 data.graph = &graph;
3803 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
3804 data.type = i;
3805 if (isl_union_map_foreach_map(sc->constraint[i],
3806 &extract_edge, &data) < 0)
3807 goto error;
3810 if (compute_schedule(ctx, &graph) < 0)
3811 goto error;
3813 empty:
3814 sched = extract_schedule(&graph, isl_union_set_get_space(sc->domain));
3816 graph_free(ctx, &graph);
3817 isl_schedule_constraints_free(sc);
3819 return sched;
3820 error:
3821 graph_free(ctx, &graph);
3822 isl_schedule_constraints_free(sc);
3823 return NULL;
3826 /* Compute a schedule for the given union of domains that respects
3827 * all the validity dependences and minimizes
3828 * the dependence distances over the proximity dependences.
3830 * This function is kept for backward compatibility.
3832 __isl_give isl_schedule *isl_union_set_compute_schedule(
3833 __isl_take isl_union_set *domain,
3834 __isl_take isl_union_map *validity,
3835 __isl_take isl_union_map *proximity)
3837 isl_schedule_constraints *sc;
3839 sc = isl_schedule_constraints_on_domain(domain);
3840 sc = isl_schedule_constraints_set_validity(sc, validity);
3841 sc = isl_schedule_constraints_set_proximity(sc, proximity);
3843 return isl_schedule_constraints_compute_schedule(sc);
3846 void *isl_schedule_free(__isl_take isl_schedule *sched)
3848 int i;
3849 if (!sched)
3850 return NULL;
3852 if (--sched->ref > 0)
3853 return NULL;
3855 for (i = 0; i < sched->n; ++i) {
3856 isl_multi_aff_free(sched->node[i].sched);
3857 free(sched->node[i].band_end);
3858 free(sched->node[i].band_id);
3859 free(sched->node[i].coincident);
3861 isl_space_free(sched->dim);
3862 isl_band_list_free(sched->band_forest);
3863 free(sched);
3864 return NULL;
3867 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
3869 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
3872 /* Set max_out to the maximal number of output dimensions over
3873 * all maps.
3875 static int update_max_out(__isl_take isl_map *map, void *user)
3877 int *max_out = user;
3878 int n_out = isl_map_dim(map, isl_dim_out);
3880 if (n_out > *max_out)
3881 *max_out = n_out;
3883 isl_map_free(map);
3884 return 0;
3887 /* Internal data structure for map_pad_range.
3889 * "max_out" is the maximal schedule dimension.
3890 * "res" collects the results.
3892 struct isl_pad_schedule_map_data {
3893 int max_out;
3894 isl_union_map *res;
3897 /* Pad the range of the given map with zeros to data->max_out and
3898 * then add the result to data->res.
3900 static int map_pad_range(__isl_take isl_map *map, void *user)
3902 struct isl_pad_schedule_map_data *data = user;
3903 int i;
3904 int n_out = isl_map_dim(map, isl_dim_out);
3906 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3907 for (i = n_out; i < data->max_out; ++i)
3908 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3910 data->res = isl_union_map_add_map(data->res, map);
3911 if (!data->res)
3912 return -1;
3914 return 0;
3917 /* Pad the ranges of the maps in the union map with zeros such they all have
3918 * the same dimension.
3920 static __isl_give isl_union_map *pad_schedule_map(
3921 __isl_take isl_union_map *umap)
3923 struct isl_pad_schedule_map_data data;
3925 if (!umap)
3926 return NULL;
3927 if (isl_union_map_n_map(umap) <= 1)
3928 return umap;
3930 data.max_out = 0;
3931 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3932 return isl_union_map_free(umap);
3934 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3935 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3936 data.res = isl_union_map_free(data.res);
3938 isl_union_map_free(umap);
3939 return data.res;
3942 /* Return an isl_union_map of the schedule. If we have already constructed
3943 * a band forest, then this band forest may have been modified so we need
3944 * to extract the isl_union_map from the forest rather than from
3945 * the originally computed schedule. This reconstructed schedule map
3946 * then needs to be padded with zeros to unify the schedule space
3947 * since the result of isl_band_list_get_suffix_schedule may not have
3948 * a unified schedule space.
3950 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3952 int i;
3953 isl_union_map *umap;
3955 if (!sched)
3956 return NULL;
3958 if (sched->band_forest) {
3959 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3960 return pad_schedule_map(umap);
3963 umap = isl_union_map_empty(isl_space_copy(sched->dim));
3964 for (i = 0; i < sched->n; ++i) {
3965 isl_multi_aff *ma;
3967 ma = isl_multi_aff_copy(sched->node[i].sched);
3968 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
3971 return umap;
3974 static __isl_give isl_band_list *construct_band_list(
3975 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3976 int band_nr, int *parent_active, int n_active);
3978 /* Construct an isl_band structure for the band in the given schedule
3979 * with sequence number band_nr for the n_active nodes marked by active.
3980 * If the nodes don't have a band with the given sequence number,
3981 * then a band without members is created.
3983 * Because of the way the schedule is constructed, we know that
3984 * the position of the band inside the schedule of a node is the same
3985 * for all active nodes.
3987 * The partial schedule for the band is created before the children
3988 * are created to that construct_band_list can refer to the partial
3989 * schedule of the parent.
3991 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
3992 __isl_keep isl_band *parent,
3993 int band_nr, int *active, int n_active)
3995 int i, j;
3996 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3997 isl_band *band;
3998 unsigned start, end;
4000 band = isl_band_alloc(ctx);
4001 if (!band)
4002 return NULL;
4004 band->schedule = schedule;
4005 band->parent = parent;
4007 for (i = 0; i < schedule->n; ++i)
4008 if (active[i])
4009 break;
4011 if (i >= schedule->n)
4012 isl_die(ctx, isl_error_internal,
4013 "band without active statements", goto error);
4015 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
4016 end = band_nr < schedule->node[i].n_band ?
4017 schedule->node[i].band_end[band_nr] : start;
4018 band->n = end - start;
4020 band->coincident = isl_alloc_array(ctx, int, band->n);
4021 if (band->n && !band->coincident)
4022 goto error;
4024 for (j = 0; j < band->n; ++j)
4025 band->coincident[j] = schedule->node[i].coincident[start + j];
4027 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
4028 for (i = 0; i < schedule->n; ++i) {
4029 isl_multi_aff *ma;
4030 isl_pw_multi_aff *pma;
4031 unsigned n_out;
4033 if (!active[i])
4034 continue;
4036 ma = isl_multi_aff_copy(schedule->node[i].sched);
4037 n_out = isl_multi_aff_dim(ma, isl_dim_out);
4038 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
4039 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
4040 pma = isl_pw_multi_aff_from_multi_aff(ma);
4041 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
4042 pma);
4044 if (!band->pma)
4045 goto error;
4047 for (i = 0; i < schedule->n; ++i)
4048 if (active[i] && schedule->node[i].n_band > band_nr + 1)
4049 break;
4051 if (i < schedule->n) {
4052 band->children = construct_band_list(schedule, band,
4053 band_nr + 1, active, n_active);
4054 if (!band->children)
4055 goto error;
4058 return band;
4059 error:
4060 isl_band_free(band);
4061 return NULL;
4064 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
4066 * r is set to a negative value if anything goes wrong.
4068 * c1 stores the result of extract_int.
4069 * c2 is a temporary value used inside cmp_band_in_ancestor.
4070 * t is a temporary value used inside extract_int.
4072 * first and equal are used inside extract_int.
4073 * first is set if we are looking at the first isl_multi_aff inside
4074 * the isl_union_pw_multi_aff.
4075 * equal is set if all the isl_multi_affs have been equal so far.
4077 struct isl_cmp_band_data {
4078 int r;
4080 int first;
4081 int equal;
4083 isl_int t;
4084 isl_int c1;
4085 isl_int c2;
4088 /* Check if "ma" assigns a constant value.
4089 * Note that this function is only called on isl_multi_affs
4090 * with a single output dimension.
4092 * If "ma" assigns a constant value then we compare it to data->c1
4093 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
4094 * If "ma" does not assign a constant value or if it assigns a value
4095 * that is different from data->c1, then we set data->equal to zero
4096 * and terminate the check.
4098 static int multi_aff_extract_int(__isl_take isl_set *set,
4099 __isl_take isl_multi_aff *ma, void *user)
4101 isl_aff *aff;
4102 struct isl_cmp_band_data *data = user;
4104 aff = isl_multi_aff_get_aff(ma, 0);
4105 data->r = isl_aff_is_cst(aff);
4106 if (data->r >= 0 && data->r) {
4107 isl_aff_get_constant(aff, &data->t);
4108 if (data->first) {
4109 isl_int_set(data->c1, data->t);
4110 data->first = 0;
4111 } else if (!isl_int_eq(data->c1, data->t))
4112 data->equal = 0;
4113 } else if (data->r >= 0 && !data->r)
4114 data->equal = 0;
4116 isl_aff_free(aff);
4117 isl_set_free(set);
4118 isl_multi_aff_free(ma);
4120 if (data->r < 0)
4121 return -1;
4122 if (!data->equal)
4123 return -1;
4124 return 0;
4127 /* This function is called for each isl_pw_multi_aff in
4128 * the isl_union_pw_multi_aff checked by extract_int.
4129 * Check all the isl_multi_affs inside "pma".
4131 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
4132 void *user)
4134 int r;
4136 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
4137 isl_pw_multi_aff_free(pma);
4139 return r;
4142 /* Check if "upma" assigns a single constant value to its domain.
4143 * If so, return 1 and store the result in data->c1.
4144 * If not, return 0.
4146 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
4147 * means that either an error occurred or that we have broken off the check
4148 * because we already know the result is going to be negative.
4149 * In the latter case, data->equal is set to zero.
4151 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
4152 struct isl_cmp_band_data *data)
4154 data->first = 1;
4155 data->equal = 1;
4157 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
4158 &pw_multi_aff_extract_int, data) < 0) {
4159 if (!data->equal)
4160 return 0;
4161 return -1;
4164 return !data->first && data->equal;
4167 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
4168 * "ancestor".
4170 * If the parent of "ancestor" also has a single member, then we
4171 * first try to compare the two band based on the partial schedule
4172 * of this parent.
4174 * Otherwise, or if the result is inconclusive, we look at the partial schedule
4175 * of "ancestor" itself.
4176 * In particular, we specialize the parent schedule based
4177 * on the domains of the child schedules, check if both assign
4178 * a single constant value and, if so, compare the two constant values.
4179 * If the specialized parent schedules do not assign a constant value,
4180 * then they cannot be used to order the two bands and so in this case
4181 * we return 0.
4183 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
4184 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
4185 __isl_keep isl_band *ancestor)
4187 isl_union_pw_multi_aff *upma;
4188 isl_union_set *domain;
4189 int r;
4191 if (data->r < 0)
4192 return 0;
4194 if (ancestor->parent && ancestor->parent->n == 1) {
4195 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
4196 if (data->r < 0)
4197 return 0;
4198 if (r)
4199 return r;
4202 upma = isl_union_pw_multi_aff_copy(b1->pma);
4203 domain = isl_union_pw_multi_aff_domain(upma);
4204 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4205 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4206 r = extract_int(upma, data);
4207 isl_union_pw_multi_aff_free(upma);
4209 if (r < 0)
4210 data->r = -1;
4211 if (r < 0 || !r)
4212 return 0;
4214 isl_int_set(data->c2, data->c1);
4216 upma = isl_union_pw_multi_aff_copy(b2->pma);
4217 domain = isl_union_pw_multi_aff_domain(upma);
4218 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
4219 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
4220 r = extract_int(upma, data);
4221 isl_union_pw_multi_aff_free(upma);
4223 if (r < 0)
4224 data->r = -1;
4225 if (r < 0 || !r)
4226 return 0;
4228 return isl_int_cmp(data->c2, data->c1);
4231 /* Compare "a" and "b" based on the parent schedule of their parent.
4233 static int cmp_band(const void *a, const void *b, void *user)
4235 isl_band *b1 = *(isl_band * const *) a;
4236 isl_band *b2 = *(isl_band * const *) b;
4237 struct isl_cmp_band_data *data = user;
4239 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
4242 /* Sort the elements in "list" based on the partial schedules of its parent
4243 * (and ancestors). In particular if the parent assigns constant values
4244 * to the domains of the bands in "list", then the elements are sorted
4245 * according to that order.
4246 * This order should be a more "natural" order for the user, but otherwise
4247 * shouldn't have any effect.
4248 * If we would be constructing an isl_band forest directly in
4249 * isl_schedule_constraints_compute_schedule then there wouldn't be any need
4250 * for a reordering, since the children would be added to the list
4251 * in their natural order automatically.
4253 * If there is only one element in the list, then there is no need to sort
4254 * anything.
4255 * If the partial schedule of the parent has more than one member
4256 * (or if there is no parent), then it's
4257 * defnitely not assigning constant values to the different children in
4258 * the list and so we wouldn't be able to use it to sort the list.
4260 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
4261 __isl_keep isl_band *parent)
4263 struct isl_cmp_band_data data;
4265 if (!list)
4266 return NULL;
4267 if (list->n <= 1)
4268 return list;
4269 if (!parent || parent->n != 1)
4270 return list;
4272 data.r = 0;
4273 isl_int_init(data.c1);
4274 isl_int_init(data.c2);
4275 isl_int_init(data.t);
4276 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
4277 if (data.r < 0)
4278 list = isl_band_list_free(list);
4279 isl_int_clear(data.c1);
4280 isl_int_clear(data.c2);
4281 isl_int_clear(data.t);
4283 return list;
4286 /* Construct a list of bands that start at the same position (with
4287 * sequence number band_nr) in the schedules of the nodes that
4288 * were active in the parent band.
4290 * A separate isl_band structure is created for each band_id
4291 * and for each node that does not have a band with sequence
4292 * number band_nr. In the latter case, a band without members
4293 * is created.
4294 * This ensures that if a band has any children, then each node
4295 * that was active in the band is active in exactly one of the children.
4297 static __isl_give isl_band_list *construct_band_list(
4298 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
4299 int band_nr, int *parent_active, int n_active)
4301 int i, j;
4302 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4303 int *active;
4304 int n_band;
4305 isl_band_list *list;
4307 n_band = 0;
4308 for (i = 0; i < n_active; ++i) {
4309 for (j = 0; j < schedule->n; ++j) {
4310 if (!parent_active[j])
4311 continue;
4312 if (schedule->node[j].n_band <= band_nr)
4313 continue;
4314 if (schedule->node[j].band_id[band_nr] == i) {
4315 n_band++;
4316 break;
4320 for (j = 0; j < schedule->n; ++j)
4321 if (schedule->node[j].n_band <= band_nr)
4322 n_band++;
4324 if (n_band == 1) {
4325 isl_band *band;
4326 list = isl_band_list_alloc(ctx, n_band);
4327 band = construct_band(schedule, parent, band_nr,
4328 parent_active, n_active);
4329 return isl_band_list_add(list, band);
4332 active = isl_alloc_array(ctx, int, schedule->n);
4333 if (schedule->n && !active)
4334 return NULL;
4336 list = isl_band_list_alloc(ctx, n_band);
4338 for (i = 0; i < n_active; ++i) {
4339 int n = 0;
4340 isl_band *band;
4342 for (j = 0; j < schedule->n; ++j) {
4343 active[j] = parent_active[j] &&
4344 schedule->node[j].n_band > band_nr &&
4345 schedule->node[j].band_id[band_nr] == i;
4346 if (active[j])
4347 n++;
4349 if (n == 0)
4350 continue;
4352 band = construct_band(schedule, parent, band_nr, active, n);
4354 list = isl_band_list_add(list, band);
4356 for (i = 0; i < schedule->n; ++i) {
4357 isl_band *band;
4358 if (!parent_active[i])
4359 continue;
4360 if (schedule->node[i].n_band > band_nr)
4361 continue;
4362 for (j = 0; j < schedule->n; ++j)
4363 active[j] = j == i;
4364 band = construct_band(schedule, parent, band_nr, active, 1);
4365 list = isl_band_list_add(list, band);
4368 free(active);
4370 list = sort_band_list(list, parent);
4372 return list;
4375 /* Construct a band forest representation of the schedule and
4376 * return the list of roots.
4378 static __isl_give isl_band_list *construct_forest(
4379 __isl_keep isl_schedule *schedule)
4381 int i;
4382 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
4383 isl_band_list *forest;
4384 int *active;
4386 active = isl_alloc_array(ctx, int, schedule->n);
4387 if (schedule->n && !active)
4388 return NULL;
4390 for (i = 0; i < schedule->n; ++i)
4391 active[i] = 1;
4393 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
4395 free(active);
4397 return forest;
4400 /* Return the roots of a band forest representation of the schedule.
4402 __isl_give isl_band_list *isl_schedule_get_band_forest(
4403 __isl_keep isl_schedule *schedule)
4405 if (!schedule)
4406 return NULL;
4407 if (!schedule->band_forest)
4408 schedule->band_forest = construct_forest(schedule);
4409 return isl_band_list_dup(schedule->band_forest);
4412 /* Call "fn" on each band in the schedule in depth-first post-order.
4414 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
4415 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
4417 int r;
4418 isl_band_list *forest;
4420 if (!sched)
4421 return -1;
4423 forest = isl_schedule_get_band_forest(sched);
4424 r = isl_band_list_foreach_band(forest, fn, user);
4425 isl_band_list_free(forest);
4427 return r;
4430 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4431 __isl_keep isl_band_list *list);
4433 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
4434 __isl_keep isl_band *band)
4436 isl_band_list *children;
4438 p = isl_printer_start_line(p);
4439 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
4440 p = isl_printer_end_line(p);
4442 if (!isl_band_has_children(band))
4443 return p;
4445 children = isl_band_get_children(band);
4447 p = isl_printer_indent(p, 4);
4448 p = print_band_list(p, children);
4449 p = isl_printer_indent(p, -4);
4451 isl_band_list_free(children);
4453 return p;
4456 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
4457 __isl_keep isl_band_list *list)
4459 int i, n;
4461 n = isl_band_list_n_band(list);
4462 for (i = 0; i < n; ++i) {
4463 isl_band *band;
4464 band = isl_band_list_get_band(list, i);
4465 p = print_band(p, band);
4466 isl_band_free(band);
4469 return p;
4472 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
4473 __isl_keep isl_schedule *schedule)
4475 isl_band_list *forest;
4477 forest = isl_schedule_get_band_forest(schedule);
4479 p = print_band_list(p, forest);
4481 isl_band_list_free(forest);
4483 return p;
4486 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
4488 isl_printer *printer;
4490 if (!schedule)
4491 return;
4493 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
4494 printer = isl_printer_print_schedule(printer, schedule);
4496 isl_printer_free(printer);