MFC CAM fixes for the 2.0 release.
[dragonfly.git] / sys / bus / cam / cam_periph.c
blobf7766250fc7ace32703d19fd66cf0d98d5e2a6e9
1 /*
2 * Common functions for CAM "type" (peripheral) drivers.
4 * Copyright (c) 1997, 1998 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/cam/cam_periph.c,v 1.70 2008/02/12 11:07:33 raj Exp $
30 * $DragonFly: src/sys/bus/cam/cam_periph.c,v 1.40.2.1 2008/07/18 00:08:22 dillon Exp $
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/devicestat.h>
42 #include <sys/bus.h>
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
46 #include <sys/thread2.h>
48 #include "cam.h"
49 #include "cam_ccb.h"
50 #include "cam_xpt_periph.h"
51 #include "cam_periph.h"
52 #include "cam_debug.h"
53 #include "cam_sim.h"
55 #include <bus/cam/scsi/scsi_all.h>
56 #include <bus/cam/scsi/scsi_message.h>
57 #include <bus/cam/scsi/scsi_pass.h>
59 static u_int camperiphnextunit(struct periph_driver *p_drv,
60 u_int newunit, int wired,
61 path_id_t pathid, target_id_t target,
62 lun_id_t lun);
63 static u_int camperiphunit(struct periph_driver *p_drv,
64 path_id_t pathid, target_id_t target,
65 lun_id_t lun);
66 static void camperiphdone(struct cam_periph *periph,
67 union ccb *done_ccb);
68 static void camperiphfree(struct cam_periph *periph);
69 static int camperiphscsistatuserror(union ccb *ccb,
70 cam_flags camflags,
71 u_int32_t sense_flags,
72 union ccb *save_ccb,
73 int *openings,
74 u_int32_t *relsim_flags,
75 u_int32_t *timeout);
76 static int camperiphscsisenseerror(union ccb *ccb,
77 cam_flags camflags,
78 u_int32_t sense_flags,
79 union ccb *save_ccb,
80 int *openings,
81 u_int32_t *relsim_flags,
82 u_int32_t *timeout);
84 static int nperiph_drivers;
85 struct periph_driver **periph_drivers;
87 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
89 static int periph_selto_delay = 1000;
90 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
91 static int periph_noresrc_delay = 500;
92 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
93 static int periph_busy_delay = 500;
94 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
97 void
98 periphdriver_register(void *data)
100 struct periph_driver **newdrivers, **old;
101 int ndrivers;
103 ndrivers = nperiph_drivers + 2;
104 newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
105 M_WAITOK);
106 if (periph_drivers)
107 bcopy(periph_drivers, newdrivers,
108 sizeof(*newdrivers) * nperiph_drivers);
109 newdrivers[nperiph_drivers] = (struct periph_driver *)data;
110 newdrivers[nperiph_drivers + 1] = NULL;
111 old = periph_drivers;
112 periph_drivers = newdrivers;
113 if (old)
114 kfree(old, M_CAMPERIPH);
115 nperiph_drivers++;
118 cam_status
119 cam_periph_alloc(periph_ctor_t *periph_ctor,
120 periph_oninv_t *periph_oninvalidate,
121 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
122 char *name, cam_periph_type type, struct cam_path *path,
123 ac_callback_t *ac_callback, ac_code code, void *arg)
125 struct periph_driver **p_drv;
126 struct cam_sim *sim;
127 struct cam_periph *periph;
128 struct cam_periph *cur_periph;
129 path_id_t path_id;
130 target_id_t target_id;
131 lun_id_t lun_id;
132 cam_status status;
133 u_int init_level;
135 init_level = 0;
137 * Handle Hot-Plug scenarios. If there is already a peripheral
138 * of our type assigned to this path, we are likely waiting for
139 * final close on an old, invalidated, peripheral. If this is
140 * the case, queue up a deferred call to the peripheral's async
141 * handler. If it looks like a mistaken re-allocation, complain.
143 if ((periph = cam_periph_find(path, name)) != NULL) {
145 if ((periph->flags & CAM_PERIPH_INVALID) != 0
146 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
147 periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
148 periph->deferred_callback = ac_callback;
149 periph->deferred_ac = code;
150 return (CAM_REQ_INPROG);
151 } else {
152 kprintf("cam_periph_alloc: attempt to re-allocate "
153 "valid device %s%d rejected\n",
154 periph->periph_name, periph->unit_number);
156 return (CAM_REQ_INVALID);
159 periph = kmalloc(sizeof(*periph), M_CAMPERIPH, M_INTWAIT | M_ZERO);
161 init_level++;
163 xpt_lock_buses();
164 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
165 if (strcmp((*p_drv)->driver_name, name) == 0)
166 break;
168 xpt_unlock_buses();
170 sim = xpt_path_sim(path);
171 path_id = xpt_path_path_id(path);
172 target_id = xpt_path_target_id(path);
173 lun_id = xpt_path_lun_id(path);
174 cam_init_pinfo(&periph->pinfo);
175 periph->periph_start = periph_start;
176 periph->periph_dtor = periph_dtor;
177 periph->periph_oninval = periph_oninvalidate;
178 periph->type = type;
179 periph->periph_name = name;
180 periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
181 periph->immediate_priority = CAM_PRIORITY_NONE;
182 periph->refcount = 0;
183 periph->sim = sim;
184 SLIST_INIT(&periph->ccb_list);
185 status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
186 if (status != CAM_REQ_CMP)
187 goto failure;
189 periph->path = path;
190 init_level++;
192 status = xpt_add_periph(periph);
194 if (status != CAM_REQ_CMP)
195 goto failure;
197 cur_periph = TAILQ_FIRST(&(*p_drv)->units);
198 while (cur_periph != NULL
199 && cur_periph->unit_number < periph->unit_number)
200 cur_periph = TAILQ_NEXT(cur_periph, unit_links);
202 if (cur_periph != NULL)
203 TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
204 else {
205 TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
206 (*p_drv)->generation++;
209 init_level++;
211 status = periph_ctor(periph, arg);
213 if (status == CAM_REQ_CMP)
214 init_level++;
216 failure:
217 switch (init_level) {
218 case 4:
219 /* Initialized successfully */
220 break;
221 case 3:
222 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
223 xpt_remove_periph(periph);
224 /* FALLTHROUGH */
225 case 2:
226 xpt_free_path(periph->path);
227 /* FALLTHROUGH */
228 case 1:
229 kfree(periph, M_CAMPERIPH);
230 /* FALLTHROUGH */
231 case 0:
232 /* No cleanup to perform. */
233 break;
234 default:
235 panic("cam_periph_alloc: Unknown init level");
237 return(status);
241 * Find a peripheral structure with the specified path, target, lun,
242 * and (optionally) type. If the name is NULL, this function will return
243 * the first peripheral driver that matches the specified path.
245 struct cam_periph *
246 cam_periph_find(struct cam_path *path, char *name)
248 struct periph_driver **p_drv;
249 struct cam_periph *periph;
251 xpt_lock_buses();
252 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
253 if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
254 continue;
256 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
257 if (xpt_path_comp(periph->path, path) == 0) {
258 xpt_unlock_buses();
259 return(periph);
262 if (name != NULL) {
263 xpt_unlock_buses();
264 return(NULL);
267 xpt_unlock_buses();
268 return(NULL);
271 cam_status
272 cam_periph_acquire(struct cam_periph *periph)
274 if (periph == NULL)
275 return(CAM_REQ_CMP_ERR);
277 xpt_lock_buses();
278 periph->refcount++;
279 xpt_unlock_buses();
281 return(CAM_REQ_CMP);
284 void
285 cam_periph_release(struct cam_periph *periph)
288 if (periph == NULL)
289 return;
291 xpt_lock_buses();
292 if ((--periph->refcount == 0)
293 && (periph->flags & CAM_PERIPH_INVALID)) {
294 camperiphfree(periph);
296 xpt_unlock_buses();
301 cam_periph_hold(struct cam_periph *periph, int flags)
303 int error;
305 sim_lock_assert_owned(periph->sim->lock);
308 * Increment the reference count on the peripheral
309 * while we wait for our lock attempt to succeed
310 * to ensure the peripheral doesn't disappear out
311 * from user us while we sleep.
314 if (cam_periph_acquire(periph) != CAM_REQ_CMP)
315 return (ENXIO);
317 while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
318 periph->flags |= CAM_PERIPH_LOCK_WANTED;
319 if ((error = sim_lock_sleep(periph, flags, "caplck", 0,
320 periph->sim->lock)) != 0) {
321 cam_periph_release(periph);
322 return (error);
326 periph->flags |= CAM_PERIPH_LOCKED;
327 return (0);
330 void
331 cam_periph_unhold(struct cam_periph *periph, int unlock)
333 struct cam_sim *sim;
335 sim_lock_assert_owned(periph->sim->lock);
336 periph->flags &= ~CAM_PERIPH_LOCKED;
337 if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
338 periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
339 wakeup(periph);
341 if (unlock) {
342 sim = periph->sim;
343 cam_periph_release(periph);
344 /* periph may be garbage now */
345 CAM_SIM_UNLOCK(sim);
346 } else {
347 cam_periph_release(periph);
352 * Look for the next unit number that is not currently in use for this
353 * peripheral type starting at "newunit". Also exclude unit numbers that
354 * are reserved by for future "hardwiring" unless we already know that this
355 * is a potential wired device. Only assume that the device is "wired" the
356 * first time through the loop since after that we'll be looking at unit
357 * numbers that did not match a wiring entry.
359 static u_int
360 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
361 path_id_t pathid, target_id_t target, lun_id_t lun)
363 struct cam_periph *periph;
364 char *periph_name, *strval;
365 int i, val, dunit;
366 const char *dname;
368 periph_name = p_drv->driver_name;
369 for (;;newunit++) {
371 for (periph = TAILQ_FIRST(&p_drv->units);
372 periph != NULL && periph->unit_number != newunit;
373 periph = TAILQ_NEXT(periph, unit_links))
376 if (periph != NULL && periph->unit_number == newunit) {
377 if (wired != 0) {
378 xpt_print(periph->path, "Duplicate Wired "
379 "Device entry!\n");
380 xpt_print(periph->path, "Second device (%s "
381 "device at scbus%d target %d lun %d) will "
382 "not be wired\n", periph_name, pathid,
383 target, lun);
384 wired = 0;
386 continue;
388 if (wired)
389 break;
392 * Don't match entries like "da 4" as a wired down
393 * device, but do match entries like "da 4 target 5"
394 * or even "da 4 scbus 1".
396 i = -1;
397 while ((i = resource_locate(i, periph_name)) != -1) {
398 dname = resource_query_name(i);
399 dunit = resource_query_unit(i);
400 /* if no "target" and no specific scbus, skip */
401 if (resource_int_value(dname, dunit, "target", &val) &&
402 (resource_string_value(dname, dunit, "at",&strval)||
403 strcmp(strval, "scbus") == 0))
404 continue;
405 if (newunit == dunit)
406 break;
408 if (i == -1)
409 break;
411 return (newunit);
414 static u_int
415 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
416 target_id_t target, lun_id_t lun)
418 u_int unit;
419 int hit, i, val, dunit;
420 const char *dname;
421 char pathbuf[32], *strval, *periph_name;
423 unit = 0;
425 periph_name = p_drv->driver_name;
426 ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
427 i = -1;
428 for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
429 dname = resource_query_name(i);
430 dunit = resource_query_unit(i);
431 if (resource_string_value(dname, dunit, "at", &strval) == 0) {
432 if (strcmp(strval, pathbuf) != 0)
433 continue;
434 hit++;
436 if (resource_int_value(dname, dunit, "target", &val) == 0) {
437 if (val != target)
438 continue;
439 hit++;
441 if (resource_int_value(dname, dunit, "lun", &val) == 0) {
442 if (val != lun)
443 continue;
444 hit++;
446 if (hit != 0) {
447 unit = dunit;
448 break;
453 * Either start from 0 looking for the next unit or from
454 * the unit number given in the resource config. This way,
455 * if we have wildcard matches, we don't return the same
456 * unit number twice.
458 unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
459 target, lun);
461 return (unit);
464 void
465 cam_periph_invalidate(struct cam_periph *periph)
468 * We only call this routine the first time a peripheral is
469 * invalidated.
471 if (((periph->flags & CAM_PERIPH_INVALID) == 0)
472 && (periph->periph_oninval != NULL))
473 periph->periph_oninval(periph);
475 periph->flags |= CAM_PERIPH_INVALID;
476 periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
478 xpt_lock_buses();
479 if (periph->refcount == 0)
480 camperiphfree(periph);
481 else if (periph->refcount < 0)
482 kprintf("cam_invalidate_periph: refcount < 0!!\n");
483 xpt_unlock_buses();
486 static void
487 camperiphfree(struct cam_periph *periph)
489 struct periph_driver **p_drv;
491 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
492 if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
493 break;
496 if (*p_drv == NULL) {
497 kprintf("camperiphfree: attempt to free non-existent periph\n");
498 return;
501 TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
502 (*p_drv)->generation++;
503 xpt_unlock_buses();
505 if (periph->periph_dtor != NULL)
506 periph->periph_dtor(periph);
507 xpt_remove_periph(periph);
509 if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
510 union ccb ccb;
511 void *arg;
513 switch (periph->deferred_ac) {
514 case AC_FOUND_DEVICE:
515 ccb.ccb_h.func_code = XPT_GDEV_TYPE;
516 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
517 xpt_action(&ccb);
518 arg = &ccb;
519 break;
520 case AC_PATH_REGISTERED:
521 ccb.ccb_h.func_code = XPT_PATH_INQ;
522 xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
523 xpt_action(&ccb);
524 arg = &ccb;
525 break;
526 default:
527 arg = NULL;
528 break;
530 periph->deferred_callback(NULL, periph->deferred_ac,
531 periph->path, arg);
533 xpt_free_path(periph->path);
534 kfree(periph, M_CAMPERIPH);
535 xpt_lock_buses();
539 * Map user virtual pointers into kernel virtual address space, so we can
540 * access the memory. This won't work on physical pointers, for now it's
541 * up to the caller to check for that. (XXX KDM -- should we do that here
542 * instead?) This also only works for up to MAXPHYS memory. Since we use
543 * buffers to map stuff in and out, we're limited to the buffer size.
546 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
548 int numbufs, i, j;
549 buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
550 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
551 u_int32_t lengths[CAM_PERIPH_MAXMAPS];
552 u_int32_t dirs[CAM_PERIPH_MAXMAPS];
554 switch(ccb->ccb_h.func_code) {
555 case XPT_DEV_MATCH:
556 if (ccb->cdm.match_buf_len == 0) {
557 kprintf("cam_periph_mapmem: invalid match buffer "
558 "length 0\n");
559 return(EINVAL);
561 if (ccb->cdm.pattern_buf_len > 0) {
562 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
563 lengths[0] = ccb->cdm.pattern_buf_len;
564 dirs[0] = CAM_DIR_OUT;
565 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
566 lengths[1] = ccb->cdm.match_buf_len;
567 dirs[1] = CAM_DIR_IN;
568 numbufs = 2;
569 } else {
570 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
571 lengths[0] = ccb->cdm.match_buf_len;
572 dirs[0] = CAM_DIR_IN;
573 numbufs = 1;
575 break;
576 case XPT_SCSI_IO:
577 case XPT_CONT_TARGET_IO:
578 if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
579 return(0);
581 data_ptrs[0] = &ccb->csio.data_ptr;
582 lengths[0] = ccb->csio.dxfer_len;
583 dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
584 numbufs = 1;
585 break;
586 default:
587 return(EINVAL);
588 break; /* NOTREACHED */
592 * Check the transfer length and permissions first, so we don't
593 * have to unmap any previously mapped buffers.
595 for (i = 0; i < numbufs; i++) {
597 * Its kinda bogus, we need a R+W command. For now the
598 * buffer needs some sort of command. Use BUF_CMD_WRITE
599 * to indicate a write and BUF_CMD_READ to indicate R+W.
601 cmd[i] = BUF_CMD_WRITE;
604 * The userland data pointer passed in may not be page
605 * aligned. vmapbuf() truncates the address to a page
606 * boundary, so if the address isn't page aligned, we'll
607 * need enough space for the given transfer length, plus
608 * whatever extra space is necessary to make it to the page
609 * boundary.
611 if ((lengths[i] +
612 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
613 kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
614 "which is greater than DFLTPHYS(%d)\n",
615 (long)(lengths[i] +
616 (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
617 DFLTPHYS);
618 return(E2BIG);
621 if (dirs[i] & CAM_DIR_OUT) {
622 if (!useracc(*data_ptrs[i], lengths[i],
623 VM_PROT_READ)) {
624 kprintf("cam_periph_mapmem: error, "
625 "address %p, length %lu isn't "
626 "user accessible for READ\n",
627 (void *)*data_ptrs[i],
628 (u_long)lengths[i]);
629 return(EACCES);
633 if (dirs[i] & CAM_DIR_IN) {
634 cmd[i] = BUF_CMD_READ;
635 if (!useracc(*data_ptrs[i], lengths[i],
636 VM_PROT_WRITE)) {
637 kprintf("cam_periph_mapmem: error, "
638 "address %p, length %lu isn't "
639 "user accessible for WRITE\n",
640 (void *)*data_ptrs[i],
641 (u_long)lengths[i]);
643 return(EACCES);
649 for (i = 0; i < numbufs; i++) {
651 * Get the buffer.
653 mapinfo->bp[i] = getpbuf(NULL);
655 /* save the original user pointer */
656 mapinfo->saved_ptrs[i] = *data_ptrs[i];
658 /* set the flags */
659 mapinfo->bp[i]->b_cmd = cmd[i];
661 /* map the user buffer into kernel memory */
662 if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i]) < 0) {
663 kprintf("cam_periph_mapmem: error, "
664 "address %p, length %lu isn't "
665 "user accessible any more\n",
666 (void *)*data_ptrs[i],
667 (u_long)lengths[i]);
668 for (j = 0; j < i; ++j) {
669 *data_ptrs[j] = mapinfo->saved_ptrs[j];
670 vunmapbuf(mapinfo->bp[j]);
671 relpbuf(mapinfo->bp[j], NULL);
673 mapinfo->num_bufs_used -= i;
674 return(EACCES);
677 /* set our pointer to the new mapped area */
678 *data_ptrs[i] = mapinfo->bp[i]->b_data;
680 mapinfo->num_bufs_used++;
683 return(0);
687 * Unmap memory segments mapped into kernel virtual address space by
688 * cam_periph_mapmem().
690 void
691 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
693 int numbufs, i;
694 u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
696 if (mapinfo->num_bufs_used <= 0) {
697 /* allow ourselves to be swapped once again */
698 return;
701 switch (ccb->ccb_h.func_code) {
702 case XPT_DEV_MATCH:
703 numbufs = min(mapinfo->num_bufs_used, 2);
705 if (numbufs == 1) {
706 data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
707 } else {
708 data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
709 data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
711 break;
712 case XPT_SCSI_IO:
713 case XPT_CONT_TARGET_IO:
714 data_ptrs[0] = &ccb->csio.data_ptr;
715 numbufs = min(mapinfo->num_bufs_used, 1);
716 break;
717 default:
718 /* allow ourselves to be swapped once again */
719 return;
720 break; /* NOTREACHED */
723 for (i = 0; i < numbufs; i++) {
724 /* Set the user's pointer back to the original value */
725 *data_ptrs[i] = mapinfo->saved_ptrs[i];
727 /* unmap the buffer */
728 vunmapbuf(mapinfo->bp[i]);
730 /* release the buffer */
731 relpbuf(mapinfo->bp[i], NULL);
734 /* allow ourselves to be swapped once again */
737 union ccb *
738 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
740 struct ccb_hdr *ccb_h;
742 sim_lock_assert_owned(periph->sim->lock);
743 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
745 while (SLIST_FIRST(&periph->ccb_list) == NULL) {
746 if (periph->immediate_priority > priority)
747 periph->immediate_priority = priority;
748 xpt_schedule(periph, priority);
749 if ((SLIST_FIRST(&periph->ccb_list) != NULL)
750 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
751 break;
752 sim_lock_sleep(&periph->ccb_list, 0, "cgticb", 0,
753 periph->sim->lock);
756 ccb_h = SLIST_FIRST(&periph->ccb_list);
757 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
758 return ((union ccb *)ccb_h);
761 void
762 cam_periph_ccbwait(union ccb *ccb)
764 struct cam_sim *sim;
766 sim = xpt_path_sim(ccb->ccb_h.path);
767 while ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
768 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) {
769 sim_lock_sleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0, sim->lock);
774 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
775 int (*error_routine)(union ccb *ccb,
776 cam_flags camflags,
777 u_int32_t sense_flags))
779 union ccb *ccb;
780 int error;
781 int found;
783 error = found = 0;
785 switch(cmd){
786 case CAMGETPASSTHRU:
787 ccb = cam_periph_getccb(periph, /* priority */ 1);
788 xpt_setup_ccb(&ccb->ccb_h,
789 ccb->ccb_h.path,
790 /*priority*/1);
791 ccb->ccb_h.func_code = XPT_GDEVLIST;
794 * Basically, the point of this is that we go through
795 * getting the list of devices, until we find a passthrough
796 * device. In the current version of the CAM code, the
797 * only way to determine what type of device we're dealing
798 * with is by its name.
800 while (found == 0) {
801 ccb->cgdl.index = 0;
802 ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
803 while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
805 /* we want the next device in the list */
806 xpt_action(ccb);
807 if (strncmp(ccb->cgdl.periph_name,
808 "pass", 4) == 0){
809 found = 1;
810 break;
813 if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
814 (found == 0)) {
815 ccb->cgdl.periph_name[0] = '\0';
816 ccb->cgdl.unit_number = 0;
817 break;
821 /* copy the result back out */
822 bcopy(ccb, addr, sizeof(union ccb));
824 /* and release the ccb */
825 xpt_release_ccb(ccb);
827 break;
828 default:
829 error = ENOTTY;
830 break;
832 return(error);
836 cam_periph_runccb(union ccb *ccb,
837 int (*error_routine)(union ccb *ccb,
838 cam_flags camflags,
839 u_int32_t sense_flags),
840 cam_flags camflags, u_int32_t sense_flags,
841 struct devstat *ds)
843 struct cam_sim *sim;
844 int error;
846 error = 0;
847 sim = xpt_path_sim(ccb->ccb_h.path);
848 sim_lock_assert_owned(sim->lock);
851 * If the user has supplied a stats structure, and if we understand
852 * this particular type of ccb, record the transaction start.
854 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
855 devstat_start_transaction(ds);
857 xpt_action(ccb);
859 do {
860 cam_periph_ccbwait(ccb);
861 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
862 error = 0;
863 else if (error_routine != NULL)
864 error = (*error_routine)(ccb, camflags, sense_flags);
865 else
866 error = 0;
868 } while (error == ERESTART);
870 if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
871 cam_release_devq(ccb->ccb_h.path,
872 /* relsim_flags */0,
873 /* openings */0,
874 /* timeout */0,
875 /* getcount_only */ FALSE);
877 if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
878 devstat_end_transaction(ds,
879 ccb->csio.dxfer_len,
880 ccb->csio.tag_action & 0xf,
881 ((ccb->ccb_h.flags & CAM_DIR_MASK) ==
882 CAM_DIR_NONE) ? DEVSTAT_NO_DATA :
883 (ccb->ccb_h.flags & CAM_DIR_OUT) ?
884 DEVSTAT_WRITE :
885 DEVSTAT_READ);
887 return(error);
890 void
891 cam_freeze_devq(struct cam_path *path)
893 struct ccb_hdr ccb_h;
895 xpt_setup_ccb(&ccb_h, path, /*priority*/1);
896 ccb_h.func_code = XPT_NOOP;
897 ccb_h.flags = CAM_DEV_QFREEZE;
898 xpt_action((union ccb *)&ccb_h);
901 u_int32_t
902 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
903 u_int32_t openings, u_int32_t timeout,
904 int getcount_only)
906 struct ccb_relsim crs;
908 xpt_setup_ccb(&crs.ccb_h, path,
909 /*priority*/1);
910 crs.ccb_h.func_code = XPT_REL_SIMQ;
911 crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
912 crs.release_flags = relsim_flags;
913 crs.openings = openings;
914 crs.release_timeout = timeout;
915 xpt_action((union ccb *)&crs);
916 return (crs.qfrozen_cnt);
919 #define saved_ccb_ptr ppriv_ptr0
920 static void
921 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
923 union ccb *saved_ccb;
924 cam_status status;
925 int frozen;
926 int sense;
927 struct scsi_start_stop_unit *scsi_cmd;
928 u_int32_t relsim_flags, timeout;
929 u_int32_t qfrozen_cnt;
930 int xpt_done_ccb;
932 xpt_done_ccb = FALSE;
933 status = done_ccb->ccb_h.status;
934 frozen = (status & CAM_DEV_QFRZN) != 0;
935 sense = (status & CAM_AUTOSNS_VALID) != 0;
936 status &= CAM_STATUS_MASK;
938 timeout = 0;
939 relsim_flags = 0;
940 saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
943 * Unfreeze the queue once if it is already frozen..
945 if (frozen != 0) {
946 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
947 /*relsim_flags*/0,
948 /*openings*/0,
949 /*timeout*/0,
950 /*getcount_only*/0);
953 switch (status) {
954 case CAM_REQ_CMP:
957 * If we have successfully taken a device from the not
958 * ready to ready state, re-scan the device and re-get
959 * the inquiry information. Many devices (mostly disks)
960 * don't properly report their inquiry information unless
961 * they are spun up.
963 * If we manually retrieved sense into a CCB and got
964 * something other than "NO SENSE" send the updated CCB
965 * back to the client via xpt_done() to be processed via
966 * the error recovery code again.
968 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
969 scsi_cmd = (struct scsi_start_stop_unit *)
970 &done_ccb->csio.cdb_io.cdb_bytes;
972 if (scsi_cmd->opcode == START_STOP_UNIT)
973 xpt_async(AC_INQ_CHANGED,
974 done_ccb->ccb_h.path, NULL);
975 if (scsi_cmd->opcode == REQUEST_SENSE) {
976 u_int sense_key;
978 sense_key = saved_ccb->csio.sense_data.flags;
979 sense_key &= SSD_KEY;
980 if (sense_key != SSD_KEY_NO_SENSE) {
981 saved_ccb->ccb_h.status |=
982 CAM_AUTOSNS_VALID;
983 #if 0
984 xpt_print(saved_ccb->ccb_h.path,
985 "Recovered Sense\n");
986 scsi_sense_print(&saved_ccb->csio);
987 cam_error_print(saved_ccb, CAM_ESF_ALL,
988 CAM_EPF_ALL);
989 #endif
990 xpt_done_ccb = TRUE;
994 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
995 sizeof(union ccb));
997 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
999 if (xpt_done_ccb == FALSE)
1000 xpt_action(done_ccb);
1002 break;
1004 case CAM_SCSI_STATUS_ERROR:
1005 scsi_cmd = (struct scsi_start_stop_unit *)
1006 &done_ccb->csio.cdb_io.cdb_bytes;
1007 if (sense != 0) {
1008 struct ccb_getdev cgd;
1009 struct scsi_sense_data *sense;
1010 int error_code, sense_key, asc, ascq;
1011 scsi_sense_action err_action;
1013 sense = &done_ccb->csio.sense_data;
1014 scsi_extract_sense(sense, &error_code,
1015 &sense_key, &asc, &ascq);
1018 * Grab the inquiry data for this device.
1020 xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1021 /*priority*/ 1);
1022 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1023 xpt_action((union ccb *)&cgd);
1024 err_action = scsi_error_action(&done_ccb->csio,
1025 &cgd.inq_data, 0);
1028 * If the error is "invalid field in CDB",
1029 * and the load/eject flag is set, turn the
1030 * flag off and try again. This is just in
1031 * case the drive in question barfs on the
1032 * load eject flag. The CAM code should set
1033 * the load/eject flag by default for
1034 * removable media.
1037 /* XXX KDM
1038 * Should we check to see what the specific
1039 * scsi status is?? Or does it not matter
1040 * since we already know that there was an
1041 * error, and we know what the specific
1042 * error code was, and we know what the
1043 * opcode is..
1045 if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1046 ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1047 (asc == 0x24) && (ascq == 0x00) &&
1048 (done_ccb->ccb_h.retry_count > 0)) {
1050 scsi_cmd->how &= ~SSS_LOEJ;
1052 xpt_action(done_ccb);
1054 } else if ((done_ccb->ccb_h.retry_count > 1)
1055 && ((err_action & SS_MASK) != SS_FAIL)) {
1058 * In this case, the error recovery
1059 * command failed, but we've got
1060 * some retries left on it. Give
1061 * it another try unless this is an
1062 * unretryable error.
1065 /* set the timeout to .5 sec */
1066 relsim_flags =
1067 RELSIM_RELEASE_AFTER_TIMEOUT;
1068 timeout = 500;
1070 xpt_action(done_ccb);
1072 break;
1074 } else {
1076 * Perform the final retry with the original
1077 * CCB so that final error processing is
1078 * performed by the owner of the CCB.
1080 bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1081 done_ccb, sizeof(union ccb));
1083 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1085 xpt_action(done_ccb);
1087 } else {
1089 * Eh?? The command failed, but we don't
1090 * have any sense. What's up with that?
1091 * Fire the CCB again to return it to the
1092 * caller.
1094 bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1095 done_ccb, sizeof(union ccb));
1097 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1099 xpt_action(done_ccb);
1102 break;
1103 default:
1104 bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1105 sizeof(union ccb));
1107 periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1109 xpt_action(done_ccb);
1111 break;
1114 /* decrement the retry count */
1116 * XXX This isn't appropriate in all cases. Restructure,
1117 * so that the retry count is only decremented on an
1118 * actual retry. Remeber that the orignal ccb had its
1119 * retry count dropped before entering recovery, so
1120 * doing it again is a bug.
1122 if (done_ccb->ccb_h.retry_count > 0)
1123 done_ccb->ccb_h.retry_count--;
1125 qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1126 /*relsim_flags*/relsim_flags,
1127 /*openings*/0,
1128 /*timeout*/timeout,
1129 /*getcount_only*/0);
1130 if (xpt_done_ccb == TRUE)
1131 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1135 * Generic Async Event handler. Peripheral drivers usually
1136 * filter out the events that require personal attention,
1137 * and leave the rest to this function.
1139 void
1140 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1141 struct cam_path *path, void *arg)
1143 switch (code) {
1144 case AC_LOST_DEVICE:
1145 cam_periph_invalidate(periph);
1146 break;
1147 case AC_SENT_BDR:
1148 case AC_BUS_RESET:
1150 cam_periph_bus_settle(periph, scsi_delay);
1151 break;
1153 default:
1154 break;
1158 void
1159 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1161 struct ccb_getdevstats cgds;
1163 xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1164 cgds.ccb_h.func_code = XPT_GDEV_STATS;
1165 xpt_action((union ccb *)&cgds);
1166 cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1169 void
1170 cam_periph_freeze_after_event(struct cam_periph *periph,
1171 struct timeval* event_time, u_int duration_ms)
1173 struct timeval delta;
1174 struct timeval duration_tv;
1176 microuptime(&delta);
1177 timevalsub(&delta, event_time);
1178 duration_tv.tv_sec = duration_ms / 1000;
1179 duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1180 if (timevalcmp(&delta, &duration_tv, <)) {
1181 timevalsub(&duration_tv, &delta);
1183 duration_ms = duration_tv.tv_sec * 1000;
1184 duration_ms += duration_tv.tv_usec / 1000;
1185 cam_freeze_devq(periph->path);
1186 cam_release_devq(periph->path,
1187 RELSIM_RELEASE_AFTER_TIMEOUT,
1188 /*reduction*/0,
1189 /*timeout*/duration_ms,
1190 /*getcount_only*/0);
1195 static int
1196 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1197 u_int32_t sense_flags, union ccb *save_ccb,
1198 int *openings, u_int32_t *relsim_flags,
1199 u_int32_t *timeout)
1201 int error;
1203 switch (ccb->csio.scsi_status) {
1204 case SCSI_STATUS_OK:
1205 case SCSI_STATUS_COND_MET:
1206 case SCSI_STATUS_INTERMED:
1207 case SCSI_STATUS_INTERMED_COND_MET:
1208 error = 0;
1209 break;
1210 case SCSI_STATUS_CMD_TERMINATED:
1211 case SCSI_STATUS_CHECK_COND:
1212 error = camperiphscsisenseerror(ccb,
1213 camflags,
1214 sense_flags,
1215 save_ccb,
1216 openings,
1217 relsim_flags,
1218 timeout);
1219 break;
1220 case SCSI_STATUS_QUEUE_FULL:
1222 /* no decrement */
1223 struct ccb_getdevstats cgds;
1226 * First off, find out what the current
1227 * transaction counts are.
1229 xpt_setup_ccb(&cgds.ccb_h,
1230 ccb->ccb_h.path,
1231 /*priority*/1);
1232 cgds.ccb_h.func_code = XPT_GDEV_STATS;
1233 xpt_action((union ccb *)&cgds);
1236 * If we were the only transaction active, treat
1237 * the QUEUE FULL as if it were a BUSY condition.
1239 if (cgds.dev_active != 0) {
1240 int total_openings;
1243 * Reduce the number of openings to
1244 * be 1 less than the amount it took
1245 * to get a queue full bounded by the
1246 * minimum allowed tag count for this
1247 * device.
1249 total_openings = cgds.dev_active + cgds.dev_openings;
1250 *openings = cgds.dev_active;
1251 if (*openings < cgds.mintags)
1252 *openings = cgds.mintags;
1253 if (*openings < total_openings)
1254 *relsim_flags = RELSIM_ADJUST_OPENINGS;
1255 else {
1257 * Some devices report queue full for
1258 * temporary resource shortages. For
1259 * this reason, we allow a minimum
1260 * tag count to be entered via a
1261 * quirk entry to prevent the queue
1262 * count on these devices from falling
1263 * to a pessimisticly low value. We
1264 * still wait for the next successful
1265 * completion, however, before queueing
1266 * more transactions to the device.
1268 *relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1270 *timeout = 0;
1271 error = ERESTART;
1272 if (bootverbose) {
1273 xpt_print(ccb->ccb_h.path, "Queue Full\n");
1275 break;
1277 /* FALLTHROUGH */
1279 case SCSI_STATUS_BUSY:
1281 * Restart the queue after either another
1282 * command completes or a 1 second timeout.
1284 if (bootverbose) {
1285 xpt_print(ccb->ccb_h.path, "Device Busy\n");
1287 if (ccb->ccb_h.retry_count > 0) {
1288 ccb->ccb_h.retry_count--;
1289 error = ERESTART;
1290 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1291 | RELSIM_RELEASE_AFTER_CMDCMPLT;
1292 *timeout = 1000;
1293 } else {
1294 error = EIO;
1296 break;
1297 case SCSI_STATUS_RESERV_CONFLICT:
1298 xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1299 error = EIO;
1300 break;
1301 default:
1302 xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1303 ccb->csio.scsi_status);
1304 error = EIO;
1305 break;
1307 return (error);
1310 static int
1311 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1312 u_int32_t sense_flags, union ccb *save_ccb,
1313 int *openings, u_int32_t *relsim_flags,
1314 u_int32_t *timeout)
1316 struct cam_periph *periph;
1317 int error;
1319 periph = xpt_path_periph(ccb->ccb_h.path);
1320 if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1323 * If error recovery is already in progress, don't attempt
1324 * to process this error, but requeue it unconditionally
1325 * and attempt to process it once error recovery has
1326 * completed. This failed command is probably related to
1327 * the error that caused the currently active error recovery
1328 * action so our current recovery efforts should also
1329 * address this command. Be aware that the error recovery
1330 * code assumes that only one recovery action is in progress
1331 * on a particular peripheral instance at any given time
1332 * (e.g. only one saved CCB for error recovery) so it is
1333 * imperitive that we don't violate this assumption.
1335 error = ERESTART;
1336 } else {
1337 scsi_sense_action err_action;
1338 struct ccb_getdev cgd;
1339 const char *action_string;
1340 union ccb* print_ccb;
1342 /* A description of the error recovery action performed */
1343 action_string = NULL;
1346 * The location of the orignal ccb
1347 * for sense printing purposes.
1349 print_ccb = ccb;
1352 * Grab the inquiry data for this device.
1354 xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1355 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1356 xpt_action((union ccb *)&cgd);
1358 if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1359 err_action = scsi_error_action(&ccb->csio,
1360 &cgd.inq_data,
1361 sense_flags);
1362 else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1363 err_action = SS_REQSENSE;
1364 else
1365 err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1367 error = err_action & SS_ERRMASK;
1370 * If the recovery action will consume a retry,
1371 * make sure we actually have retries available.
1373 if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1374 if (ccb->ccb_h.retry_count > 0)
1375 ccb->ccb_h.retry_count--;
1376 else {
1377 action_string = "Retries Exhausted";
1378 goto sense_error_done;
1382 if ((err_action & SS_MASK) >= SS_START) {
1384 * Do common portions of commands that
1385 * use recovery CCBs.
1387 if (save_ccb == NULL) {
1388 action_string = "No recovery CCB supplied";
1389 goto sense_error_done;
1391 bcopy(ccb, save_ccb, sizeof(*save_ccb));
1392 print_ccb = save_ccb;
1393 periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1396 switch (err_action & SS_MASK) {
1397 case SS_NOP:
1398 action_string = "No Recovery Action Needed";
1399 error = 0;
1400 break;
1401 case SS_RETRY:
1402 action_string = "Retrying Command (per Sense Data)";
1403 error = ERESTART;
1404 break;
1405 case SS_FAIL:
1406 action_string = "Unretryable error";
1407 break;
1408 case SS_START:
1410 int le;
1413 * Send a start unit command to the device, and
1414 * then retry the command.
1416 action_string = "Attempting to Start Unit";
1419 * Check for removable media and set
1420 * load/eject flag appropriately.
1422 if (SID_IS_REMOVABLE(&cgd.inq_data))
1423 le = TRUE;
1424 else
1425 le = FALSE;
1427 scsi_start_stop(&ccb->csio,
1428 /*retries*/1,
1429 camperiphdone,
1430 MSG_SIMPLE_Q_TAG,
1431 /*start*/TRUE,
1432 /*load/eject*/le,
1433 /*immediate*/FALSE,
1434 SSD_FULL_SIZE,
1435 /*timeout*/50000);
1436 break;
1438 case SS_TUR:
1441 * Send a Test Unit Ready to the device.
1442 * If the 'many' flag is set, we send 120
1443 * test unit ready commands, one every half
1444 * second. Otherwise, we just send one TUR.
1445 * We only want to do this if the retry
1446 * count has not been exhausted.
1448 int retries;
1450 if ((err_action & SSQ_MANY) != 0) {
1451 action_string = "Polling device for readiness";
1452 retries = 120;
1453 } else {
1454 action_string = "Testing device for readiness";
1455 retries = 1;
1457 scsi_test_unit_ready(&ccb->csio,
1458 retries,
1459 camperiphdone,
1460 MSG_SIMPLE_Q_TAG,
1461 SSD_FULL_SIZE,
1462 /*timeout*/5000);
1465 * Accomplish our 500ms delay by deferring
1466 * the release of our device queue appropriately.
1468 *relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1469 *timeout = 500;
1470 break;
1472 case SS_REQSENSE:
1475 * Send a Request Sense to the device. We
1476 * assume that we are in a contingent allegiance
1477 * condition so we do not tag this request.
1479 scsi_request_sense(&ccb->csio, /*retries*/1,
1480 camperiphdone,
1481 &save_ccb->csio.sense_data,
1482 sizeof(save_ccb->csio.sense_data),
1483 CAM_TAG_ACTION_NONE,
1484 /*sense_len*/SSD_FULL_SIZE,
1485 /*timeout*/5000);
1486 break;
1488 default:
1489 panic("Unhandled error action %x", err_action);
1492 if ((err_action & SS_MASK) >= SS_START) {
1494 * Drop the priority to 0 so that the recovery
1495 * CCB is the first to execute. Freeze the queue
1496 * after this command is sent so that we can
1497 * restore the old csio and have it queued in
1498 * the proper order before we release normal
1499 * transactions to the device.
1501 ccb->ccb_h.pinfo.priority = 0;
1502 ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1503 ccb->ccb_h.saved_ccb_ptr = save_ccb;
1504 error = ERESTART;
1507 sense_error_done:
1508 if ((err_action & SSQ_PRINT_SENSE) != 0
1509 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1510 cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1511 xpt_print_path(ccb->ccb_h.path);
1512 if (bootverbose)
1513 scsi_sense_print(&print_ccb->csio);
1514 kprintf("%s\n", action_string);
1517 return (error);
1521 * Generic error handler. Peripheral drivers usually filter
1522 * out the errors that they handle in a unique mannor, then
1523 * call this function.
1526 cam_periph_error(union ccb *ccb, cam_flags camflags,
1527 u_int32_t sense_flags, union ccb *save_ccb)
1529 const char *action_string;
1530 cam_status status;
1531 int frozen;
1532 int error, printed = 0;
1533 int openings;
1534 u_int32_t relsim_flags;
1535 u_int32_t timeout = 0;
1537 action_string = NULL;
1538 status = ccb->ccb_h.status;
1539 frozen = (status & CAM_DEV_QFRZN) != 0;
1540 status &= CAM_STATUS_MASK;
1541 openings = relsim_flags = 0;
1543 switch (status) {
1544 case CAM_REQ_CMP:
1545 error = 0;
1546 break;
1547 case CAM_SCSI_STATUS_ERROR:
1548 error = camperiphscsistatuserror(ccb,
1549 camflags,
1550 sense_flags,
1551 save_ccb,
1552 &openings,
1553 &relsim_flags,
1554 &timeout);
1555 break;
1556 case CAM_AUTOSENSE_FAIL:
1557 xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1558 error = EIO; /* we have to kill the command */
1559 break;
1560 case CAM_REQ_CMP_ERR:
1561 if (bootverbose && printed == 0) {
1562 xpt_print(ccb->ccb_h.path,
1563 "Request completed with CAM_REQ_CMP_ERR\n");
1564 printed++;
1566 /* FALLTHROUGH */
1567 case CAM_CMD_TIMEOUT:
1568 if (bootverbose && printed == 0) {
1569 xpt_print(ccb->ccb_h.path, "Command timed out\n");
1570 printed++;
1572 /* FALLTHROUGH */
1573 case CAM_UNEXP_BUSFREE:
1574 if (bootverbose && printed == 0) {
1575 xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1576 printed++;
1578 /* FALLTHROUGH */
1579 case CAM_UNCOR_PARITY:
1580 if (bootverbose && printed == 0) {
1581 xpt_print(ccb->ccb_h.path,
1582 "Uncorrected Parity Error\n");
1583 printed++;
1585 /* FALLTHROUGH */
1586 case CAM_DATA_RUN_ERR:
1587 if (bootverbose && printed == 0) {
1588 xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1589 printed++;
1591 error = EIO; /* we have to kill the command */
1592 /* decrement the number of retries */
1593 if (ccb->ccb_h.retry_count > 0) {
1594 ccb->ccb_h.retry_count--;
1595 error = ERESTART;
1596 } else {
1597 action_string = "Retries Exhausted";
1598 error = EIO;
1600 break;
1601 case CAM_UA_ABORT:
1602 case CAM_UA_TERMIO:
1603 case CAM_MSG_REJECT_REC:
1604 /* XXX Don't know that these are correct */
1605 error = EIO;
1606 break;
1607 case CAM_SEL_TIMEOUT:
1609 struct cam_path *newpath;
1611 if ((camflags & CAM_RETRY_SELTO) != 0) {
1612 if (ccb->ccb_h.retry_count > 0) {
1614 ccb->ccb_h.retry_count--;
1615 error = ERESTART;
1616 if (bootverbose && printed == 0) {
1617 xpt_print(ccb->ccb_h.path,
1618 "Selection Timeout\n");
1619 printed++;
1623 * Wait a bit to give the device
1624 * time to recover before we try again.
1626 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1627 timeout = periph_selto_delay;
1628 break;
1631 error = ENXIO;
1632 /* Should we do more if we can't create the path?? */
1633 if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1634 xpt_path_path_id(ccb->ccb_h.path),
1635 xpt_path_target_id(ccb->ccb_h.path),
1636 CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1637 break;
1640 * Let peripheral drivers know that this device has gone
1641 * away.
1643 xpt_async(AC_LOST_DEVICE, newpath, NULL);
1644 xpt_free_path(newpath);
1645 break;
1647 case CAM_REQ_INVALID:
1648 case CAM_PATH_INVALID:
1649 case CAM_DEV_NOT_THERE:
1650 case CAM_NO_HBA:
1651 case CAM_PROVIDE_FAIL:
1652 case CAM_REQ_TOO_BIG:
1653 case CAM_LUN_INVALID:
1654 case CAM_TID_INVALID:
1655 error = EINVAL;
1656 break;
1657 case CAM_SCSI_BUS_RESET:
1658 case CAM_BDR_SENT:
1660 * Commands that repeatedly timeout and cause these
1661 * kinds of error recovery actions, should return
1662 * CAM_CMD_TIMEOUT, which allows us to safely assume
1663 * that this command was an innocent bystander to
1664 * these events and should be unconditionally
1665 * retried.
1667 if (bootverbose && printed == 0) {
1668 xpt_print_path(ccb->ccb_h.path);
1669 if (status == CAM_BDR_SENT)
1670 kprintf("Bus Device Reset sent\n");
1671 else
1672 kprintf("Bus Reset issued\n");
1673 printed++;
1675 /* FALLTHROUGH */
1676 case CAM_REQUEUE_REQ:
1677 /* Unconditional requeue */
1678 error = ERESTART;
1679 if (bootverbose && printed == 0) {
1680 xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1681 printed++;
1683 break;
1684 case CAM_RESRC_UNAVAIL:
1685 /* Wait a bit for the resource shortage to abate. */
1686 timeout = periph_noresrc_delay;
1687 /* FALLTHROUGH */
1688 case CAM_BUSY:
1689 if (timeout == 0) {
1690 /* Wait a bit for the busy condition to abate. */
1691 timeout = periph_busy_delay;
1693 relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1694 /* FALLTHROUGH */
1695 default:
1696 /* decrement the number of retries */
1697 if (ccb->ccb_h.retry_count > 0) {
1698 ccb->ccb_h.retry_count--;
1699 error = ERESTART;
1700 if (bootverbose && printed == 0) {
1701 xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1702 status);
1703 printed++;
1705 } else {
1706 error = EIO;
1707 action_string = "Retries Exhausted";
1709 break;
1712 /* Attempt a retry */
1713 if (error == ERESTART || error == 0) {
1714 if (frozen != 0)
1715 ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1717 if (error == ERESTART) {
1718 action_string = "Retrying Command";
1719 xpt_action(ccb);
1722 if (frozen != 0)
1723 cam_release_devq(ccb->ccb_h.path,
1724 relsim_flags,
1725 openings,
1726 timeout,
1727 /*getcount_only*/0);
1731 * If we have an error and are booting verbosely, whine
1732 * *unless* this was a non-retryable selection timeout.
1734 if (error != 0 && bootverbose &&
1735 !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1738 if (action_string == NULL)
1739 action_string = "Unretryable Error";
1740 if (error != ERESTART) {
1741 xpt_print(ccb->ccb_h.path, "error %d\n", error);
1743 xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1746 return (error);