add roms/pcbios
[armpft.git] / vl.c
blobe57f58fea0df3ab4ade42fce4cf86d9d2a60a1e2
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #include <arpa/inet.h>
48 #include <dirent.h>
49 #include <netdb.h>
50 #include <sys/select.h>
51 #ifdef CONFIG_BSD
52 #include <sys/stat.h>
53 #if defined(__FreeBSD__) || defined(__DragonFly__)
54 #include <libutil.h>
55 #else
56 #include <util.h>
57 #endif
58 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
59 #include <freebsd/stdlib.h>
60 #else
61 #ifdef __linux__
62 #include <pty.h>
63 #include <malloc.h>
64 #include <linux/rtc.h>
65 #include <sys/prctl.h>
67 /* For the benefit of older linux systems which don't supply it,
68 we use a local copy of hpet.h. */
69 /* #include <linux/hpet.h> */
70 #include "hpet.h"
72 #include <linux/ppdev.h>
73 #include <linux/parport.h>
74 #endif
75 #ifdef __sun__
76 #include <sys/stat.h>
77 #include <sys/ethernet.h>
78 #include <sys/sockio.h>
79 #include <netinet/arp.h>
80 #include <netinet/in.h>
81 #include <netinet/in_systm.h>
82 #include <netinet/ip.h>
83 #include <netinet/ip_icmp.h> // must come after ip.h
84 #include <netinet/udp.h>
85 #include <netinet/tcp.h>
86 #include <net/if.h>
87 #include <syslog.h>
88 #include <stropts.h>
89 /* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
90 discussion about Solaris header problems */
91 extern int madvise(caddr_t, size_t, int);
92 #endif
93 #endif
94 #endif
96 #if defined(__OpenBSD__)
97 #include <util.h>
98 #endif
100 #if defined(CONFIG_VDE)
101 #include <libvdeplug.h>
102 #endif
104 #ifdef _WIN32
105 #include <windows.h>
106 #include <mmsystem.h>
107 #endif
109 #ifdef CONFIG_SDL
110 #if defined(__APPLE__) || defined(main)
111 #include <SDL.h>
112 int qemu_main(int argc, char **argv, char **envp);
113 int main(int argc, char **argv)
115 return qemu_main(argc, argv, NULL);
117 #undef main
118 #define main qemu_main
119 #endif
120 #endif /* CONFIG_SDL */
122 #ifdef CONFIG_COCOA
123 #undef main
124 #define main qemu_main
125 #endif /* CONFIG_COCOA */
127 #include "hw/hw.h"
128 #include "hw/boards.h"
129 #include "hw/usb.h"
130 #include "hw/pcmcia.h"
131 #include "hw/pc.h"
132 #include "hw/audiodev.h"
133 #include "hw/isa.h"
134 #include "hw/baum.h"
135 #include "hw/bt.h"
136 #include "hw/watchdog.h"
137 #include "hw/smbios.h"
138 #include "hw/xen.h"
139 #include "hw/qdev.h"
140 #include "hw/loader.h"
141 #include "bt-host.h"
142 #include "net.h"
143 #include "monitor.h"
144 #include "console.h"
145 #include "sysemu.h"
146 #include "gdbstub.h"
147 #include "qemu-timer.h"
148 #include "qemu-char.h"
149 #include "cache-utils.h"
150 #include "block.h"
151 #include "dma.h"
152 #include "audio/audio.h"
153 #include "migration.h"
154 #include "kvm.h"
155 #include "balloon.h"
156 #include "qemu-option.h"
157 #include "qemu-config.h"
159 #include "disas.h"
161 #include "exec-all.h"
163 #include "qemu_socket.h"
165 #include "slirp/libslirp.h"
167 #include "qemu-queue.h"
169 //#define DEBUG_NET
170 //#define DEBUG_SLIRP
172 #define DEFAULT_RAM_SIZE 128
174 /* Maximum number of monitor devices */
175 #define MAX_MONITOR_DEVICES 10
177 static const char *data_dir;
178 const char *bios_name = NULL;
179 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
180 to store the VM snapshots */
181 struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
182 struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
183 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
184 static DisplayState *display_state;
185 DisplayType display_type = DT_DEFAULT;
186 const char* keyboard_layout = NULL;
187 ram_addr_t ram_size;
188 int nb_nics;
189 NICInfo nd_table[MAX_NICS];
190 int vm_running;
191 int autostart;
192 static int rtc_utc = 1;
193 static int rtc_date_offset = -1; /* -1 means no change */
194 QEMUClock *rtc_clock;
195 int vga_interface_type = VGA_CIRRUS;
196 #ifdef TARGET_SPARC
197 int graphic_width = 1024;
198 int graphic_height = 768;
199 int graphic_depth = 8;
200 #else
201 int graphic_width = 800;
202 int graphic_height = 600;
203 int graphic_depth = 15;
204 #endif
205 static int full_screen = 0;
206 #ifdef CONFIG_SDL
207 static int no_frame = 0;
208 #endif
209 int no_quit = 0;
210 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
211 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
212 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
213 #ifdef TARGET_I386
214 int win2k_install_hack = 0;
215 int rtc_td_hack = 0;
216 #endif
217 int usb_enabled = 0;
218 int singlestep = 0;
219 int smp_cpus = 1;
220 int max_cpus = 0;
221 int smp_cores = 1;
222 int smp_threads = 1;
223 const char *vnc_display;
224 int acpi_enabled = 1;
225 int no_hpet = 0;
226 int fd_bootchk = 1;
227 int no_reboot = 0;
228 int no_shutdown = 0;
229 int cursor_hide = 1;
230 int graphic_rotate = 0;
231 uint8_t irq0override = 1;
232 #ifndef _WIN32
233 int daemonize = 0;
234 #endif
235 const char *watchdog;
236 const char *option_rom[MAX_OPTION_ROMS];
237 int nb_option_roms;
238 int semihosting_enabled = 0;
239 #ifdef TARGET_ARM
240 int old_param = 0;
241 #endif
242 const char *qemu_name;
243 int alt_grab = 0;
244 int ctrl_grab = 0;
245 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
246 unsigned int nb_prom_envs = 0;
247 const char *prom_envs[MAX_PROM_ENVS];
248 #endif
249 int boot_menu;
251 int nb_numa_nodes;
252 uint64_t node_mem[MAX_NODES];
253 uint64_t node_cpumask[MAX_NODES];
255 static CPUState *cur_cpu;
256 static CPUState *next_cpu;
257 static int timer_alarm_pending = 1;
258 /* Conversion factor from emulated instructions to virtual clock ticks. */
259 static int icount_time_shift;
260 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
261 #define MAX_ICOUNT_SHIFT 10
262 /* Compensate for varying guest execution speed. */
263 static int64_t qemu_icount_bias;
264 static QEMUTimer *icount_rt_timer;
265 static QEMUTimer *icount_vm_timer;
266 static QEMUTimer *nographic_timer;
268 uint8_t qemu_uuid[16];
270 static QEMUBootSetHandler *boot_set_handler;
271 static void *boot_set_opaque;
273 /***********************************************************/
274 /* x86 ISA bus support */
276 target_phys_addr_t isa_mem_base = 0;
277 PicState2 *isa_pic;
279 /***********************************************************/
280 void hw_error(const char *fmt, ...)
282 va_list ap;
283 CPUState *env;
285 va_start(ap, fmt);
286 fprintf(stderr, "qemu: hardware error: ");
287 vfprintf(stderr, fmt, ap);
288 fprintf(stderr, "\n");
289 for(env = first_cpu; env != NULL; env = env->next_cpu) {
290 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
291 #ifdef TARGET_I386
292 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
293 #else
294 cpu_dump_state(env, stderr, fprintf, 0);
295 #endif
297 va_end(ap);
298 abort();
301 static void set_proc_name(const char *s)
303 #if defined(__linux__) && defined(PR_SET_NAME)
304 char name[16];
305 if (!s)
306 return;
307 name[sizeof(name) - 1] = 0;
308 strncpy(name, s, sizeof(name));
309 /* Could rewrite argv[0] too, but that's a bit more complicated.
310 This simple way is enough for `top'. */
311 prctl(PR_SET_NAME, name);
312 #endif
315 /***************/
316 /* ballooning */
318 static QEMUBalloonEvent *qemu_balloon_event;
319 void *qemu_balloon_event_opaque;
321 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
323 qemu_balloon_event = func;
324 qemu_balloon_event_opaque = opaque;
327 void qemu_balloon(ram_addr_t target)
329 if (qemu_balloon_event)
330 qemu_balloon_event(qemu_balloon_event_opaque, target);
333 ram_addr_t qemu_balloon_status(void)
335 if (qemu_balloon_event)
336 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
337 return 0;
340 /***********************************************************/
341 /* keyboard/mouse */
343 static QEMUPutKBDEvent *qemu_put_kbd_event;
344 static void *qemu_put_kbd_event_opaque;
345 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
348 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
350 qemu_put_kbd_event_opaque = opaque;
351 qemu_put_kbd_event = func;
354 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
355 void *opaque, int absolute,
356 const char *name)
358 QEMUPutMouseEntry *s, *cursor;
360 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
362 s->qemu_put_mouse_event = func;
363 s->qemu_put_mouse_event_opaque = opaque;
364 s->qemu_put_mouse_event_absolute = absolute;
365 s->qemu_put_mouse_event_name = qemu_strdup(name);
366 s->next = NULL;
368 if (!qemu_put_mouse_event_head) {
369 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
370 return s;
373 cursor = qemu_put_mouse_event_head;
374 while (cursor->next != NULL)
375 cursor = cursor->next;
377 cursor->next = s;
378 qemu_put_mouse_event_current = s;
380 return s;
383 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
385 QEMUPutMouseEntry *prev = NULL, *cursor;
387 if (!qemu_put_mouse_event_head || entry == NULL)
388 return;
390 cursor = qemu_put_mouse_event_head;
391 while (cursor != NULL && cursor != entry) {
392 prev = cursor;
393 cursor = cursor->next;
396 if (cursor == NULL) // does not exist or list empty
397 return;
398 else if (prev == NULL) { // entry is head
399 qemu_put_mouse_event_head = cursor->next;
400 if (qemu_put_mouse_event_current == entry)
401 qemu_put_mouse_event_current = cursor->next;
402 qemu_free(entry->qemu_put_mouse_event_name);
403 qemu_free(entry);
404 return;
407 prev->next = entry->next;
409 if (qemu_put_mouse_event_current == entry)
410 qemu_put_mouse_event_current = prev;
412 qemu_free(entry->qemu_put_mouse_event_name);
413 qemu_free(entry);
416 void kbd_put_keycode(int keycode)
418 if (qemu_put_kbd_event) {
419 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
423 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
425 QEMUPutMouseEvent *mouse_event;
426 void *mouse_event_opaque;
427 int width;
429 if (!qemu_put_mouse_event_current) {
430 return;
433 mouse_event =
434 qemu_put_mouse_event_current->qemu_put_mouse_event;
435 mouse_event_opaque =
436 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
438 if (mouse_event) {
439 if (graphic_rotate) {
440 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
441 width = 0x7fff;
442 else
443 width = graphic_width - 1;
444 mouse_event(mouse_event_opaque,
445 width - dy, dx, dz, buttons_state);
446 } else
447 mouse_event(mouse_event_opaque,
448 dx, dy, dz, buttons_state);
452 int kbd_mouse_is_absolute(void)
454 if (!qemu_put_mouse_event_current)
455 return 0;
457 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
460 void do_info_mice(Monitor *mon)
462 QEMUPutMouseEntry *cursor;
463 int index = 0;
465 if (!qemu_put_mouse_event_head) {
466 monitor_printf(mon, "No mouse devices connected\n");
467 return;
470 monitor_printf(mon, "Mouse devices available:\n");
471 cursor = qemu_put_mouse_event_head;
472 while (cursor != NULL) {
473 monitor_printf(mon, "%c Mouse #%d: %s\n",
474 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
475 index, cursor->qemu_put_mouse_event_name);
476 index++;
477 cursor = cursor->next;
481 void do_mouse_set(Monitor *mon, const QDict *qdict)
483 QEMUPutMouseEntry *cursor;
484 int i = 0;
485 int index = qdict_get_int(qdict, "index");
487 if (!qemu_put_mouse_event_head) {
488 monitor_printf(mon, "No mouse devices connected\n");
489 return;
492 cursor = qemu_put_mouse_event_head;
493 while (cursor != NULL && index != i) {
494 i++;
495 cursor = cursor->next;
498 if (cursor != NULL)
499 qemu_put_mouse_event_current = cursor;
500 else
501 monitor_printf(mon, "Mouse at given index not found\n");
504 /* compute with 96 bit intermediate result: (a*b)/c */
505 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
507 union {
508 uint64_t ll;
509 struct {
510 #ifdef HOST_WORDS_BIGENDIAN
511 uint32_t high, low;
512 #else
513 uint32_t low, high;
514 #endif
515 } l;
516 } u, res;
517 uint64_t rl, rh;
519 u.ll = a;
520 rl = (uint64_t)u.l.low * (uint64_t)b;
521 rh = (uint64_t)u.l.high * (uint64_t)b;
522 rh += (rl >> 32);
523 res.l.high = rh / c;
524 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
525 return res.ll;
528 /***********************************************************/
529 /* real time host monotonic timer */
531 static int64_t get_clock_realtime(void)
533 struct timeval tv;
535 gettimeofday(&tv, NULL);
536 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
539 #ifdef WIN32
541 static int64_t clock_freq;
543 static void init_get_clock(void)
545 LARGE_INTEGER freq;
546 int ret;
547 ret = QueryPerformanceFrequency(&freq);
548 if (ret == 0) {
549 fprintf(stderr, "Could not calibrate ticks\n");
550 exit(1);
552 clock_freq = freq.QuadPart;
555 static int64_t get_clock(void)
557 LARGE_INTEGER ti;
558 QueryPerformanceCounter(&ti);
559 return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
562 #else
564 static int use_rt_clock;
566 static void init_get_clock(void)
568 use_rt_clock = 0;
569 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
570 || defined(__DragonFly__)
572 struct timespec ts;
573 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
574 use_rt_clock = 1;
577 #endif
580 static int64_t get_clock(void)
582 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
583 || defined(__DragonFly__)
584 if (use_rt_clock) {
585 struct timespec ts;
586 clock_gettime(CLOCK_MONOTONIC, &ts);
587 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
588 } else
589 #endif
591 /* XXX: using gettimeofday leads to problems if the date
592 changes, so it should be avoided. */
593 return get_clock_realtime();
596 #endif
598 /* Return the virtual CPU time, based on the instruction counter. */
599 static int64_t cpu_get_icount(void)
601 int64_t icount;
602 CPUState *env = cpu_single_env;;
603 icount = qemu_icount;
604 if (env) {
605 if (!can_do_io(env))
606 fprintf(stderr, "Bad clock read\n");
607 icount -= (env->icount_decr.u16.low + env->icount_extra);
609 return qemu_icount_bias + (icount << icount_time_shift);
612 /***********************************************************/
613 /* guest cycle counter */
615 typedef struct TimersState {
616 int64_t cpu_ticks_prev;
617 int64_t cpu_ticks_offset;
618 int64_t cpu_clock_offset;
619 int32_t cpu_ticks_enabled;
620 int64_t dummy;
621 } TimersState;
623 TimersState timers_state;
625 /* return the host CPU cycle counter and handle stop/restart */
626 int64_t cpu_get_ticks(void)
628 if (use_icount) {
629 return cpu_get_icount();
631 if (!timers_state.cpu_ticks_enabled) {
632 return timers_state.cpu_ticks_offset;
633 } else {
634 int64_t ticks;
635 ticks = cpu_get_real_ticks();
636 if (timers_state.cpu_ticks_prev > ticks) {
637 /* Note: non increasing ticks may happen if the host uses
638 software suspend */
639 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
641 timers_state.cpu_ticks_prev = ticks;
642 return ticks + timers_state.cpu_ticks_offset;
646 /* return the host CPU monotonic timer and handle stop/restart */
647 static int64_t cpu_get_clock(void)
649 int64_t ti;
650 if (!timers_state.cpu_ticks_enabled) {
651 return timers_state.cpu_clock_offset;
652 } else {
653 ti = get_clock();
654 return ti + timers_state.cpu_clock_offset;
658 /* enable cpu_get_ticks() */
659 void cpu_enable_ticks(void)
661 if (!timers_state.cpu_ticks_enabled) {
662 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
663 timers_state.cpu_clock_offset -= get_clock();
664 timers_state.cpu_ticks_enabled = 1;
668 /* disable cpu_get_ticks() : the clock is stopped. You must not call
669 cpu_get_ticks() after that. */
670 void cpu_disable_ticks(void)
672 if (timers_state.cpu_ticks_enabled) {
673 timers_state.cpu_ticks_offset = cpu_get_ticks();
674 timers_state.cpu_clock_offset = cpu_get_clock();
675 timers_state.cpu_ticks_enabled = 0;
679 /***********************************************************/
680 /* timers */
682 #define QEMU_CLOCK_REALTIME 0
683 #define QEMU_CLOCK_VIRTUAL 1
684 #define QEMU_CLOCK_HOST 2
686 struct QEMUClock {
687 int type;
688 /* XXX: add frequency */
691 struct QEMUTimer {
692 QEMUClock *clock;
693 int64_t expire_time;
694 QEMUTimerCB *cb;
695 void *opaque;
696 struct QEMUTimer *next;
699 struct qemu_alarm_timer {
700 char const *name;
701 unsigned int flags;
703 int (*start)(struct qemu_alarm_timer *t);
704 void (*stop)(struct qemu_alarm_timer *t);
705 void (*rearm)(struct qemu_alarm_timer *t);
706 void *priv;
709 #define ALARM_FLAG_DYNTICKS 0x1
710 #define ALARM_FLAG_EXPIRED 0x2
712 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
714 return t && (t->flags & ALARM_FLAG_DYNTICKS);
717 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
719 if (!alarm_has_dynticks(t))
720 return;
722 t->rearm(t);
725 /* TODO: MIN_TIMER_REARM_US should be optimized */
726 #define MIN_TIMER_REARM_US 250
728 static struct qemu_alarm_timer *alarm_timer;
730 #ifdef _WIN32
732 struct qemu_alarm_win32 {
733 MMRESULT timerId;
734 unsigned int period;
735 } alarm_win32_data = {0, -1};
737 static int win32_start_timer(struct qemu_alarm_timer *t);
738 static void win32_stop_timer(struct qemu_alarm_timer *t);
739 static void win32_rearm_timer(struct qemu_alarm_timer *t);
741 #else
743 static int unix_start_timer(struct qemu_alarm_timer *t);
744 static void unix_stop_timer(struct qemu_alarm_timer *t);
746 #ifdef __linux__
748 static int dynticks_start_timer(struct qemu_alarm_timer *t);
749 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
750 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
752 static int hpet_start_timer(struct qemu_alarm_timer *t);
753 static void hpet_stop_timer(struct qemu_alarm_timer *t);
755 static int rtc_start_timer(struct qemu_alarm_timer *t);
756 static void rtc_stop_timer(struct qemu_alarm_timer *t);
758 #endif /* __linux__ */
760 #endif /* _WIN32 */
762 /* Correlation between real and virtual time is always going to be
763 fairly approximate, so ignore small variation.
764 When the guest is idle real and virtual time will be aligned in
765 the IO wait loop. */
766 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
768 static void icount_adjust(void)
770 int64_t cur_time;
771 int64_t cur_icount;
772 int64_t delta;
773 static int64_t last_delta;
774 /* If the VM is not running, then do nothing. */
775 if (!vm_running)
776 return;
778 cur_time = cpu_get_clock();
779 cur_icount = qemu_get_clock(vm_clock);
780 delta = cur_icount - cur_time;
781 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
782 if (delta > 0
783 && last_delta + ICOUNT_WOBBLE < delta * 2
784 && icount_time_shift > 0) {
785 /* The guest is getting too far ahead. Slow time down. */
786 icount_time_shift--;
788 if (delta < 0
789 && last_delta - ICOUNT_WOBBLE > delta * 2
790 && icount_time_shift < MAX_ICOUNT_SHIFT) {
791 /* The guest is getting too far behind. Speed time up. */
792 icount_time_shift++;
794 last_delta = delta;
795 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
798 static void icount_adjust_rt(void * opaque)
800 qemu_mod_timer(icount_rt_timer,
801 qemu_get_clock(rt_clock) + 1000);
802 icount_adjust();
805 static void icount_adjust_vm(void * opaque)
807 qemu_mod_timer(icount_vm_timer,
808 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
809 icount_adjust();
812 static void init_icount_adjust(void)
814 /* Have both realtime and virtual time triggers for speed adjustment.
815 The realtime trigger catches emulated time passing too slowly,
816 the virtual time trigger catches emulated time passing too fast.
817 Realtime triggers occur even when idle, so use them less frequently
818 than VM triggers. */
819 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
820 qemu_mod_timer(icount_rt_timer,
821 qemu_get_clock(rt_clock) + 1000);
822 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
823 qemu_mod_timer(icount_vm_timer,
824 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
827 static struct qemu_alarm_timer alarm_timers[] = {
828 #ifndef _WIN32
829 #ifdef __linux__
830 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
831 dynticks_stop_timer, dynticks_rearm_timer, NULL},
832 /* HPET - if available - is preferred */
833 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
834 /* ...otherwise try RTC */
835 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
836 #endif
837 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
838 #else
839 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
840 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
841 {"win32", 0, win32_start_timer,
842 win32_stop_timer, NULL, &alarm_win32_data},
843 #endif
844 {NULL, }
847 static void show_available_alarms(void)
849 int i;
851 printf("Available alarm timers, in order of precedence:\n");
852 for (i = 0; alarm_timers[i].name; i++)
853 printf("%s\n", alarm_timers[i].name);
856 static void configure_alarms(char const *opt)
858 int i;
859 int cur = 0;
860 int count = ARRAY_SIZE(alarm_timers) - 1;
861 char *arg;
862 char *name;
863 struct qemu_alarm_timer tmp;
865 if (!strcmp(opt, "?")) {
866 show_available_alarms();
867 exit(0);
870 arg = qemu_strdup(opt);
872 /* Reorder the array */
873 name = strtok(arg, ",");
874 while (name) {
875 for (i = 0; i < count && alarm_timers[i].name; i++) {
876 if (!strcmp(alarm_timers[i].name, name))
877 break;
880 if (i == count) {
881 fprintf(stderr, "Unknown clock %s\n", name);
882 goto next;
885 if (i < cur)
886 /* Ignore */
887 goto next;
889 /* Swap */
890 tmp = alarm_timers[i];
891 alarm_timers[i] = alarm_timers[cur];
892 alarm_timers[cur] = tmp;
894 cur++;
895 next:
896 name = strtok(NULL, ",");
899 qemu_free(arg);
901 if (cur) {
902 /* Disable remaining timers */
903 for (i = cur; i < count; i++)
904 alarm_timers[i].name = NULL;
905 } else {
906 show_available_alarms();
907 exit(1);
911 #define QEMU_NUM_CLOCKS 3
913 QEMUClock *rt_clock;
914 QEMUClock *vm_clock;
915 QEMUClock *host_clock;
917 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
919 static QEMUClock *qemu_new_clock(int type)
921 QEMUClock *clock;
922 clock = qemu_mallocz(sizeof(QEMUClock));
923 clock->type = type;
924 return clock;
927 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
929 QEMUTimer *ts;
931 ts = qemu_mallocz(sizeof(QEMUTimer));
932 ts->clock = clock;
933 ts->cb = cb;
934 ts->opaque = opaque;
935 return ts;
938 void qemu_free_timer(QEMUTimer *ts)
940 qemu_free(ts);
943 /* stop a timer, but do not dealloc it */
944 void qemu_del_timer(QEMUTimer *ts)
946 QEMUTimer **pt, *t;
948 /* NOTE: this code must be signal safe because
949 qemu_timer_expired() can be called from a signal. */
950 pt = &active_timers[ts->clock->type];
951 for(;;) {
952 t = *pt;
953 if (!t)
954 break;
955 if (t == ts) {
956 *pt = t->next;
957 break;
959 pt = &t->next;
963 /* modify the current timer so that it will be fired when current_time
964 >= expire_time. The corresponding callback will be called. */
965 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
967 QEMUTimer **pt, *t;
969 qemu_del_timer(ts);
971 /* add the timer in the sorted list */
972 /* NOTE: this code must be signal safe because
973 qemu_timer_expired() can be called from a signal. */
974 pt = &active_timers[ts->clock->type];
975 for(;;) {
976 t = *pt;
977 if (!t)
978 break;
979 if (t->expire_time > expire_time)
980 break;
981 pt = &t->next;
983 ts->expire_time = expire_time;
984 ts->next = *pt;
985 *pt = ts;
987 /* Rearm if necessary */
988 if (pt == &active_timers[ts->clock->type]) {
989 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
990 qemu_rearm_alarm_timer(alarm_timer);
992 /* Interrupt execution to force deadline recalculation. */
993 if (use_icount)
994 qemu_notify_event();
998 int qemu_timer_pending(QEMUTimer *ts)
1000 QEMUTimer *t;
1001 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1002 if (t == ts)
1003 return 1;
1005 return 0;
1008 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1010 if (!timer_head)
1011 return 0;
1012 return (timer_head->expire_time <= current_time);
1015 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1017 QEMUTimer *ts;
1019 for(;;) {
1020 ts = *ptimer_head;
1021 if (!ts || ts->expire_time > current_time)
1022 break;
1023 /* remove timer from the list before calling the callback */
1024 *ptimer_head = ts->next;
1025 ts->next = NULL;
1027 /* run the callback (the timer list can be modified) */
1028 ts->cb(ts->opaque);
1032 int64_t qemu_get_clock(QEMUClock *clock)
1034 switch(clock->type) {
1035 case QEMU_CLOCK_REALTIME:
1036 return get_clock() / 1000000;
1037 default:
1038 case QEMU_CLOCK_VIRTUAL:
1039 if (use_icount) {
1040 return cpu_get_icount();
1041 } else {
1042 return cpu_get_clock();
1044 case QEMU_CLOCK_HOST:
1045 return get_clock_realtime();
1049 static void init_clocks(void)
1051 init_get_clock();
1052 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
1053 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
1054 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
1056 rtc_clock = host_clock;
1059 /* save a timer */
1060 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1062 uint64_t expire_time;
1064 if (qemu_timer_pending(ts)) {
1065 expire_time = ts->expire_time;
1066 } else {
1067 expire_time = -1;
1069 qemu_put_be64(f, expire_time);
1072 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1074 uint64_t expire_time;
1076 expire_time = qemu_get_be64(f);
1077 if (expire_time != -1) {
1078 qemu_mod_timer(ts, expire_time);
1079 } else {
1080 qemu_del_timer(ts);
1084 static const VMStateDescription vmstate_timers = {
1085 .name = "timer",
1086 .version_id = 2,
1087 .minimum_version_id = 1,
1088 .minimum_version_id_old = 1,
1089 .fields = (VMStateField []) {
1090 VMSTATE_INT64(cpu_ticks_offset, TimersState),
1091 VMSTATE_INT64(dummy, TimersState),
1092 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
1093 VMSTATE_END_OF_LIST()
1097 static void qemu_event_increment(void);
1099 #ifdef _WIN32
1100 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1101 DWORD_PTR dwUser, DWORD_PTR dw1,
1102 DWORD_PTR dw2)
1103 #else
1104 static void host_alarm_handler(int host_signum)
1105 #endif
1107 #if 0
1108 #define DISP_FREQ 1000
1110 static int64_t delta_min = INT64_MAX;
1111 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1112 static int count;
1113 ti = qemu_get_clock(vm_clock);
1114 if (last_clock != 0) {
1115 delta = ti - last_clock;
1116 if (delta < delta_min)
1117 delta_min = delta;
1118 if (delta > delta_max)
1119 delta_max = delta;
1120 delta_cum += delta;
1121 if (++count == DISP_FREQ) {
1122 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1123 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1124 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1125 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1126 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1127 count = 0;
1128 delta_min = INT64_MAX;
1129 delta_max = 0;
1130 delta_cum = 0;
1133 last_clock = ti;
1135 #endif
1136 if (alarm_has_dynticks(alarm_timer) ||
1137 (!use_icount &&
1138 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1139 qemu_get_clock(vm_clock))) ||
1140 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1141 qemu_get_clock(rt_clock)) ||
1142 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1143 qemu_get_clock(host_clock))) {
1144 qemu_event_increment();
1145 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1147 #ifndef CONFIG_IOTHREAD
1148 if (next_cpu) {
1149 /* stop the currently executing cpu because a timer occured */
1150 cpu_exit(next_cpu);
1152 #endif
1153 timer_alarm_pending = 1;
1154 qemu_notify_event();
1158 static int64_t qemu_next_deadline(void)
1160 /* To avoid problems with overflow limit this to 2^32. */
1161 int64_t delta = INT32_MAX;
1163 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1164 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1165 qemu_get_clock(vm_clock);
1167 if (active_timers[QEMU_CLOCK_HOST]) {
1168 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1169 qemu_get_clock(host_clock);
1170 if (hdelta < delta)
1171 delta = hdelta;
1174 if (delta < 0)
1175 delta = 0;
1177 return delta;
1180 #if defined(__linux__)
1181 static uint64_t qemu_next_deadline_dyntick(void)
1183 int64_t delta;
1184 int64_t rtdelta;
1186 if (use_icount)
1187 delta = INT32_MAX;
1188 else
1189 delta = (qemu_next_deadline() + 999) / 1000;
1191 if (active_timers[QEMU_CLOCK_REALTIME]) {
1192 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1193 qemu_get_clock(rt_clock))*1000;
1194 if (rtdelta < delta)
1195 delta = rtdelta;
1198 if (delta < MIN_TIMER_REARM_US)
1199 delta = MIN_TIMER_REARM_US;
1201 return delta;
1203 #endif
1205 #ifndef _WIN32
1207 /* Sets a specific flag */
1208 static int fcntl_setfl(int fd, int flag)
1210 int flags;
1212 flags = fcntl(fd, F_GETFL);
1213 if (flags == -1)
1214 return -errno;
1216 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1217 return -errno;
1219 return 0;
1222 #if defined(__linux__)
1224 #define RTC_FREQ 1024
1226 static void enable_sigio_timer(int fd)
1228 struct sigaction act;
1230 /* timer signal */
1231 sigfillset(&act.sa_mask);
1232 act.sa_flags = 0;
1233 act.sa_handler = host_alarm_handler;
1235 sigaction(SIGIO, &act, NULL);
1236 fcntl_setfl(fd, O_ASYNC);
1237 fcntl(fd, F_SETOWN, getpid());
1240 static int hpet_start_timer(struct qemu_alarm_timer *t)
1242 struct hpet_info info;
1243 int r, fd;
1245 fd = open("/dev/hpet", O_RDONLY);
1246 if (fd < 0)
1247 return -1;
1249 /* Set frequency */
1250 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1251 if (r < 0) {
1252 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1253 "error, but for better emulation accuracy type:\n"
1254 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255 goto fail;
1258 /* Check capabilities */
1259 r = ioctl(fd, HPET_INFO, &info);
1260 if (r < 0)
1261 goto fail;
1263 /* Enable periodic mode */
1264 r = ioctl(fd, HPET_EPI, 0);
1265 if (info.hi_flags && (r < 0))
1266 goto fail;
1268 /* Enable interrupt */
1269 r = ioctl(fd, HPET_IE_ON, 0);
1270 if (r < 0)
1271 goto fail;
1273 enable_sigio_timer(fd);
1274 t->priv = (void *)(long)fd;
1276 return 0;
1277 fail:
1278 close(fd);
1279 return -1;
1282 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284 int fd = (long)t->priv;
1286 close(fd);
1289 static int rtc_start_timer(struct qemu_alarm_timer *t)
1291 int rtc_fd;
1292 unsigned long current_rtc_freq = 0;
1294 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295 if (rtc_fd < 0)
1296 return -1;
1297 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1298 if (current_rtc_freq != RTC_FREQ &&
1299 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1300 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1301 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1302 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1303 goto fail;
1305 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1306 fail:
1307 close(rtc_fd);
1308 return -1;
1311 enable_sigio_timer(rtc_fd);
1313 t->priv = (void *)(long)rtc_fd;
1315 return 0;
1318 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1320 int rtc_fd = (long)t->priv;
1322 close(rtc_fd);
1325 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1327 struct sigevent ev;
1328 timer_t host_timer;
1329 struct sigaction act;
1331 sigfillset(&act.sa_mask);
1332 act.sa_flags = 0;
1333 act.sa_handler = host_alarm_handler;
1335 sigaction(SIGALRM, &act, NULL);
1338 * Initialize ev struct to 0 to avoid valgrind complaining
1339 * about uninitialized data in timer_create call
1341 memset(&ev, 0, sizeof(ev));
1342 ev.sigev_value.sival_int = 0;
1343 ev.sigev_notify = SIGEV_SIGNAL;
1344 ev.sigev_signo = SIGALRM;
1346 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1347 perror("timer_create");
1349 /* disable dynticks */
1350 fprintf(stderr, "Dynamic Ticks disabled\n");
1352 return -1;
1355 t->priv = (void *)(long)host_timer;
1357 return 0;
1360 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1362 timer_t host_timer = (timer_t)(long)t->priv;
1364 timer_delete(host_timer);
1367 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1369 timer_t host_timer = (timer_t)(long)t->priv;
1370 struct itimerspec timeout;
1371 int64_t nearest_delta_us = INT64_MAX;
1372 int64_t current_us;
1374 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1375 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1376 !active_timers[QEMU_CLOCK_HOST])
1377 return;
1379 nearest_delta_us = qemu_next_deadline_dyntick();
1381 /* check whether a timer is already running */
1382 if (timer_gettime(host_timer, &timeout)) {
1383 perror("gettime");
1384 fprintf(stderr, "Internal timer error: aborting\n");
1385 exit(1);
1387 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1388 if (current_us && current_us <= nearest_delta_us)
1389 return;
1391 timeout.it_interval.tv_sec = 0;
1392 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1393 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1394 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1395 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1396 perror("settime");
1397 fprintf(stderr, "Internal timer error: aborting\n");
1398 exit(1);
1402 #endif /* defined(__linux__) */
1404 static int unix_start_timer(struct qemu_alarm_timer *t)
1406 struct sigaction act;
1407 struct itimerval itv;
1408 int err;
1410 /* timer signal */
1411 sigfillset(&act.sa_mask);
1412 act.sa_flags = 0;
1413 act.sa_handler = host_alarm_handler;
1415 sigaction(SIGALRM, &act, NULL);
1417 itv.it_interval.tv_sec = 0;
1418 /* for i386 kernel 2.6 to get 1 ms */
1419 itv.it_interval.tv_usec = 999;
1420 itv.it_value.tv_sec = 0;
1421 itv.it_value.tv_usec = 10 * 1000;
1423 err = setitimer(ITIMER_REAL, &itv, NULL);
1424 if (err)
1425 return -1;
1427 return 0;
1430 static void unix_stop_timer(struct qemu_alarm_timer *t)
1432 struct itimerval itv;
1434 memset(&itv, 0, sizeof(itv));
1435 setitimer(ITIMER_REAL, &itv, NULL);
1438 #endif /* !defined(_WIN32) */
1441 #ifdef _WIN32
1443 static int win32_start_timer(struct qemu_alarm_timer *t)
1445 TIMECAPS tc;
1446 struct qemu_alarm_win32 *data = t->priv;
1447 UINT flags;
1449 memset(&tc, 0, sizeof(tc));
1450 timeGetDevCaps(&tc, sizeof(tc));
1452 if (data->period < tc.wPeriodMin)
1453 data->period = tc.wPeriodMin;
1455 timeBeginPeriod(data->period);
1457 flags = TIME_CALLBACK_FUNCTION;
1458 if (alarm_has_dynticks(t))
1459 flags |= TIME_ONESHOT;
1460 else
1461 flags |= TIME_PERIODIC;
1463 data->timerId = timeSetEvent(1, // interval (ms)
1464 data->period, // resolution
1465 host_alarm_handler, // function
1466 (DWORD)t, // parameter
1467 flags);
1469 if (!data->timerId) {
1470 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1471 GetLastError());
1472 timeEndPeriod(data->period);
1473 return -1;
1476 return 0;
1479 static void win32_stop_timer(struct qemu_alarm_timer *t)
1481 struct qemu_alarm_win32 *data = t->priv;
1483 timeKillEvent(data->timerId);
1484 timeEndPeriod(data->period);
1487 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1489 struct qemu_alarm_win32 *data = t->priv;
1491 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1492 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1493 !active_timers[QEMU_CLOCK_HOST])
1494 return;
1496 timeKillEvent(data->timerId);
1498 data->timerId = timeSetEvent(1,
1499 data->period,
1500 host_alarm_handler,
1501 (DWORD)t,
1502 TIME_ONESHOT | TIME_PERIODIC);
1504 if (!data->timerId) {
1505 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1506 GetLastError());
1508 timeEndPeriod(data->period);
1509 exit(1);
1513 #endif /* _WIN32 */
1515 static int init_timer_alarm(void)
1517 struct qemu_alarm_timer *t = NULL;
1518 int i, err = -1;
1520 for (i = 0; alarm_timers[i].name; i++) {
1521 t = &alarm_timers[i];
1523 err = t->start(t);
1524 if (!err)
1525 break;
1528 if (err) {
1529 err = -ENOENT;
1530 goto fail;
1533 alarm_timer = t;
1535 return 0;
1537 fail:
1538 return err;
1541 static void quit_timers(void)
1543 alarm_timer->stop(alarm_timer);
1544 alarm_timer = NULL;
1547 /***********************************************************/
1548 /* host time/date access */
1549 void qemu_get_timedate(struct tm *tm, int offset)
1551 time_t ti;
1552 struct tm *ret;
1554 time(&ti);
1555 ti += offset;
1556 if (rtc_date_offset == -1) {
1557 if (rtc_utc)
1558 ret = gmtime(&ti);
1559 else
1560 ret = localtime(&ti);
1561 } else {
1562 ti -= rtc_date_offset;
1563 ret = gmtime(&ti);
1566 memcpy(tm, ret, sizeof(struct tm));
1569 int qemu_timedate_diff(struct tm *tm)
1571 time_t seconds;
1573 if (rtc_date_offset == -1)
1574 if (rtc_utc)
1575 seconds = mktimegm(tm);
1576 else
1577 seconds = mktime(tm);
1578 else
1579 seconds = mktimegm(tm) + rtc_date_offset;
1581 return seconds - time(NULL);
1584 static void configure_rtc_date_offset(const char *startdate, int legacy)
1586 time_t rtc_start_date;
1587 struct tm tm;
1589 if (!strcmp(startdate, "now") && legacy) {
1590 rtc_date_offset = -1;
1591 } else {
1592 if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1593 &tm.tm_year,
1594 &tm.tm_mon,
1595 &tm.tm_mday,
1596 &tm.tm_hour,
1597 &tm.tm_min,
1598 &tm.tm_sec) == 6) {
1599 /* OK */
1600 } else if (sscanf(startdate, "%d-%d-%d",
1601 &tm.tm_year,
1602 &tm.tm_mon,
1603 &tm.tm_mday) == 3) {
1604 tm.tm_hour = 0;
1605 tm.tm_min = 0;
1606 tm.tm_sec = 0;
1607 } else {
1608 goto date_fail;
1610 tm.tm_year -= 1900;
1611 tm.tm_mon--;
1612 rtc_start_date = mktimegm(&tm);
1613 if (rtc_start_date == -1) {
1614 date_fail:
1615 fprintf(stderr, "Invalid date format. Valid formats are:\n"
1616 "'2006-06-17T16:01:21' or '2006-06-17'\n");
1617 exit(1);
1619 rtc_date_offset = time(NULL) - rtc_start_date;
1623 static void configure_rtc(QemuOpts *opts)
1625 const char *value;
1627 value = qemu_opt_get(opts, "base");
1628 if (value) {
1629 if (!strcmp(value, "utc")) {
1630 rtc_utc = 1;
1631 } else if (!strcmp(value, "localtime")) {
1632 rtc_utc = 0;
1633 } else {
1634 configure_rtc_date_offset(value, 0);
1637 value = qemu_opt_get(opts, "clock");
1638 if (value) {
1639 if (!strcmp(value, "host")) {
1640 rtc_clock = host_clock;
1641 } else if (!strcmp(value, "vm")) {
1642 rtc_clock = vm_clock;
1643 } else {
1644 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1645 exit(1);
1648 #ifdef CONFIG_TARGET_I386
1649 value = qemu_opt_get(opts, "driftfix");
1650 if (value) {
1651 if (!strcmp(buf, "slew")) {
1652 rtc_td_hack = 1;
1653 } else if (!strcmp(buf, "none")) {
1654 rtc_td_hack = 0;
1655 } else {
1656 fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1657 exit(1);
1660 #endif
1663 #ifdef _WIN32
1664 static void socket_cleanup(void)
1666 WSACleanup();
1669 static int socket_init(void)
1671 WSADATA Data;
1672 int ret, err;
1674 ret = WSAStartup(MAKEWORD(2,2), &Data);
1675 if (ret != 0) {
1676 err = WSAGetLastError();
1677 fprintf(stderr, "WSAStartup: %d\n", err);
1678 return -1;
1680 atexit(socket_cleanup);
1681 return 0;
1683 #endif
1685 /***********************************************************/
1686 /* Bluetooth support */
1687 static int nb_hcis;
1688 static int cur_hci;
1689 static struct HCIInfo *hci_table[MAX_NICS];
1691 static struct bt_vlan_s {
1692 struct bt_scatternet_s net;
1693 int id;
1694 struct bt_vlan_s *next;
1695 } *first_bt_vlan;
1697 /* find or alloc a new bluetooth "VLAN" */
1698 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1700 struct bt_vlan_s **pvlan, *vlan;
1701 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1702 if (vlan->id == id)
1703 return &vlan->net;
1705 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1706 vlan->id = id;
1707 pvlan = &first_bt_vlan;
1708 while (*pvlan != NULL)
1709 pvlan = &(*pvlan)->next;
1710 *pvlan = vlan;
1711 return &vlan->net;
1714 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1718 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1720 return -ENOTSUP;
1723 static struct HCIInfo null_hci = {
1724 .cmd_send = null_hci_send,
1725 .sco_send = null_hci_send,
1726 .acl_send = null_hci_send,
1727 .bdaddr_set = null_hci_addr_set,
1730 struct HCIInfo *qemu_next_hci(void)
1732 if (cur_hci == nb_hcis)
1733 return &null_hci;
1735 return hci_table[cur_hci++];
1738 static struct HCIInfo *hci_init(const char *str)
1740 char *endp;
1741 struct bt_scatternet_s *vlan = 0;
1743 if (!strcmp(str, "null"))
1744 /* null */
1745 return &null_hci;
1746 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1747 /* host[:hciN] */
1748 return bt_host_hci(str[4] ? str + 5 : "hci0");
1749 else if (!strncmp(str, "hci", 3)) {
1750 /* hci[,vlan=n] */
1751 if (str[3]) {
1752 if (!strncmp(str + 3, ",vlan=", 6)) {
1753 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1754 if (*endp)
1755 vlan = 0;
1757 } else
1758 vlan = qemu_find_bt_vlan(0);
1759 if (vlan)
1760 return bt_new_hci(vlan);
1763 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1765 return 0;
1768 static int bt_hci_parse(const char *str)
1770 struct HCIInfo *hci;
1771 bdaddr_t bdaddr;
1773 if (nb_hcis >= MAX_NICS) {
1774 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1775 return -1;
1778 hci = hci_init(str);
1779 if (!hci)
1780 return -1;
1782 bdaddr.b[0] = 0x52;
1783 bdaddr.b[1] = 0x54;
1784 bdaddr.b[2] = 0x00;
1785 bdaddr.b[3] = 0x12;
1786 bdaddr.b[4] = 0x34;
1787 bdaddr.b[5] = 0x56 + nb_hcis;
1788 hci->bdaddr_set(hci, bdaddr.b);
1790 hci_table[nb_hcis++] = hci;
1792 return 0;
1795 static void bt_vhci_add(int vlan_id)
1797 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1799 if (!vlan->slave)
1800 fprintf(stderr, "qemu: warning: adding a VHCI to "
1801 "an empty scatternet %i\n", vlan_id);
1803 bt_vhci_init(bt_new_hci(vlan));
1806 static struct bt_device_s *bt_device_add(const char *opt)
1808 struct bt_scatternet_s *vlan;
1809 int vlan_id = 0;
1810 char *endp = strstr(opt, ",vlan=");
1811 int len = (endp ? endp - opt : strlen(opt)) + 1;
1812 char devname[10];
1814 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1816 if (endp) {
1817 vlan_id = strtol(endp + 6, &endp, 0);
1818 if (*endp) {
1819 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1820 return 0;
1824 vlan = qemu_find_bt_vlan(vlan_id);
1826 if (!vlan->slave)
1827 fprintf(stderr, "qemu: warning: adding a slave device to "
1828 "an empty scatternet %i\n", vlan_id);
1830 if (!strcmp(devname, "keyboard"))
1831 return bt_keyboard_init(vlan);
1833 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1834 return 0;
1837 static int bt_parse(const char *opt)
1839 const char *endp, *p;
1840 int vlan;
1842 if (strstart(opt, "hci", &endp)) {
1843 if (!*endp || *endp == ',') {
1844 if (*endp)
1845 if (!strstart(endp, ",vlan=", 0))
1846 opt = endp + 1;
1848 return bt_hci_parse(opt);
1850 } else if (strstart(opt, "vhci", &endp)) {
1851 if (!*endp || *endp == ',') {
1852 if (*endp) {
1853 if (strstart(endp, ",vlan=", &p)) {
1854 vlan = strtol(p, (char **) &endp, 0);
1855 if (*endp) {
1856 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1857 return 1;
1859 } else {
1860 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1861 return 1;
1863 } else
1864 vlan = 0;
1866 bt_vhci_add(vlan);
1867 return 0;
1869 } else if (strstart(opt, "device:", &endp))
1870 return !bt_device_add(endp);
1872 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1873 return 1;
1876 /***********************************************************/
1877 /* QEMU Block devices */
1879 #define HD_ALIAS "index=%d,media=disk"
1880 #define CDROM_ALIAS "index=2,media=cdrom"
1881 #define FD_ALIAS "index=%d,if=floppy"
1882 #define PFLASH_ALIAS "if=pflash"
1883 #define MTD_ALIAS "if=mtd"
1884 #define SD_ALIAS "index=0,if=sd"
1886 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1888 va_list ap;
1889 char optstr[1024];
1890 QemuOpts *opts;
1892 va_start(ap, fmt);
1893 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1894 va_end(ap);
1896 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1897 if (!opts) {
1898 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1899 __FUNCTION__, optstr);
1900 return NULL;
1902 if (file)
1903 qemu_opt_set(opts, "file", file);
1904 return opts;
1907 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1909 DriveInfo *dinfo;
1911 /* seek interface, bus and unit */
1913 QTAILQ_FOREACH(dinfo, &drives, next) {
1914 if (dinfo->type == type &&
1915 dinfo->bus == bus &&
1916 dinfo->unit == unit)
1917 return dinfo;
1920 return NULL;
1923 DriveInfo *drive_get_by_id(const char *id)
1925 DriveInfo *dinfo;
1927 QTAILQ_FOREACH(dinfo, &drives, next) {
1928 if (strcmp(id, dinfo->id))
1929 continue;
1930 return dinfo;
1932 return NULL;
1935 int drive_get_max_bus(BlockInterfaceType type)
1937 int max_bus;
1938 DriveInfo *dinfo;
1940 max_bus = -1;
1941 QTAILQ_FOREACH(dinfo, &drives, next) {
1942 if(dinfo->type == type &&
1943 dinfo->bus > max_bus)
1944 max_bus = dinfo->bus;
1946 return max_bus;
1949 const char *drive_get_serial(BlockDriverState *bdrv)
1951 DriveInfo *dinfo;
1953 QTAILQ_FOREACH(dinfo, &drives, next) {
1954 if (dinfo->bdrv == bdrv)
1955 return dinfo->serial;
1958 return "\0";
1961 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1963 DriveInfo *dinfo;
1965 QTAILQ_FOREACH(dinfo, &drives, next) {
1966 if (dinfo->bdrv == bdrv)
1967 return dinfo->onerror;
1970 return BLOCK_ERR_STOP_ENOSPC;
1973 static void bdrv_format_print(void *opaque, const char *name)
1975 fprintf(stderr, " %s", name);
1978 void drive_uninit(DriveInfo *dinfo)
1980 qemu_opts_del(dinfo->opts);
1981 bdrv_delete(dinfo->bdrv);
1982 QTAILQ_REMOVE(&drives, dinfo, next);
1983 qemu_free(dinfo);
1986 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1987 int *fatal_error)
1989 const char *buf;
1990 const char *file = NULL;
1991 char devname[128];
1992 const char *serial;
1993 const char *mediastr = "";
1994 BlockInterfaceType type;
1995 enum { MEDIA_DISK, MEDIA_CDROM } media;
1996 int bus_id, unit_id;
1997 int cyls, heads, secs, translation;
1998 BlockDriver *drv = NULL;
1999 QEMUMachine *machine = opaque;
2000 int max_devs;
2001 int index;
2002 int cache;
2003 int aio = 0;
2004 int bdrv_flags, onerror;
2005 const char *devaddr;
2006 DriveInfo *dinfo;
2007 int snapshot = 0;
2009 *fatal_error = 1;
2011 translation = BIOS_ATA_TRANSLATION_AUTO;
2012 cache = 1;
2014 if (machine && machine->use_scsi) {
2015 type = IF_SCSI;
2016 max_devs = MAX_SCSI_DEVS;
2017 pstrcpy(devname, sizeof(devname), "scsi");
2018 } else {
2019 type = IF_IDE;
2020 max_devs = MAX_IDE_DEVS;
2021 pstrcpy(devname, sizeof(devname), "ide");
2023 media = MEDIA_DISK;
2025 /* extract parameters */
2026 bus_id = qemu_opt_get_number(opts, "bus", 0);
2027 unit_id = qemu_opt_get_number(opts, "unit", -1);
2028 index = qemu_opt_get_number(opts, "index", -1);
2030 cyls = qemu_opt_get_number(opts, "cyls", 0);
2031 heads = qemu_opt_get_number(opts, "heads", 0);
2032 secs = qemu_opt_get_number(opts, "secs", 0);
2034 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
2036 file = qemu_opt_get(opts, "file");
2037 serial = qemu_opt_get(opts, "serial");
2039 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
2040 pstrcpy(devname, sizeof(devname), buf);
2041 if (!strcmp(buf, "ide")) {
2042 type = IF_IDE;
2043 max_devs = MAX_IDE_DEVS;
2044 } else if (!strcmp(buf, "scsi")) {
2045 type = IF_SCSI;
2046 max_devs = MAX_SCSI_DEVS;
2047 } else if (!strcmp(buf, "floppy")) {
2048 type = IF_FLOPPY;
2049 max_devs = 0;
2050 } else if (!strcmp(buf, "pflash")) {
2051 type = IF_PFLASH;
2052 max_devs = 0;
2053 } else if (!strcmp(buf, "mtd")) {
2054 type = IF_MTD;
2055 max_devs = 0;
2056 } else if (!strcmp(buf, "sd")) {
2057 type = IF_SD;
2058 max_devs = 0;
2059 } else if (!strcmp(buf, "virtio")) {
2060 type = IF_VIRTIO;
2061 max_devs = 0;
2062 } else if (!strcmp(buf, "xen")) {
2063 type = IF_XEN;
2064 max_devs = 0;
2065 } else if (!strcmp(buf, "none")) {
2066 type = IF_NONE;
2067 max_devs = 0;
2068 } else {
2069 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
2070 return NULL;
2074 if (cyls || heads || secs) {
2075 if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
2076 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2077 return NULL;
2079 if (heads < 1 || (type == IF_IDE && heads > 16)) {
2080 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2081 return NULL;
2083 if (secs < 1 || (type == IF_IDE && secs > 63)) {
2084 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2085 return NULL;
2089 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2090 if (!cyls) {
2091 fprintf(stderr,
2092 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2093 buf);
2094 return NULL;
2096 if (!strcmp(buf, "none"))
2097 translation = BIOS_ATA_TRANSLATION_NONE;
2098 else if (!strcmp(buf, "lba"))
2099 translation = BIOS_ATA_TRANSLATION_LBA;
2100 else if (!strcmp(buf, "auto"))
2101 translation = BIOS_ATA_TRANSLATION_AUTO;
2102 else {
2103 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2104 return NULL;
2108 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2109 if (!strcmp(buf, "disk")) {
2110 media = MEDIA_DISK;
2111 } else if (!strcmp(buf, "cdrom")) {
2112 if (cyls || secs || heads) {
2113 fprintf(stderr,
2114 "qemu: '%s' invalid physical CHS format\n", buf);
2115 return NULL;
2117 media = MEDIA_CDROM;
2118 } else {
2119 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2120 return NULL;
2124 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2125 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2126 cache = 0;
2127 else if (!strcmp(buf, "writethrough"))
2128 cache = 1;
2129 else if (!strcmp(buf, "writeback"))
2130 cache = 2;
2131 else {
2132 fprintf(stderr, "qemu: invalid cache option\n");
2133 return NULL;
2137 #ifdef CONFIG_LINUX_AIO
2138 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2139 if (!strcmp(buf, "threads"))
2140 aio = 0;
2141 else if (!strcmp(buf, "native"))
2142 aio = 1;
2143 else {
2144 fprintf(stderr, "qemu: invalid aio option\n");
2145 return NULL;
2148 #endif
2150 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2151 if (strcmp(buf, "?") == 0) {
2152 fprintf(stderr, "qemu: Supported formats:");
2153 bdrv_iterate_format(bdrv_format_print, NULL);
2154 fprintf(stderr, "\n");
2155 return NULL;
2157 drv = bdrv_find_format(buf);
2158 if (!drv) {
2159 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2160 return NULL;
2164 onerror = BLOCK_ERR_STOP_ENOSPC;
2165 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2166 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2167 fprintf(stderr, "werror is no supported by this format\n");
2168 return NULL;
2170 if (!strcmp(buf, "ignore"))
2171 onerror = BLOCK_ERR_IGNORE;
2172 else if (!strcmp(buf, "enospc"))
2173 onerror = BLOCK_ERR_STOP_ENOSPC;
2174 else if (!strcmp(buf, "stop"))
2175 onerror = BLOCK_ERR_STOP_ANY;
2176 else if (!strcmp(buf, "report"))
2177 onerror = BLOCK_ERR_REPORT;
2178 else {
2179 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2180 return NULL;
2184 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2185 if (type != IF_VIRTIO) {
2186 fprintf(stderr, "addr is not supported\n");
2187 return NULL;
2191 /* compute bus and unit according index */
2193 if (index != -1) {
2194 if (bus_id != 0 || unit_id != -1) {
2195 fprintf(stderr,
2196 "qemu: index cannot be used with bus and unit\n");
2197 return NULL;
2199 if (max_devs == 0)
2201 unit_id = index;
2202 bus_id = 0;
2203 } else {
2204 unit_id = index % max_devs;
2205 bus_id = index / max_devs;
2209 /* if user doesn't specify a unit_id,
2210 * try to find the first free
2213 if (unit_id == -1) {
2214 unit_id = 0;
2215 while (drive_get(type, bus_id, unit_id) != NULL) {
2216 unit_id++;
2217 if (max_devs && unit_id >= max_devs) {
2218 unit_id -= max_devs;
2219 bus_id++;
2224 /* check unit id */
2226 if (max_devs && unit_id >= max_devs) {
2227 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2228 unit_id, max_devs - 1);
2229 return NULL;
2233 * ignore multiple definitions
2236 if (drive_get(type, bus_id, unit_id) != NULL) {
2237 *fatal_error = 0;
2238 return NULL;
2241 /* init */
2243 dinfo = qemu_mallocz(sizeof(*dinfo));
2244 if ((buf = qemu_opts_id(opts)) != NULL) {
2245 dinfo->id = qemu_strdup(buf);
2246 } else {
2247 /* no id supplied -> create one */
2248 dinfo->id = qemu_mallocz(32);
2249 if (type == IF_IDE || type == IF_SCSI)
2250 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2251 if (max_devs)
2252 snprintf(dinfo->id, 32, "%s%i%s%i",
2253 devname, bus_id, mediastr, unit_id);
2254 else
2255 snprintf(dinfo->id, 32, "%s%s%i",
2256 devname, mediastr, unit_id);
2258 dinfo->bdrv = bdrv_new(dinfo->id);
2259 dinfo->devaddr = devaddr;
2260 dinfo->type = type;
2261 dinfo->bus = bus_id;
2262 dinfo->unit = unit_id;
2263 dinfo->onerror = onerror;
2264 dinfo->opts = opts;
2265 if (serial)
2266 strncpy(dinfo->serial, serial, sizeof(serial));
2267 QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2269 switch(type) {
2270 case IF_IDE:
2271 case IF_SCSI:
2272 case IF_XEN:
2273 case IF_NONE:
2274 switch(media) {
2275 case MEDIA_DISK:
2276 if (cyls != 0) {
2277 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2278 bdrv_set_translation_hint(dinfo->bdrv, translation);
2280 break;
2281 case MEDIA_CDROM:
2282 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2283 break;
2285 break;
2286 case IF_SD:
2287 /* FIXME: This isn't really a floppy, but it's a reasonable
2288 approximation. */
2289 case IF_FLOPPY:
2290 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2291 break;
2292 case IF_PFLASH:
2293 case IF_MTD:
2294 break;
2295 case IF_VIRTIO:
2296 /* add virtio block device */
2297 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2298 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2299 qemu_opt_set(opts, "drive", dinfo->id);
2300 if (devaddr)
2301 qemu_opt_set(opts, "addr", devaddr);
2302 break;
2303 case IF_COUNT:
2304 abort();
2306 if (!file) {
2307 *fatal_error = 0;
2308 return NULL;
2310 bdrv_flags = 0;
2311 if (snapshot) {
2312 bdrv_flags |= BDRV_O_SNAPSHOT;
2313 cache = 2; /* always use write-back with snapshot */
2315 if (cache == 0) /* no caching */
2316 bdrv_flags |= BDRV_O_NOCACHE;
2317 else if (cache == 2) /* write-back */
2318 bdrv_flags |= BDRV_O_CACHE_WB;
2320 if (aio == 1) {
2321 bdrv_flags |= BDRV_O_NATIVE_AIO;
2322 } else {
2323 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2326 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2327 fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2328 file, strerror(errno));
2329 return NULL;
2332 if (bdrv_key_required(dinfo->bdrv))
2333 autostart = 0;
2334 *fatal_error = 0;
2335 return dinfo;
2338 static int drive_init_func(QemuOpts *opts, void *opaque)
2340 QEMUMachine *machine = opaque;
2341 int fatal_error = 0;
2343 if (drive_init(opts, machine, &fatal_error) == NULL) {
2344 if (fatal_error)
2345 return 1;
2347 return 0;
2350 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2352 if (NULL == qemu_opt_get(opts, "snapshot")) {
2353 qemu_opt_set(opts, "snapshot", "on");
2355 return 0;
2358 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2360 boot_set_handler = func;
2361 boot_set_opaque = opaque;
2364 int qemu_boot_set(const char *boot_devices)
2366 if (!boot_set_handler) {
2367 return -EINVAL;
2369 return boot_set_handler(boot_set_opaque, boot_devices);
2372 static int parse_bootdevices(char *devices)
2374 /* We just do some generic consistency checks */
2375 const char *p;
2376 int bitmap = 0;
2378 for (p = devices; *p != '\0'; p++) {
2379 /* Allowed boot devices are:
2380 * a-b: floppy disk drives
2381 * c-f: IDE disk drives
2382 * g-m: machine implementation dependant drives
2383 * n-p: network devices
2384 * It's up to each machine implementation to check if the given boot
2385 * devices match the actual hardware implementation and firmware
2386 * features.
2388 if (*p < 'a' || *p > 'p') {
2389 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2390 exit(1);
2392 if (bitmap & (1 << (*p - 'a'))) {
2393 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2394 exit(1);
2396 bitmap |= 1 << (*p - 'a');
2398 return bitmap;
2401 static void restore_boot_devices(void *opaque)
2403 char *standard_boot_devices = opaque;
2405 qemu_boot_set(standard_boot_devices);
2407 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2408 qemu_free(standard_boot_devices);
2411 static void numa_add(const char *optarg)
2413 char option[128];
2414 char *endptr;
2415 unsigned long long value, endvalue;
2416 int nodenr;
2418 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2419 if (!strcmp(option, "node")) {
2420 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2421 nodenr = nb_numa_nodes;
2422 } else {
2423 nodenr = strtoull(option, NULL, 10);
2426 if (get_param_value(option, 128, "mem", optarg) == 0) {
2427 node_mem[nodenr] = 0;
2428 } else {
2429 value = strtoull(option, &endptr, 0);
2430 switch (*endptr) {
2431 case 0: case 'M': case 'm':
2432 value <<= 20;
2433 break;
2434 case 'G': case 'g':
2435 value <<= 30;
2436 break;
2438 node_mem[nodenr] = value;
2440 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2441 node_cpumask[nodenr] = 0;
2442 } else {
2443 value = strtoull(option, &endptr, 10);
2444 if (value >= 64) {
2445 value = 63;
2446 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2447 } else {
2448 if (*endptr == '-') {
2449 endvalue = strtoull(endptr+1, &endptr, 10);
2450 if (endvalue >= 63) {
2451 endvalue = 62;
2452 fprintf(stderr,
2453 "only 63 CPUs in NUMA mode supported.\n");
2455 value = (1 << (endvalue + 1)) - (1 << value);
2456 } else {
2457 value = 1 << value;
2460 node_cpumask[nodenr] = value;
2462 nb_numa_nodes++;
2464 return;
2467 static void smp_parse(const char *optarg)
2469 int smp, sockets = 0, threads = 0, cores = 0;
2470 char *endptr;
2471 char option[128];
2473 smp = strtoul(optarg, &endptr, 10);
2474 if (endptr != optarg) {
2475 if (*endptr == ',') {
2476 endptr++;
2479 if (get_param_value(option, 128, "sockets", endptr) != 0)
2480 sockets = strtoull(option, NULL, 10);
2481 if (get_param_value(option, 128, "cores", endptr) != 0)
2482 cores = strtoull(option, NULL, 10);
2483 if (get_param_value(option, 128, "threads", endptr) != 0)
2484 threads = strtoull(option, NULL, 10);
2485 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2486 max_cpus = strtoull(option, NULL, 10);
2488 /* compute missing values, prefer sockets over cores over threads */
2489 if (smp == 0 || sockets == 0) {
2490 sockets = sockets > 0 ? sockets : 1;
2491 cores = cores > 0 ? cores : 1;
2492 threads = threads > 0 ? threads : 1;
2493 if (smp == 0) {
2494 smp = cores * threads * sockets;
2495 } else {
2496 sockets = smp / (cores * threads);
2498 } else {
2499 if (cores == 0) {
2500 threads = threads > 0 ? threads : 1;
2501 cores = smp / (sockets * threads);
2502 } else {
2503 if (sockets == 0) {
2504 sockets = smp / (cores * threads);
2505 } else {
2506 threads = smp / (cores * sockets);
2510 smp_cpus = smp;
2511 smp_cores = cores > 0 ? cores : 1;
2512 smp_threads = threads > 0 ? threads : 1;
2513 if (max_cpus == 0)
2514 max_cpus = smp_cpus;
2517 /***********************************************************/
2518 /* USB devices */
2520 static int usb_device_add(const char *devname, int is_hotplug)
2522 const char *p;
2523 USBDevice *dev = NULL;
2525 if (!usb_enabled)
2526 return -1;
2528 /* drivers with .usbdevice_name entry in USBDeviceInfo */
2529 dev = usbdevice_create(devname);
2530 if (dev)
2531 goto done;
2533 /* the other ones */
2534 if (strstart(devname, "host:", &p)) {
2535 dev = usb_host_device_open(p);
2536 } else if (strstart(devname, "net:", &p)) {
2537 QemuOpts *opts;
2538 int idx;
2540 opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
2541 if (!opts) {
2542 return -1;
2545 qemu_opt_set(opts, "type", "nic");
2546 qemu_opt_set(opts, "model", "usb");
2548 idx = net_client_init(NULL, opts, 0);
2549 if (idx == -1) {
2550 return -1;
2553 dev = usb_net_init(&nd_table[idx]);
2554 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2555 dev = usb_bt_init(devname[2] ? hci_init(p) :
2556 bt_new_hci(qemu_find_bt_vlan(0)));
2557 } else {
2558 return -1;
2560 if (!dev)
2561 return -1;
2563 done:
2564 return 0;
2567 static int usb_device_del(const char *devname)
2569 int bus_num, addr;
2570 const char *p;
2572 if (strstart(devname, "host:", &p))
2573 return usb_host_device_close(p);
2575 if (!usb_enabled)
2576 return -1;
2578 p = strchr(devname, '.');
2579 if (!p)
2580 return -1;
2581 bus_num = strtoul(devname, NULL, 0);
2582 addr = strtoul(p + 1, NULL, 0);
2584 return usb_device_delete_addr(bus_num, addr);
2587 static int usb_parse(const char *cmdline)
2589 return usb_device_add(cmdline, 0);
2592 void do_usb_add(Monitor *mon, const QDict *qdict)
2594 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2597 void do_usb_del(Monitor *mon, const QDict *qdict)
2599 usb_device_del(qdict_get_str(qdict, "devname"));
2602 /***********************************************************/
2603 /* PCMCIA/Cardbus */
2605 static struct pcmcia_socket_entry_s {
2606 PCMCIASocket *socket;
2607 struct pcmcia_socket_entry_s *next;
2608 } *pcmcia_sockets = 0;
2610 void pcmcia_socket_register(PCMCIASocket *socket)
2612 struct pcmcia_socket_entry_s *entry;
2614 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2615 entry->socket = socket;
2616 entry->next = pcmcia_sockets;
2617 pcmcia_sockets = entry;
2620 void pcmcia_socket_unregister(PCMCIASocket *socket)
2622 struct pcmcia_socket_entry_s *entry, **ptr;
2624 ptr = &pcmcia_sockets;
2625 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2626 if (entry->socket == socket) {
2627 *ptr = entry->next;
2628 qemu_free(entry);
2632 void pcmcia_info(Monitor *mon)
2634 struct pcmcia_socket_entry_s *iter;
2636 if (!pcmcia_sockets)
2637 monitor_printf(mon, "No PCMCIA sockets\n");
2639 for (iter = pcmcia_sockets; iter; iter = iter->next)
2640 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2641 iter->socket->attached ? iter->socket->card_string :
2642 "Empty");
2645 /***********************************************************/
2646 /* register display */
2648 struct DisplayAllocator default_allocator = {
2649 defaultallocator_create_displaysurface,
2650 defaultallocator_resize_displaysurface,
2651 defaultallocator_free_displaysurface
2654 void register_displaystate(DisplayState *ds)
2656 DisplayState **s;
2657 s = &display_state;
2658 while (*s != NULL)
2659 s = &(*s)->next;
2660 ds->next = NULL;
2661 *s = ds;
2664 DisplayState *get_displaystate(void)
2666 return display_state;
2669 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2671 if(ds->allocator == &default_allocator) ds->allocator = da;
2672 return ds->allocator;
2675 /* dumb display */
2677 static void dumb_display_init(void)
2679 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2680 ds->allocator = &default_allocator;
2681 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2682 register_displaystate(ds);
2685 /***********************************************************/
2686 /* I/O handling */
2688 typedef struct IOHandlerRecord {
2689 int fd;
2690 IOCanRWHandler *fd_read_poll;
2691 IOHandler *fd_read;
2692 IOHandler *fd_write;
2693 int deleted;
2694 void *opaque;
2695 /* temporary data */
2696 struct pollfd *ufd;
2697 struct IOHandlerRecord *next;
2698 } IOHandlerRecord;
2700 static IOHandlerRecord *first_io_handler;
2702 /* XXX: fd_read_poll should be suppressed, but an API change is
2703 necessary in the character devices to suppress fd_can_read(). */
2704 int qemu_set_fd_handler2(int fd,
2705 IOCanRWHandler *fd_read_poll,
2706 IOHandler *fd_read,
2707 IOHandler *fd_write,
2708 void *opaque)
2710 IOHandlerRecord **pioh, *ioh;
2712 if (!fd_read && !fd_write) {
2713 pioh = &first_io_handler;
2714 for(;;) {
2715 ioh = *pioh;
2716 if (ioh == NULL)
2717 break;
2718 if (ioh->fd == fd) {
2719 ioh->deleted = 1;
2720 break;
2722 pioh = &ioh->next;
2724 } else {
2725 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2726 if (ioh->fd == fd)
2727 goto found;
2729 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2730 ioh->next = first_io_handler;
2731 first_io_handler = ioh;
2732 found:
2733 ioh->fd = fd;
2734 ioh->fd_read_poll = fd_read_poll;
2735 ioh->fd_read = fd_read;
2736 ioh->fd_write = fd_write;
2737 ioh->opaque = opaque;
2738 ioh->deleted = 0;
2740 return 0;
2743 int qemu_set_fd_handler(int fd,
2744 IOHandler *fd_read,
2745 IOHandler *fd_write,
2746 void *opaque)
2748 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2751 #ifdef _WIN32
2752 /***********************************************************/
2753 /* Polling handling */
2755 typedef struct PollingEntry {
2756 PollingFunc *func;
2757 void *opaque;
2758 struct PollingEntry *next;
2759 } PollingEntry;
2761 static PollingEntry *first_polling_entry;
2763 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2765 PollingEntry **ppe, *pe;
2766 pe = qemu_mallocz(sizeof(PollingEntry));
2767 pe->func = func;
2768 pe->opaque = opaque;
2769 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2770 *ppe = pe;
2771 return 0;
2774 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2776 PollingEntry **ppe, *pe;
2777 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2778 pe = *ppe;
2779 if (pe->func == func && pe->opaque == opaque) {
2780 *ppe = pe->next;
2781 qemu_free(pe);
2782 break;
2787 /***********************************************************/
2788 /* Wait objects support */
2789 typedef struct WaitObjects {
2790 int num;
2791 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2792 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2793 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2794 } WaitObjects;
2796 static WaitObjects wait_objects = {0};
2798 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2800 WaitObjects *w = &wait_objects;
2802 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2803 return -1;
2804 w->events[w->num] = handle;
2805 w->func[w->num] = func;
2806 w->opaque[w->num] = opaque;
2807 w->num++;
2808 return 0;
2811 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2813 int i, found;
2814 WaitObjects *w = &wait_objects;
2816 found = 0;
2817 for (i = 0; i < w->num; i++) {
2818 if (w->events[i] == handle)
2819 found = 1;
2820 if (found) {
2821 w->events[i] = w->events[i + 1];
2822 w->func[i] = w->func[i + 1];
2823 w->opaque[i] = w->opaque[i + 1];
2826 if (found)
2827 w->num--;
2829 #endif
2831 /***********************************************************/
2832 /* ram save/restore */
2834 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
2835 #define RAM_SAVE_FLAG_COMPRESS 0x02
2836 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2837 #define RAM_SAVE_FLAG_PAGE 0x08
2838 #define RAM_SAVE_FLAG_EOS 0x10
2840 static int is_dup_page(uint8_t *page, uint8_t ch)
2842 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2843 uint32_t *array = (uint32_t *)page;
2844 int i;
2846 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2847 if (array[i] != val)
2848 return 0;
2851 return 1;
2854 static int ram_save_block(QEMUFile *f)
2856 static ram_addr_t current_addr = 0;
2857 ram_addr_t saved_addr = current_addr;
2858 ram_addr_t addr = 0;
2859 int found = 0;
2861 while (addr < last_ram_offset) {
2862 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2863 uint8_t *p;
2865 cpu_physical_memory_reset_dirty(current_addr,
2866 current_addr + TARGET_PAGE_SIZE,
2867 MIGRATION_DIRTY_FLAG);
2869 p = qemu_get_ram_ptr(current_addr);
2871 if (is_dup_page(p, *p)) {
2872 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2873 qemu_put_byte(f, *p);
2874 } else {
2875 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2876 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2879 found = 1;
2880 break;
2882 addr += TARGET_PAGE_SIZE;
2883 current_addr = (saved_addr + addr) % last_ram_offset;
2886 return found;
2889 static uint64_t bytes_transferred = 0;
2891 static ram_addr_t ram_save_remaining(void)
2893 ram_addr_t addr;
2894 ram_addr_t count = 0;
2896 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2897 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2898 count++;
2901 return count;
2904 uint64_t ram_bytes_remaining(void)
2906 return ram_save_remaining() * TARGET_PAGE_SIZE;
2909 uint64_t ram_bytes_transferred(void)
2911 return bytes_transferred;
2914 uint64_t ram_bytes_total(void)
2916 return last_ram_offset;
2919 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2921 ram_addr_t addr;
2922 uint64_t bytes_transferred_last;
2923 double bwidth = 0;
2924 uint64_t expected_time = 0;
2926 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2927 qemu_file_set_error(f);
2928 return 0;
2931 if (stage == 1) {
2932 /* Make sure all dirty bits are set */
2933 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2934 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2935 cpu_physical_memory_set_dirty(addr);
2938 /* Enable dirty memory tracking */
2939 cpu_physical_memory_set_dirty_tracking(1);
2941 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2944 bytes_transferred_last = bytes_transferred;
2945 bwidth = get_clock();
2947 while (!qemu_file_rate_limit(f)) {
2948 int ret;
2950 ret = ram_save_block(f);
2951 bytes_transferred += ret * TARGET_PAGE_SIZE;
2952 if (ret == 0) /* no more blocks */
2953 break;
2956 bwidth = get_clock() - bwidth;
2957 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2959 /* if we haven't transferred anything this round, force expected_time to a
2960 * a very high value, but without crashing */
2961 if (bwidth == 0)
2962 bwidth = 0.000001;
2964 /* try transferring iterative blocks of memory */
2966 if (stage == 3) {
2968 /* flush all remaining blocks regardless of rate limiting */
2969 while (ram_save_block(f) != 0) {
2970 bytes_transferred += TARGET_PAGE_SIZE;
2972 cpu_physical_memory_set_dirty_tracking(0);
2975 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2977 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2979 return (stage == 2) && (expected_time <= migrate_max_downtime());
2982 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2984 ram_addr_t addr;
2985 int flags;
2987 if (version_id != 3)
2988 return -EINVAL;
2990 do {
2991 addr = qemu_get_be64(f);
2993 flags = addr & ~TARGET_PAGE_MASK;
2994 addr &= TARGET_PAGE_MASK;
2996 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
2997 if (addr != last_ram_offset)
2998 return -EINVAL;
3001 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3002 uint8_t ch = qemu_get_byte(f);
3003 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3004 #ifndef _WIN32
3005 if (ch == 0 &&
3006 (!kvm_enabled() || kvm_has_sync_mmu())) {
3007 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3009 #endif
3010 } else if (flags & RAM_SAVE_FLAG_PAGE)
3011 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3012 } while (!(flags & RAM_SAVE_FLAG_EOS));
3014 return 0;
3017 void qemu_service_io(void)
3019 qemu_notify_event();
3022 /***********************************************************/
3023 /* machine registration */
3025 static QEMUMachine *first_machine = NULL;
3026 QEMUMachine *current_machine = NULL;
3028 int qemu_register_machine(QEMUMachine *m)
3030 QEMUMachine **pm;
3031 pm = &first_machine;
3032 while (*pm != NULL)
3033 pm = &(*pm)->next;
3034 m->next = NULL;
3035 *pm = m;
3036 return 0;
3039 static QEMUMachine *find_machine(const char *name)
3041 QEMUMachine *m;
3043 for(m = first_machine; m != NULL; m = m->next) {
3044 if (!strcmp(m->name, name))
3045 return m;
3046 if (m->alias && !strcmp(m->alias, name))
3047 return m;
3049 return NULL;
3052 static QEMUMachine *find_default_machine(void)
3054 QEMUMachine *m;
3056 for(m = first_machine; m != NULL; m = m->next) {
3057 if (m->is_default) {
3058 return m;
3061 return NULL;
3064 /***********************************************************/
3065 /* main execution loop */
3067 static void gui_update(void *opaque)
3069 uint64_t interval = GUI_REFRESH_INTERVAL;
3070 DisplayState *ds = opaque;
3071 DisplayChangeListener *dcl = ds->listeners;
3073 dpy_refresh(ds);
3075 while (dcl != NULL) {
3076 if (dcl->gui_timer_interval &&
3077 dcl->gui_timer_interval < interval)
3078 interval = dcl->gui_timer_interval;
3079 dcl = dcl->next;
3081 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3084 static void nographic_update(void *opaque)
3086 uint64_t interval = GUI_REFRESH_INTERVAL;
3088 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3091 struct vm_change_state_entry {
3092 VMChangeStateHandler *cb;
3093 void *opaque;
3094 QLIST_ENTRY (vm_change_state_entry) entries;
3097 static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3099 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3100 void *opaque)
3102 VMChangeStateEntry *e;
3104 e = qemu_mallocz(sizeof (*e));
3106 e->cb = cb;
3107 e->opaque = opaque;
3108 QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3109 return e;
3112 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3114 QLIST_REMOVE (e, entries);
3115 qemu_free (e);
3118 static void vm_state_notify(int running, int reason)
3120 VMChangeStateEntry *e;
3122 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3123 e->cb(e->opaque, running, reason);
3127 static void resume_all_vcpus(void);
3128 static void pause_all_vcpus(void);
3130 void vm_start(void)
3132 if (!vm_running) {
3133 cpu_enable_ticks();
3134 vm_running = 1;
3135 vm_state_notify(1, 0);
3136 qemu_rearm_alarm_timer(alarm_timer);
3137 resume_all_vcpus();
3141 /* reset/shutdown handler */
3143 typedef struct QEMUResetEntry {
3144 QTAILQ_ENTRY(QEMUResetEntry) entry;
3145 QEMUResetHandler *func;
3146 void *opaque;
3147 } QEMUResetEntry;
3149 static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3150 QTAILQ_HEAD_INITIALIZER(reset_handlers);
3151 static int reset_requested;
3152 static int shutdown_requested;
3153 static int powerdown_requested;
3154 static int debug_requested;
3155 static int vmstop_requested;
3157 int qemu_shutdown_requested(void)
3159 int r = shutdown_requested;
3160 shutdown_requested = 0;
3161 return r;
3164 int qemu_reset_requested(void)
3166 int r = reset_requested;
3167 reset_requested = 0;
3168 return r;
3171 int qemu_powerdown_requested(void)
3173 int r = powerdown_requested;
3174 powerdown_requested = 0;
3175 return r;
3178 static int qemu_debug_requested(void)
3180 int r = debug_requested;
3181 debug_requested = 0;
3182 return r;
3185 static int qemu_vmstop_requested(void)
3187 int r = vmstop_requested;
3188 vmstop_requested = 0;
3189 return r;
3192 static void do_vm_stop(int reason)
3194 if (vm_running) {
3195 cpu_disable_ticks();
3196 vm_running = 0;
3197 pause_all_vcpus();
3198 vm_state_notify(0, reason);
3202 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3204 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3206 re->func = func;
3207 re->opaque = opaque;
3208 QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3211 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3213 QEMUResetEntry *re;
3215 QTAILQ_FOREACH(re, &reset_handlers, entry) {
3216 if (re->func == func && re->opaque == opaque) {
3217 QTAILQ_REMOVE(&reset_handlers, re, entry);
3218 qemu_free(re);
3219 return;
3224 void qemu_system_reset(void)
3226 QEMUResetEntry *re, *nre;
3228 /* reset all devices */
3229 QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3230 re->func(re->opaque);
3234 void qemu_system_reset_request(void)
3236 if (no_reboot) {
3237 shutdown_requested = 1;
3238 } else {
3239 reset_requested = 1;
3241 qemu_notify_event();
3244 void qemu_system_shutdown_request(void)
3246 shutdown_requested = 1;
3247 qemu_notify_event();
3250 void qemu_system_powerdown_request(void)
3252 powerdown_requested = 1;
3253 qemu_notify_event();
3256 #ifdef CONFIG_IOTHREAD
3257 static void qemu_system_vmstop_request(int reason)
3259 vmstop_requested = reason;
3260 qemu_notify_event();
3262 #endif
3264 #ifndef _WIN32
3265 static int io_thread_fd = -1;
3267 static void qemu_event_increment(void)
3269 static const char byte = 0;
3271 if (io_thread_fd == -1)
3272 return;
3274 write(io_thread_fd, &byte, sizeof(byte));
3277 static void qemu_event_read(void *opaque)
3279 int fd = (unsigned long)opaque;
3280 ssize_t len;
3282 /* Drain the notify pipe */
3283 do {
3284 char buffer[512];
3285 len = read(fd, buffer, sizeof(buffer));
3286 } while ((len == -1 && errno == EINTR) || len > 0);
3289 static int qemu_event_init(void)
3291 int err;
3292 int fds[2];
3294 err = pipe(fds);
3295 if (err == -1)
3296 return -errno;
3298 err = fcntl_setfl(fds[0], O_NONBLOCK);
3299 if (err < 0)
3300 goto fail;
3302 err = fcntl_setfl(fds[1], O_NONBLOCK);
3303 if (err < 0)
3304 goto fail;
3306 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3307 (void *)(unsigned long)fds[0]);
3309 io_thread_fd = fds[1];
3310 return 0;
3312 fail:
3313 close(fds[0]);
3314 close(fds[1]);
3315 return err;
3317 #else
3318 HANDLE qemu_event_handle;
3320 static void dummy_event_handler(void *opaque)
3324 static int qemu_event_init(void)
3326 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3327 if (!qemu_event_handle) {
3328 fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3329 return -1;
3331 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3332 return 0;
3335 static void qemu_event_increment(void)
3337 if (!SetEvent(qemu_event_handle)) {
3338 fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3339 GetLastError());
3340 exit (1);
3343 #endif
3345 static int cpu_can_run(CPUState *env)
3347 if (env->stop)
3348 return 0;
3349 if (env->stopped)
3350 return 0;
3351 return 1;
3354 #ifndef CONFIG_IOTHREAD
3355 static int qemu_init_main_loop(void)
3357 return qemu_event_init();
3360 void qemu_init_vcpu(void *_env)
3362 CPUState *env = _env;
3364 if (kvm_enabled())
3365 kvm_init_vcpu(env);
3366 env->nr_cores = smp_cores;
3367 env->nr_threads = smp_threads;
3368 return;
3371 int qemu_cpu_self(void *env)
3373 return 1;
3376 static void resume_all_vcpus(void)
3380 static void pause_all_vcpus(void)
3384 void qemu_cpu_kick(void *env)
3386 return;
3389 void qemu_notify_event(void)
3391 CPUState *env = cpu_single_env;
3393 if (env) {
3394 cpu_exit(env);
3398 void qemu_mutex_lock_iothread(void) {}
3399 void qemu_mutex_unlock_iothread(void) {}
3401 void vm_stop(int reason)
3403 do_vm_stop(reason);
3406 #else /* CONFIG_IOTHREAD */
3408 #include "qemu-thread.h"
3410 QemuMutex qemu_global_mutex;
3411 static QemuMutex qemu_fair_mutex;
3413 static QemuThread io_thread;
3415 static QemuThread *tcg_cpu_thread;
3416 static QemuCond *tcg_halt_cond;
3418 static int qemu_system_ready;
3419 /* cpu creation */
3420 static QemuCond qemu_cpu_cond;
3421 /* system init */
3422 static QemuCond qemu_system_cond;
3423 static QemuCond qemu_pause_cond;
3425 static void block_io_signals(void);
3426 static void unblock_io_signals(void);
3427 static int tcg_has_work(void);
3429 static int qemu_init_main_loop(void)
3431 int ret;
3433 ret = qemu_event_init();
3434 if (ret)
3435 return ret;
3437 qemu_cond_init(&qemu_pause_cond);
3438 qemu_mutex_init(&qemu_fair_mutex);
3439 qemu_mutex_init(&qemu_global_mutex);
3440 qemu_mutex_lock(&qemu_global_mutex);
3442 unblock_io_signals();
3443 qemu_thread_self(&io_thread);
3445 return 0;
3448 static void qemu_wait_io_event(CPUState *env)
3450 while (!tcg_has_work())
3451 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3453 qemu_mutex_unlock(&qemu_global_mutex);
3456 * Users of qemu_global_mutex can be starved, having no chance
3457 * to acquire it since this path will get to it first.
3458 * So use another lock to provide fairness.
3460 qemu_mutex_lock(&qemu_fair_mutex);
3461 qemu_mutex_unlock(&qemu_fair_mutex);
3463 qemu_mutex_lock(&qemu_global_mutex);
3464 if (env->stop) {
3465 env->stop = 0;
3466 env->stopped = 1;
3467 qemu_cond_signal(&qemu_pause_cond);
3471 static int qemu_cpu_exec(CPUState *env);
3473 static void *kvm_cpu_thread_fn(void *arg)
3475 CPUState *env = arg;
3477 block_io_signals();
3478 qemu_thread_self(env->thread);
3479 if (kvm_enabled())
3480 kvm_init_vcpu(env);
3482 /* signal CPU creation */
3483 qemu_mutex_lock(&qemu_global_mutex);
3484 env->created = 1;
3485 qemu_cond_signal(&qemu_cpu_cond);
3487 /* and wait for machine initialization */
3488 while (!qemu_system_ready)
3489 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3491 while (1) {
3492 if (cpu_can_run(env))
3493 qemu_cpu_exec(env);
3494 qemu_wait_io_event(env);
3497 return NULL;
3500 static void tcg_cpu_exec(void);
3502 static void *tcg_cpu_thread_fn(void *arg)
3504 CPUState *env = arg;
3506 block_io_signals();
3507 qemu_thread_self(env->thread);
3509 /* signal CPU creation */
3510 qemu_mutex_lock(&qemu_global_mutex);
3511 for (env = first_cpu; env != NULL; env = env->next_cpu)
3512 env->created = 1;
3513 qemu_cond_signal(&qemu_cpu_cond);
3515 /* and wait for machine initialization */
3516 while (!qemu_system_ready)
3517 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3519 while (1) {
3520 tcg_cpu_exec();
3521 qemu_wait_io_event(cur_cpu);
3524 return NULL;
3527 void qemu_cpu_kick(void *_env)
3529 CPUState *env = _env;
3530 qemu_cond_broadcast(env->halt_cond);
3531 if (kvm_enabled())
3532 qemu_thread_signal(env->thread, SIGUSR1);
3535 int qemu_cpu_self(void *_env)
3537 CPUState *env = _env;
3538 QemuThread this;
3540 qemu_thread_self(&this);
3542 return qemu_thread_equal(&this, env->thread);
3545 static void cpu_signal(int sig)
3547 if (cpu_single_env)
3548 cpu_exit(cpu_single_env);
3551 static void block_io_signals(void)
3553 sigset_t set;
3554 struct sigaction sigact;
3556 sigemptyset(&set);
3557 sigaddset(&set, SIGUSR2);
3558 sigaddset(&set, SIGIO);
3559 sigaddset(&set, SIGALRM);
3560 pthread_sigmask(SIG_BLOCK, &set, NULL);
3562 sigemptyset(&set);
3563 sigaddset(&set, SIGUSR1);
3564 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3566 memset(&sigact, 0, sizeof(sigact));
3567 sigact.sa_handler = cpu_signal;
3568 sigaction(SIGUSR1, &sigact, NULL);
3571 static void unblock_io_signals(void)
3573 sigset_t set;
3575 sigemptyset(&set);
3576 sigaddset(&set, SIGUSR2);
3577 sigaddset(&set, SIGIO);
3578 sigaddset(&set, SIGALRM);
3579 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3581 sigemptyset(&set);
3582 sigaddset(&set, SIGUSR1);
3583 pthread_sigmask(SIG_BLOCK, &set, NULL);
3586 static void qemu_signal_lock(unsigned int msecs)
3588 qemu_mutex_lock(&qemu_fair_mutex);
3590 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3591 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3592 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3593 break;
3595 qemu_mutex_unlock(&qemu_fair_mutex);
3598 void qemu_mutex_lock_iothread(void)
3600 if (kvm_enabled()) {
3601 qemu_mutex_lock(&qemu_fair_mutex);
3602 qemu_mutex_lock(&qemu_global_mutex);
3603 qemu_mutex_unlock(&qemu_fair_mutex);
3604 } else
3605 qemu_signal_lock(100);
3608 void qemu_mutex_unlock_iothread(void)
3610 qemu_mutex_unlock(&qemu_global_mutex);
3613 static int all_vcpus_paused(void)
3615 CPUState *penv = first_cpu;
3617 while (penv) {
3618 if (!penv->stopped)
3619 return 0;
3620 penv = (CPUState *)penv->next_cpu;
3623 return 1;
3626 static void pause_all_vcpus(void)
3628 CPUState *penv = first_cpu;
3630 while (penv) {
3631 penv->stop = 1;
3632 qemu_thread_signal(penv->thread, SIGUSR1);
3633 qemu_cpu_kick(penv);
3634 penv = (CPUState *)penv->next_cpu;
3637 while (!all_vcpus_paused()) {
3638 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3639 penv = first_cpu;
3640 while (penv) {
3641 qemu_thread_signal(penv->thread, SIGUSR1);
3642 penv = (CPUState *)penv->next_cpu;
3647 static void resume_all_vcpus(void)
3649 CPUState *penv = first_cpu;
3651 while (penv) {
3652 penv->stop = 0;
3653 penv->stopped = 0;
3654 qemu_thread_signal(penv->thread, SIGUSR1);
3655 qemu_cpu_kick(penv);
3656 penv = (CPUState *)penv->next_cpu;
3660 static void tcg_init_vcpu(void *_env)
3662 CPUState *env = _env;
3663 /* share a single thread for all cpus with TCG */
3664 if (!tcg_cpu_thread) {
3665 env->thread = qemu_mallocz(sizeof(QemuThread));
3666 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3667 qemu_cond_init(env->halt_cond);
3668 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3669 while (env->created == 0)
3670 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3671 tcg_cpu_thread = env->thread;
3672 tcg_halt_cond = env->halt_cond;
3673 } else {
3674 env->thread = tcg_cpu_thread;
3675 env->halt_cond = tcg_halt_cond;
3679 static void kvm_start_vcpu(CPUState *env)
3681 env->thread = qemu_mallocz(sizeof(QemuThread));
3682 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3683 qemu_cond_init(env->halt_cond);
3684 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3685 while (env->created == 0)
3686 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3689 void qemu_init_vcpu(void *_env)
3691 CPUState *env = _env;
3693 if (kvm_enabled())
3694 kvm_start_vcpu(env);
3695 else
3696 tcg_init_vcpu(env);
3697 env->nr_cores = smp_cores;
3698 env->nr_threads = smp_threads;
3701 void qemu_notify_event(void)
3703 qemu_event_increment();
3706 void vm_stop(int reason)
3708 QemuThread me;
3709 qemu_thread_self(&me);
3711 if (!qemu_thread_equal(&me, &io_thread)) {
3712 qemu_system_vmstop_request(reason);
3714 * FIXME: should not return to device code in case
3715 * vm_stop() has been requested.
3717 if (cpu_single_env) {
3718 cpu_exit(cpu_single_env);
3719 cpu_single_env->stop = 1;
3721 return;
3723 do_vm_stop(reason);
3726 #endif
3729 #ifdef _WIN32
3730 static void host_main_loop_wait(int *timeout)
3732 int ret, ret2, i;
3733 PollingEntry *pe;
3736 /* XXX: need to suppress polling by better using win32 events */
3737 ret = 0;
3738 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3739 ret |= pe->func(pe->opaque);
3741 if (ret == 0) {
3742 int err;
3743 WaitObjects *w = &wait_objects;
3745 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3746 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3747 if (w->func[ret - WAIT_OBJECT_0])
3748 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3750 /* Check for additional signaled events */
3751 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3753 /* Check if event is signaled */
3754 ret2 = WaitForSingleObject(w->events[i], 0);
3755 if(ret2 == WAIT_OBJECT_0) {
3756 if (w->func[i])
3757 w->func[i](w->opaque[i]);
3758 } else if (ret2 == WAIT_TIMEOUT) {
3759 } else {
3760 err = GetLastError();
3761 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3764 } else if (ret == WAIT_TIMEOUT) {
3765 } else {
3766 err = GetLastError();
3767 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3771 *timeout = 0;
3773 #else
3774 static void host_main_loop_wait(int *timeout)
3777 #endif
3779 void main_loop_wait(int timeout)
3781 IOHandlerRecord *ioh;
3782 fd_set rfds, wfds, xfds;
3783 int ret, nfds;
3784 struct timeval tv;
3786 qemu_bh_update_timeout(&timeout);
3788 host_main_loop_wait(&timeout);
3790 /* poll any events */
3791 /* XXX: separate device handlers from system ones */
3792 nfds = -1;
3793 FD_ZERO(&rfds);
3794 FD_ZERO(&wfds);
3795 FD_ZERO(&xfds);
3796 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3797 if (ioh->deleted)
3798 continue;
3799 if (ioh->fd_read &&
3800 (!ioh->fd_read_poll ||
3801 ioh->fd_read_poll(ioh->opaque) != 0)) {
3802 FD_SET(ioh->fd, &rfds);
3803 if (ioh->fd > nfds)
3804 nfds = ioh->fd;
3806 if (ioh->fd_write) {
3807 FD_SET(ioh->fd, &wfds);
3808 if (ioh->fd > nfds)
3809 nfds = ioh->fd;
3813 tv.tv_sec = timeout / 1000;
3814 tv.tv_usec = (timeout % 1000) * 1000;
3816 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3818 qemu_mutex_unlock_iothread();
3819 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3820 qemu_mutex_lock_iothread();
3821 if (ret > 0) {
3822 IOHandlerRecord **pioh;
3824 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3825 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3826 ioh->fd_read(ioh->opaque);
3828 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3829 ioh->fd_write(ioh->opaque);
3833 /* remove deleted IO handlers */
3834 pioh = &first_io_handler;
3835 while (*pioh) {
3836 ioh = *pioh;
3837 if (ioh->deleted) {
3838 *pioh = ioh->next;
3839 qemu_free(ioh);
3840 } else
3841 pioh = &ioh->next;
3845 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3847 /* rearm timer, if not periodic */
3848 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3849 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3850 qemu_rearm_alarm_timer(alarm_timer);
3853 /* vm time timers */
3854 if (vm_running) {
3855 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3856 qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3857 qemu_get_clock(vm_clock));
3860 /* real time timers */
3861 qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3862 qemu_get_clock(rt_clock));
3864 qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3865 qemu_get_clock(host_clock));
3867 /* Check bottom-halves last in case any of the earlier events triggered
3868 them. */
3869 qemu_bh_poll();
3873 static int qemu_cpu_exec(CPUState *env)
3875 int ret;
3876 #ifdef CONFIG_PROFILER
3877 int64_t ti;
3878 #endif
3880 #ifdef CONFIG_PROFILER
3881 ti = profile_getclock();
3882 #endif
3883 if (use_icount) {
3884 int64_t count;
3885 int decr;
3886 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3887 env->icount_decr.u16.low = 0;
3888 env->icount_extra = 0;
3889 count = qemu_next_deadline();
3890 count = (count + (1 << icount_time_shift) - 1)
3891 >> icount_time_shift;
3892 qemu_icount += count;
3893 decr = (count > 0xffff) ? 0xffff : count;
3894 count -= decr;
3895 env->icount_decr.u16.low = decr;
3896 env->icount_extra = count;
3898 ret = cpu_exec(env);
3899 #ifdef CONFIG_PROFILER
3900 qemu_time += profile_getclock() - ti;
3901 #endif
3902 if (use_icount) {
3903 /* Fold pending instructions back into the
3904 instruction counter, and clear the interrupt flag. */
3905 qemu_icount -= (env->icount_decr.u16.low
3906 + env->icount_extra);
3907 env->icount_decr.u32 = 0;
3908 env->icount_extra = 0;
3910 return ret;
3913 static void tcg_cpu_exec(void)
3915 int ret = 0;
3917 if (next_cpu == NULL)
3918 next_cpu = first_cpu;
3919 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3920 CPUState *env = cur_cpu = next_cpu;
3922 if (!vm_running)
3923 break;
3924 if (timer_alarm_pending) {
3925 timer_alarm_pending = 0;
3926 break;
3928 if (cpu_can_run(env))
3929 ret = qemu_cpu_exec(env);
3930 if (ret == EXCP_DEBUG) {
3931 gdb_set_stop_cpu(env);
3932 debug_requested = 1;
3933 break;
3938 static int cpu_has_work(CPUState *env)
3940 if (env->stop)
3941 return 1;
3942 if (env->stopped)
3943 return 0;
3944 if (!env->halted)
3945 return 1;
3946 if (qemu_cpu_has_work(env))
3947 return 1;
3948 return 0;
3951 static int tcg_has_work(void)
3953 CPUState *env;
3955 for (env = first_cpu; env != NULL; env = env->next_cpu)
3956 if (cpu_has_work(env))
3957 return 1;
3958 return 0;
3961 static int qemu_calculate_timeout(void)
3963 #ifndef CONFIG_IOTHREAD
3964 int timeout;
3966 if (!vm_running)
3967 timeout = 5000;
3968 else if (tcg_has_work())
3969 timeout = 0;
3970 else if (!use_icount)
3971 timeout = 5000;
3972 else {
3973 /* XXX: use timeout computed from timers */
3974 int64_t add;
3975 int64_t delta;
3976 /* Advance virtual time to the next event. */
3977 if (use_icount == 1) {
3978 /* When not using an adaptive execution frequency
3979 we tend to get badly out of sync with real time,
3980 so just delay for a reasonable amount of time. */
3981 delta = 0;
3982 } else {
3983 delta = cpu_get_icount() - cpu_get_clock();
3985 if (delta > 0) {
3986 /* If virtual time is ahead of real time then just
3987 wait for IO. */
3988 timeout = (delta / 1000000) + 1;
3989 } else {
3990 /* Wait for either IO to occur or the next
3991 timer event. */
3992 add = qemu_next_deadline();
3993 /* We advance the timer before checking for IO.
3994 Limit the amount we advance so that early IO
3995 activity won't get the guest too far ahead. */
3996 if (add > 10000000)
3997 add = 10000000;
3998 delta += add;
3999 add = (add + (1 << icount_time_shift) - 1)
4000 >> icount_time_shift;
4001 qemu_icount += add;
4002 timeout = delta / 1000000;
4003 if (timeout < 0)
4004 timeout = 0;
4008 return timeout;
4009 #else /* CONFIG_IOTHREAD */
4010 return 1000;
4011 #endif
4014 static int vm_can_run(void)
4016 if (powerdown_requested)
4017 return 0;
4018 if (reset_requested)
4019 return 0;
4020 if (shutdown_requested)
4021 return 0;
4022 if (debug_requested)
4023 return 0;
4024 return 1;
4027 qemu_irq qemu_system_powerdown;
4029 static void main_loop(void)
4031 int r;
4033 #ifdef CONFIG_IOTHREAD
4034 qemu_system_ready = 1;
4035 qemu_cond_broadcast(&qemu_system_cond);
4036 #endif
4038 for (;;) {
4039 do {
4040 #ifdef CONFIG_PROFILER
4041 int64_t ti;
4042 #endif
4043 #ifndef CONFIG_IOTHREAD
4044 tcg_cpu_exec();
4045 #endif
4046 #ifdef CONFIG_PROFILER
4047 ti = profile_getclock();
4048 #endif
4049 main_loop_wait(qemu_calculate_timeout());
4050 #ifdef CONFIG_PROFILER
4051 dev_time += profile_getclock() - ti;
4052 #endif
4053 } while (vm_can_run());
4055 if (qemu_debug_requested())
4056 vm_stop(EXCP_DEBUG);
4057 if (qemu_shutdown_requested()) {
4058 if (no_shutdown) {
4059 vm_stop(0);
4060 no_shutdown = 0;
4061 } else
4062 break;
4064 if (qemu_reset_requested()) {
4065 pause_all_vcpus();
4066 qemu_system_reset();
4067 resume_all_vcpus();
4069 if (qemu_powerdown_requested()) {
4070 qemu_irq_raise(qemu_system_powerdown);
4072 if ((r = qemu_vmstop_requested()))
4073 vm_stop(r);
4075 pause_all_vcpus();
4078 static void version(void)
4080 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4083 static void help(int exitcode)
4085 version();
4086 printf("usage: %s [options] [disk_image]\n"
4087 "\n"
4088 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4089 "\n"
4090 #define DEF(option, opt_arg, opt_enum, opt_help) \
4091 opt_help
4092 #define DEFHEADING(text) stringify(text) "\n"
4093 #include "qemu-options.h"
4094 #undef DEF
4095 #undef DEFHEADING
4096 #undef GEN_DOCS
4097 "\n"
4098 "During emulation, the following keys are useful:\n"
4099 "ctrl-alt-f toggle full screen\n"
4100 "ctrl-alt-n switch to virtual console 'n'\n"
4101 "ctrl-alt toggle mouse and keyboard grab\n"
4102 "\n"
4103 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4105 "qemu",
4106 DEFAULT_RAM_SIZE,
4107 #ifndef _WIN32
4108 DEFAULT_NETWORK_SCRIPT,
4109 DEFAULT_NETWORK_DOWN_SCRIPT,
4110 #endif
4111 DEFAULT_GDBSTUB_PORT,
4112 "/tmp/qemu.log");
4113 exit(exitcode);
4116 #define HAS_ARG 0x0001
4118 enum {
4119 #define DEF(option, opt_arg, opt_enum, opt_help) \
4120 opt_enum,
4121 #define DEFHEADING(text)
4122 #include "qemu-options.h"
4123 #undef DEF
4124 #undef DEFHEADING
4125 #undef GEN_DOCS
4128 typedef struct QEMUOption {
4129 const char *name;
4130 int flags;
4131 int index;
4132 } QEMUOption;
4134 static const QEMUOption qemu_options[] = {
4135 { "h", 0, QEMU_OPTION_h },
4136 #define DEF(option, opt_arg, opt_enum, opt_help) \
4137 { option, opt_arg, opt_enum },
4138 #define DEFHEADING(text)
4139 #include "qemu-options.h"
4140 #undef DEF
4141 #undef DEFHEADING
4142 #undef GEN_DOCS
4143 { NULL },
4146 #ifdef HAS_AUDIO
4147 struct soundhw soundhw[] = {
4148 #ifdef HAS_AUDIO_CHOICE
4149 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4151 "pcspk",
4152 "PC speaker",
4155 { .init_isa = pcspk_audio_init }
4157 #endif
4159 #ifdef CONFIG_SB16
4161 "sb16",
4162 "Creative Sound Blaster 16",
4165 { .init_isa = SB16_init }
4167 #endif
4169 #ifdef CONFIG_CS4231A
4171 "cs4231a",
4172 "CS4231A",
4175 { .init_isa = cs4231a_init }
4177 #endif
4179 #ifdef CONFIG_ADLIB
4181 "adlib",
4182 #ifdef HAS_YMF262
4183 "Yamaha YMF262 (OPL3)",
4184 #else
4185 "Yamaha YM3812 (OPL2)",
4186 #endif
4189 { .init_isa = Adlib_init }
4191 #endif
4193 #ifdef CONFIG_GUS
4195 "gus",
4196 "Gravis Ultrasound GF1",
4199 { .init_isa = GUS_init }
4201 #endif
4203 #ifdef CONFIG_AC97
4205 "ac97",
4206 "Intel 82801AA AC97 Audio",
4209 { .init_pci = ac97_init }
4211 #endif
4213 #ifdef CONFIG_ES1370
4215 "es1370",
4216 "ENSONIQ AudioPCI ES1370",
4219 { .init_pci = es1370_init }
4221 #endif
4223 #endif /* HAS_AUDIO_CHOICE */
4225 { NULL, NULL, 0, 0, { NULL } }
4228 static void select_soundhw (const char *optarg)
4230 struct soundhw *c;
4232 if (*optarg == '?') {
4233 show_valid_cards:
4235 printf ("Valid sound card names (comma separated):\n");
4236 for (c = soundhw; c->name; ++c) {
4237 printf ("%-11s %s\n", c->name, c->descr);
4239 printf ("\n-soundhw all will enable all of the above\n");
4240 exit (*optarg != '?');
4242 else {
4243 size_t l;
4244 const char *p;
4245 char *e;
4246 int bad_card = 0;
4248 if (!strcmp (optarg, "all")) {
4249 for (c = soundhw; c->name; ++c) {
4250 c->enabled = 1;
4252 return;
4255 p = optarg;
4256 while (*p) {
4257 e = strchr (p, ',');
4258 l = !e ? strlen (p) : (size_t) (e - p);
4260 for (c = soundhw; c->name; ++c) {
4261 if (!strncmp (c->name, p, l) && !c->name[l]) {
4262 c->enabled = 1;
4263 break;
4267 if (!c->name) {
4268 if (l > 80) {
4269 fprintf (stderr,
4270 "Unknown sound card name (too big to show)\n");
4272 else {
4273 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4274 (int) l, p);
4276 bad_card = 1;
4278 p += l + (e != NULL);
4281 if (bad_card)
4282 goto show_valid_cards;
4285 #endif
4287 static void select_vgahw (const char *p)
4289 const char *opts;
4291 vga_interface_type = VGA_NONE;
4292 if (strstart(p, "std", &opts)) {
4293 vga_interface_type = VGA_STD;
4294 } else if (strstart(p, "cirrus", &opts)) {
4295 vga_interface_type = VGA_CIRRUS;
4296 } else if (strstart(p, "vmware", &opts)) {
4297 vga_interface_type = VGA_VMWARE;
4298 } else if (strstart(p, "xenfb", &opts)) {
4299 vga_interface_type = VGA_XENFB;
4300 } else if (!strstart(p, "none", &opts)) {
4301 invalid_vga:
4302 fprintf(stderr, "Unknown vga type: %s\n", p);
4303 exit(1);
4305 while (*opts) {
4306 const char *nextopt;
4308 if (strstart(opts, ",retrace=", &nextopt)) {
4309 opts = nextopt;
4310 if (strstart(opts, "dumb", &nextopt))
4311 vga_retrace_method = VGA_RETRACE_DUMB;
4312 else if (strstart(opts, "precise", &nextopt))
4313 vga_retrace_method = VGA_RETRACE_PRECISE;
4314 else goto invalid_vga;
4315 } else goto invalid_vga;
4316 opts = nextopt;
4320 #ifdef TARGET_I386
4321 static int balloon_parse(const char *arg)
4323 QemuOpts *opts;
4325 if (strcmp(arg, "none") == 0) {
4326 return 0;
4329 if (!strncmp(arg, "virtio", 6)) {
4330 if (arg[6] == ',') {
4331 /* have params -> parse them */
4332 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4333 if (!opts)
4334 return -1;
4335 } else {
4336 /* create empty opts */
4337 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4339 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4340 return 0;
4343 return -1;
4345 #endif
4347 #ifdef _WIN32
4348 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4350 exit(STATUS_CONTROL_C_EXIT);
4351 return TRUE;
4353 #endif
4355 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4357 int ret;
4359 if(strlen(str) != 36)
4360 return -1;
4362 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4363 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4364 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4366 if(ret != 16)
4367 return -1;
4369 #ifdef TARGET_I386
4370 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4371 #endif
4373 return 0;
4376 #ifndef _WIN32
4378 static void termsig_handler(int signal)
4380 qemu_system_shutdown_request();
4383 static void sigchld_handler(int signal)
4385 waitpid(-1, NULL, WNOHANG);
4388 static void sighandler_setup(void)
4390 struct sigaction act;
4392 memset(&act, 0, sizeof(act));
4393 act.sa_handler = termsig_handler;
4394 sigaction(SIGINT, &act, NULL);
4395 sigaction(SIGHUP, &act, NULL);
4396 sigaction(SIGTERM, &act, NULL);
4398 act.sa_handler = sigchld_handler;
4399 act.sa_flags = SA_NOCLDSTOP;
4400 sigaction(SIGCHLD, &act, NULL);
4403 #endif
4405 #ifdef _WIN32
4406 /* Look for support files in the same directory as the executable. */
4407 static char *find_datadir(const char *argv0)
4409 char *p;
4410 char buf[MAX_PATH];
4411 DWORD len;
4413 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4414 if (len == 0) {
4415 return NULL;
4418 buf[len] = 0;
4419 p = buf + len - 1;
4420 while (p != buf && *p != '\\')
4421 p--;
4422 *p = 0;
4423 if (access(buf, R_OK) == 0) {
4424 return qemu_strdup(buf);
4426 return NULL;
4428 #else /* !_WIN32 */
4430 /* Find a likely location for support files using the location of the binary.
4431 For installed binaries this will be "$bindir/../share/qemu". When
4432 running from the build tree this will be "$bindir/../pc-bios". */
4433 #define SHARE_SUFFIX "/share/qemu"
4434 #define BUILD_SUFFIX "/pc-bios"
4435 static char *find_datadir(const char *argv0)
4437 char *dir;
4438 char *p = NULL;
4439 char *res;
4440 char buf[PATH_MAX];
4441 size_t max_len;
4443 #if defined(__linux__)
4445 int len;
4446 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4447 if (len > 0) {
4448 buf[len] = 0;
4449 p = buf;
4452 #elif defined(__FreeBSD__)
4454 int len;
4455 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4456 if (len > 0) {
4457 buf[len] = 0;
4458 p = buf;
4461 #endif
4462 /* If we don't have any way of figuring out the actual executable
4463 location then try argv[0]. */
4464 if (!p) {
4465 p = realpath(argv0, buf);
4466 if (!p) {
4467 return NULL;
4470 dir = dirname(p);
4471 dir = dirname(dir);
4473 max_len = strlen(dir) +
4474 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4475 res = qemu_mallocz(max_len);
4476 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4477 if (access(res, R_OK)) {
4478 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4479 if (access(res, R_OK)) {
4480 qemu_free(res);
4481 res = NULL;
4485 return res;
4487 #undef SHARE_SUFFIX
4488 #undef BUILD_SUFFIX
4489 #endif
4491 char *qemu_find_file(int type, const char *name)
4493 int len;
4494 const char *subdir;
4495 char *buf;
4497 /* If name contains path separators then try it as a straight path. */
4498 if ((strchr(name, '/') || strchr(name, '\\'))
4499 && access(name, R_OK) == 0) {
4500 return qemu_strdup(name);
4502 switch (type) {
4503 case QEMU_FILE_TYPE_BIOS:
4504 subdir = "";
4505 break;
4506 case QEMU_FILE_TYPE_KEYMAP:
4507 subdir = "keymaps/";
4508 break;
4509 default:
4510 abort();
4512 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4513 buf = qemu_mallocz(len);
4514 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4515 if (access(buf, R_OK)) {
4516 qemu_free(buf);
4517 return NULL;
4519 return buf;
4522 static int device_init_func(QemuOpts *opts, void *opaque)
4524 DeviceState *dev;
4526 dev = qdev_device_add(opts);
4527 if (!dev)
4528 return -1;
4529 return 0;
4532 struct device_config {
4533 enum {
4534 DEV_USB, /* -usbdevice */
4535 DEV_BT, /* -bt */
4536 } type;
4537 const char *cmdline;
4538 QTAILQ_ENTRY(device_config) next;
4540 QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4542 static void add_device_config(int type, const char *cmdline)
4544 struct device_config *conf;
4546 conf = qemu_mallocz(sizeof(*conf));
4547 conf->type = type;
4548 conf->cmdline = cmdline;
4549 QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4552 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4554 struct device_config *conf;
4555 int rc;
4557 QTAILQ_FOREACH(conf, &device_configs, next) {
4558 if (conf->type != type)
4559 continue;
4560 rc = func(conf->cmdline);
4561 if (0 != rc)
4562 return rc;
4564 return 0;
4567 int main(int argc, char **argv, char **envp)
4569 const char *gdbstub_dev = NULL;
4570 uint32_t boot_devices_bitmap = 0;
4571 int i;
4572 int snapshot, linux_boot, net_boot;
4573 const char *initrd_filename;
4574 const char *kernel_filename, *kernel_cmdline;
4575 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4576 DisplayState *ds;
4577 DisplayChangeListener *dcl;
4578 int cyls, heads, secs, translation;
4579 QemuOpts *hda_opts = NULL, *opts;
4580 int optind;
4581 const char *r, *optarg;
4582 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4583 const char *monitor_devices[MAX_MONITOR_DEVICES];
4584 int monitor_device_index;
4585 const char *serial_devices[MAX_SERIAL_PORTS];
4586 int serial_device_index;
4587 const char *parallel_devices[MAX_PARALLEL_PORTS];
4588 int parallel_device_index;
4589 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4590 int virtio_console_index;
4591 const char *loadvm = NULL;
4592 QEMUMachine *machine;
4593 const char *cpu_model;
4594 #ifndef _WIN32
4595 int fds[2];
4596 #endif
4597 int tb_size;
4598 const char *pid_file = NULL;
4599 const char *incoming = NULL;
4600 #ifndef _WIN32
4601 int fd = 0;
4602 struct passwd *pwd = NULL;
4603 const char *chroot_dir = NULL;
4604 const char *run_as = NULL;
4605 #endif
4606 CPUState *env;
4607 int show_vnc_port = 0;
4609 init_clocks();
4611 qemu_errors_to_file(stderr);
4612 qemu_cache_utils_init(envp);
4614 QLIST_INIT (&vm_change_state_head);
4615 #ifndef _WIN32
4617 struct sigaction act;
4618 sigfillset(&act.sa_mask);
4619 act.sa_flags = 0;
4620 act.sa_handler = SIG_IGN;
4621 sigaction(SIGPIPE, &act, NULL);
4623 #else
4624 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4625 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4626 QEMU to run on a single CPU */
4628 HANDLE h;
4629 DWORD mask, smask;
4630 int i;
4631 h = GetCurrentProcess();
4632 if (GetProcessAffinityMask(h, &mask, &smask)) {
4633 for(i = 0; i < 32; i++) {
4634 if (mask & (1 << i))
4635 break;
4637 if (i != 32) {
4638 mask = 1 << i;
4639 SetProcessAffinityMask(h, mask);
4643 #endif
4645 module_call_init(MODULE_INIT_MACHINE);
4646 machine = find_default_machine();
4647 cpu_model = NULL;
4648 initrd_filename = NULL;
4649 ram_size = 0;
4650 snapshot = 0;
4651 kernel_filename = NULL;
4652 kernel_cmdline = "";
4653 cyls = heads = secs = 0;
4654 translation = BIOS_ATA_TRANSLATION_AUTO;
4656 serial_devices[0] = "vc:80Cx24C";
4657 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4658 serial_devices[i] = NULL;
4659 serial_device_index = 0;
4661 parallel_devices[0] = "vc:80Cx24C";
4662 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4663 parallel_devices[i] = NULL;
4664 parallel_device_index = 0;
4666 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4667 virtio_consoles[i] = NULL;
4668 virtio_console_index = 0;
4670 monitor_devices[0] = "vc:80Cx24C";
4671 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4672 monitor_devices[i] = NULL;
4674 monitor_device_index = 0;
4676 for (i = 0; i < MAX_NODES; i++) {
4677 node_mem[i] = 0;
4678 node_cpumask[i] = 0;
4681 nb_numa_nodes = 0;
4682 nb_nics = 0;
4684 tb_size = 0;
4685 autostart= 1;
4687 optind = 1;
4688 for(;;) {
4689 if (optind >= argc)
4690 break;
4691 r = argv[optind];
4692 if (r[0] != '-') {
4693 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4694 } else {
4695 const QEMUOption *popt;
4697 optind++;
4698 /* Treat --foo the same as -foo. */
4699 if (r[1] == '-')
4700 r++;
4701 popt = qemu_options;
4702 for(;;) {
4703 if (!popt->name) {
4704 fprintf(stderr, "%s: invalid option -- '%s'\n",
4705 argv[0], r);
4706 exit(1);
4708 if (!strcmp(popt->name, r + 1))
4709 break;
4710 popt++;
4712 if (popt->flags & HAS_ARG) {
4713 if (optind >= argc) {
4714 fprintf(stderr, "%s: option '%s' requires an argument\n",
4715 argv[0], r);
4716 exit(1);
4718 optarg = argv[optind++];
4719 } else {
4720 optarg = NULL;
4723 switch(popt->index) {
4724 case QEMU_OPTION_M:
4725 machine = find_machine(optarg);
4726 if (!machine) {
4727 QEMUMachine *m;
4728 printf("Supported machines are:\n");
4729 for(m = first_machine; m != NULL; m = m->next) {
4730 if (m->alias)
4731 printf("%-10s %s (alias of %s)\n",
4732 m->alias, m->desc, m->name);
4733 printf("%-10s %s%s\n",
4734 m->name, m->desc,
4735 m->is_default ? " (default)" : "");
4737 exit(*optarg != '?');
4739 break;
4740 case QEMU_OPTION_cpu:
4741 /* hw initialization will check this */
4742 if (*optarg == '?') {
4743 /* XXX: implement xxx_cpu_list for targets that still miss it */
4744 #if defined(cpu_list)
4745 cpu_list(stdout, &fprintf);
4746 #endif
4747 exit(0);
4748 } else {
4749 cpu_model = optarg;
4751 break;
4752 case QEMU_OPTION_initrd:
4753 initrd_filename = optarg;
4754 break;
4755 case QEMU_OPTION_hda:
4756 if (cyls == 0)
4757 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4758 else
4759 hda_opts = drive_add(optarg, HD_ALIAS
4760 ",cyls=%d,heads=%d,secs=%d%s",
4761 0, cyls, heads, secs,
4762 translation == BIOS_ATA_TRANSLATION_LBA ?
4763 ",trans=lba" :
4764 translation == BIOS_ATA_TRANSLATION_NONE ?
4765 ",trans=none" : "");
4766 break;
4767 case QEMU_OPTION_hdb:
4768 case QEMU_OPTION_hdc:
4769 case QEMU_OPTION_hdd:
4770 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4771 break;
4772 case QEMU_OPTION_drive:
4773 drive_add(NULL, "%s", optarg);
4774 break;
4775 case QEMU_OPTION_set:
4776 if (qemu_set_option(optarg) != 0)
4777 exit(1);
4778 break;
4779 case QEMU_OPTION_mtdblock:
4780 drive_add(optarg, MTD_ALIAS);
4781 break;
4782 case QEMU_OPTION_sd:
4783 drive_add(optarg, SD_ALIAS);
4784 break;
4785 case QEMU_OPTION_pflash:
4786 drive_add(optarg, PFLASH_ALIAS);
4787 break;
4788 case QEMU_OPTION_snapshot:
4789 snapshot = 1;
4790 break;
4791 case QEMU_OPTION_hdachs:
4793 const char *p;
4794 p = optarg;
4795 cyls = strtol(p, (char **)&p, 0);
4796 if (cyls < 1 || cyls > 16383)
4797 goto chs_fail;
4798 if (*p != ',')
4799 goto chs_fail;
4800 p++;
4801 heads = strtol(p, (char **)&p, 0);
4802 if (heads < 1 || heads > 16)
4803 goto chs_fail;
4804 if (*p != ',')
4805 goto chs_fail;
4806 p++;
4807 secs = strtol(p, (char **)&p, 0);
4808 if (secs < 1 || secs > 63)
4809 goto chs_fail;
4810 if (*p == ',') {
4811 p++;
4812 if (!strcmp(p, "none"))
4813 translation = BIOS_ATA_TRANSLATION_NONE;
4814 else if (!strcmp(p, "lba"))
4815 translation = BIOS_ATA_TRANSLATION_LBA;
4816 else if (!strcmp(p, "auto"))
4817 translation = BIOS_ATA_TRANSLATION_AUTO;
4818 else
4819 goto chs_fail;
4820 } else if (*p != '\0') {
4821 chs_fail:
4822 fprintf(stderr, "qemu: invalid physical CHS format\n");
4823 exit(1);
4825 if (hda_opts != NULL) {
4826 char num[16];
4827 snprintf(num, sizeof(num), "%d", cyls);
4828 qemu_opt_set(hda_opts, "cyls", num);
4829 snprintf(num, sizeof(num), "%d", heads);
4830 qemu_opt_set(hda_opts, "heads", num);
4831 snprintf(num, sizeof(num), "%d", secs);
4832 qemu_opt_set(hda_opts, "secs", num);
4833 if (translation == BIOS_ATA_TRANSLATION_LBA)
4834 qemu_opt_set(hda_opts, "trans", "lba");
4835 if (translation == BIOS_ATA_TRANSLATION_NONE)
4836 qemu_opt_set(hda_opts, "trans", "none");
4839 break;
4840 case QEMU_OPTION_numa:
4841 if (nb_numa_nodes >= MAX_NODES) {
4842 fprintf(stderr, "qemu: too many NUMA nodes\n");
4843 exit(1);
4845 numa_add(optarg);
4846 break;
4847 case QEMU_OPTION_nographic:
4848 display_type = DT_NOGRAPHIC;
4849 break;
4850 #ifdef CONFIG_CURSES
4851 case QEMU_OPTION_curses:
4852 display_type = DT_CURSES;
4853 break;
4854 #endif
4855 case QEMU_OPTION_portrait:
4856 graphic_rotate = 1;
4857 break;
4858 case QEMU_OPTION_kernel:
4859 kernel_filename = optarg;
4860 break;
4861 case QEMU_OPTION_append:
4862 kernel_cmdline = optarg;
4863 break;
4864 case QEMU_OPTION_cdrom:
4865 drive_add(optarg, CDROM_ALIAS);
4866 break;
4867 case QEMU_OPTION_boot:
4869 static const char * const params[] = {
4870 "order", "once", "menu", NULL
4872 char buf[sizeof(boot_devices)];
4873 char *standard_boot_devices;
4874 int legacy = 0;
4876 if (!strchr(optarg, '=')) {
4877 legacy = 1;
4878 pstrcpy(buf, sizeof(buf), optarg);
4879 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
4880 fprintf(stderr,
4881 "qemu: unknown boot parameter '%s' in '%s'\n",
4882 buf, optarg);
4883 exit(1);
4886 if (legacy ||
4887 get_param_value(buf, sizeof(buf), "order", optarg)) {
4888 boot_devices_bitmap = parse_bootdevices(buf);
4889 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4891 if (!legacy) {
4892 if (get_param_value(buf, sizeof(buf),
4893 "once", optarg)) {
4894 boot_devices_bitmap |= parse_bootdevices(buf);
4895 standard_boot_devices = qemu_strdup(boot_devices);
4896 pstrcpy(boot_devices, sizeof(boot_devices), buf);
4897 qemu_register_reset(restore_boot_devices,
4898 standard_boot_devices);
4900 if (get_param_value(buf, sizeof(buf),
4901 "menu", optarg)) {
4902 if (!strcmp(buf, "on")) {
4903 boot_menu = 1;
4904 } else if (!strcmp(buf, "off")) {
4905 boot_menu = 0;
4906 } else {
4907 fprintf(stderr,
4908 "qemu: invalid option value '%s'\n",
4909 buf);
4910 exit(1);
4915 break;
4916 case QEMU_OPTION_fda:
4917 case QEMU_OPTION_fdb:
4918 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4919 break;
4920 #ifdef TARGET_I386
4921 case QEMU_OPTION_no_fd_bootchk:
4922 fd_bootchk = 0;
4923 break;
4924 #endif
4925 case QEMU_OPTION_netdev:
4926 if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
4927 exit(1);
4929 break;
4930 case QEMU_OPTION_net:
4931 if (net_client_parse(&qemu_net_opts, optarg) == -1) {
4932 exit(1);
4934 break;
4935 #ifdef CONFIG_SLIRP
4936 case QEMU_OPTION_tftp:
4937 legacy_tftp_prefix = optarg;
4938 break;
4939 case QEMU_OPTION_bootp:
4940 legacy_bootp_filename = optarg;
4941 break;
4942 #ifndef _WIN32
4943 case QEMU_OPTION_smb:
4944 if (net_slirp_smb(optarg) < 0)
4945 exit(1);
4946 break;
4947 #endif
4948 case QEMU_OPTION_redir:
4949 if (net_slirp_redir(optarg) < 0)
4950 exit(1);
4951 break;
4952 #endif
4953 case QEMU_OPTION_bt:
4954 add_device_config(DEV_BT, optarg);
4955 break;
4956 #ifdef HAS_AUDIO
4957 case QEMU_OPTION_audio_help:
4958 AUD_help ();
4959 exit (0);
4960 break;
4961 case QEMU_OPTION_soundhw:
4962 select_soundhw (optarg);
4963 break;
4964 #endif
4965 case QEMU_OPTION_h:
4966 help(0);
4967 break;
4968 case QEMU_OPTION_version:
4969 version();
4970 exit(0);
4971 break;
4972 case QEMU_OPTION_m: {
4973 uint64_t value;
4974 char *ptr;
4976 value = strtoul(optarg, &ptr, 10);
4977 switch (*ptr) {
4978 case 0: case 'M': case 'm':
4979 value <<= 20;
4980 break;
4981 case 'G': case 'g':
4982 value <<= 30;
4983 break;
4984 default:
4985 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4986 exit(1);
4989 /* On 32-bit hosts, QEMU is limited by virtual address space */
4990 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
4991 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4992 exit(1);
4994 if (value != (uint64_t)(ram_addr_t)value) {
4995 fprintf(stderr, "qemu: ram size too large\n");
4996 exit(1);
4998 ram_size = value;
4999 break;
5001 case QEMU_OPTION_d:
5003 int mask;
5004 const CPULogItem *item;
5006 mask = cpu_str_to_log_mask(optarg);
5007 if (!mask) {
5008 printf("Log items (comma separated):\n");
5009 for(item = cpu_log_items; item->mask != 0; item++) {
5010 printf("%-10s %s\n", item->name, item->help);
5012 exit(1);
5014 cpu_set_log(mask);
5016 break;
5017 case QEMU_OPTION_s:
5018 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5019 break;
5020 case QEMU_OPTION_gdb:
5021 gdbstub_dev = optarg;
5022 break;
5023 case QEMU_OPTION_L:
5024 data_dir = optarg;
5025 break;
5026 case QEMU_OPTION_bios:
5027 bios_name = optarg;
5028 break;
5029 case QEMU_OPTION_singlestep:
5030 singlestep = 1;
5031 break;
5032 case QEMU_OPTION_S:
5033 autostart = 0;
5034 break;
5035 #ifndef _WIN32
5036 case QEMU_OPTION_k:
5037 keyboard_layout = optarg;
5038 break;
5039 #endif
5040 case QEMU_OPTION_localtime:
5041 rtc_utc = 0;
5042 break;
5043 case QEMU_OPTION_vga:
5044 select_vgahw (optarg);
5045 break;
5046 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5047 case QEMU_OPTION_g:
5049 const char *p;
5050 int w, h, depth;
5051 p = optarg;
5052 w = strtol(p, (char **)&p, 10);
5053 if (w <= 0) {
5054 graphic_error:
5055 fprintf(stderr, "qemu: invalid resolution or depth\n");
5056 exit(1);
5058 if (*p != 'x')
5059 goto graphic_error;
5060 p++;
5061 h = strtol(p, (char **)&p, 10);
5062 if (h <= 0)
5063 goto graphic_error;
5064 if (*p == 'x') {
5065 p++;
5066 depth = strtol(p, (char **)&p, 10);
5067 if (depth != 8 && depth != 15 && depth != 16 &&
5068 depth != 24 && depth != 32)
5069 goto graphic_error;
5070 } else if (*p == '\0') {
5071 depth = graphic_depth;
5072 } else {
5073 goto graphic_error;
5076 graphic_width = w;
5077 graphic_height = h;
5078 graphic_depth = depth;
5080 break;
5081 #endif
5082 case QEMU_OPTION_echr:
5084 char *r;
5085 term_escape_char = strtol(optarg, &r, 0);
5086 if (r == optarg)
5087 printf("Bad argument to echr\n");
5088 break;
5090 case QEMU_OPTION_monitor:
5091 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5092 fprintf(stderr, "qemu: too many monitor devices\n");
5093 exit(1);
5095 monitor_devices[monitor_device_index] = optarg;
5096 monitor_device_index++;
5097 break;
5098 case QEMU_OPTION_chardev:
5099 opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5100 if (!opts) {
5101 fprintf(stderr, "parse error: %s\n", optarg);
5102 exit(1);
5104 if (qemu_chr_open_opts(opts, NULL) == NULL) {
5105 exit(1);
5107 break;
5108 case QEMU_OPTION_serial:
5109 if (serial_device_index >= MAX_SERIAL_PORTS) {
5110 fprintf(stderr, "qemu: too many serial ports\n");
5111 exit(1);
5113 serial_devices[serial_device_index] = optarg;
5114 serial_device_index++;
5115 break;
5116 case QEMU_OPTION_watchdog:
5117 if (watchdog) {
5118 fprintf(stderr,
5119 "qemu: only one watchdog option may be given\n");
5120 return 1;
5122 watchdog = optarg;
5123 break;
5124 case QEMU_OPTION_watchdog_action:
5125 if (select_watchdog_action(optarg) == -1) {
5126 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5127 exit(1);
5129 break;
5130 case QEMU_OPTION_virtiocon:
5131 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5132 fprintf(stderr, "qemu: too many virtio consoles\n");
5133 exit(1);
5135 virtio_consoles[virtio_console_index] = optarg;
5136 virtio_console_index++;
5137 break;
5138 case QEMU_OPTION_parallel:
5139 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5140 fprintf(stderr, "qemu: too many parallel ports\n");
5141 exit(1);
5143 parallel_devices[parallel_device_index] = optarg;
5144 parallel_device_index++;
5145 break;
5146 case QEMU_OPTION_loadvm:
5147 loadvm = optarg;
5148 break;
5149 case QEMU_OPTION_full_screen:
5150 full_screen = 1;
5151 break;
5152 #ifdef CONFIG_SDL
5153 case QEMU_OPTION_no_frame:
5154 no_frame = 1;
5155 break;
5156 case QEMU_OPTION_alt_grab:
5157 alt_grab = 1;
5158 break;
5159 case QEMU_OPTION_ctrl_grab:
5160 ctrl_grab = 1;
5161 break;
5162 case QEMU_OPTION_no_quit:
5163 no_quit = 1;
5164 break;
5165 case QEMU_OPTION_sdl:
5166 display_type = DT_SDL;
5167 break;
5168 #endif
5169 case QEMU_OPTION_pidfile:
5170 pid_file = optarg;
5171 break;
5172 #ifdef TARGET_I386
5173 case QEMU_OPTION_win2k_hack:
5174 win2k_install_hack = 1;
5175 break;
5176 case QEMU_OPTION_rtc_td_hack:
5177 rtc_td_hack = 1;
5178 break;
5179 case QEMU_OPTION_acpitable:
5180 if(acpi_table_add(optarg) < 0) {
5181 fprintf(stderr, "Wrong acpi table provided\n");
5182 exit(1);
5184 break;
5185 case QEMU_OPTION_smbios:
5186 if(smbios_entry_add(optarg) < 0) {
5187 fprintf(stderr, "Wrong smbios provided\n");
5188 exit(1);
5190 break;
5191 #endif
5192 #ifdef CONFIG_KVM
5193 case QEMU_OPTION_enable_kvm:
5194 kvm_allowed = 1;
5195 break;
5196 #endif
5197 case QEMU_OPTION_usb:
5198 usb_enabled = 1;
5199 break;
5200 case QEMU_OPTION_usbdevice:
5201 usb_enabled = 1;
5202 add_device_config(DEV_USB, optarg);
5203 break;
5204 case QEMU_OPTION_device:
5205 if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5206 exit(1);
5208 break;
5209 case QEMU_OPTION_smp:
5210 smp_parse(optarg);
5211 if (smp_cpus < 1) {
5212 fprintf(stderr, "Invalid number of CPUs\n");
5213 exit(1);
5215 if (max_cpus < smp_cpus) {
5216 fprintf(stderr, "maxcpus must be equal to or greater than "
5217 "smp\n");
5218 exit(1);
5220 if (max_cpus > 255) {
5221 fprintf(stderr, "Unsupported number of maxcpus\n");
5222 exit(1);
5224 break;
5225 case QEMU_OPTION_vnc:
5226 display_type = DT_VNC;
5227 vnc_display = optarg;
5228 break;
5229 #ifdef TARGET_I386
5230 case QEMU_OPTION_no_acpi:
5231 acpi_enabled = 0;
5232 break;
5233 case QEMU_OPTION_no_hpet:
5234 no_hpet = 1;
5235 break;
5236 case QEMU_OPTION_balloon:
5237 if (balloon_parse(optarg) < 0) {
5238 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5239 exit(1);
5241 break;
5242 #endif
5243 case QEMU_OPTION_no_reboot:
5244 no_reboot = 1;
5245 break;
5246 case QEMU_OPTION_no_shutdown:
5247 no_shutdown = 1;
5248 break;
5249 case QEMU_OPTION_show_cursor:
5250 cursor_hide = 0;
5251 break;
5252 case QEMU_OPTION_uuid:
5253 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5254 fprintf(stderr, "Fail to parse UUID string."
5255 " Wrong format.\n");
5256 exit(1);
5258 break;
5259 #ifndef _WIN32
5260 case QEMU_OPTION_daemonize:
5261 daemonize = 1;
5262 break;
5263 #endif
5264 case QEMU_OPTION_option_rom:
5265 if (nb_option_roms >= MAX_OPTION_ROMS) {
5266 fprintf(stderr, "Too many option ROMs\n");
5267 exit(1);
5269 option_rom[nb_option_roms] = optarg;
5270 nb_option_roms++;
5271 break;
5272 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5273 case QEMU_OPTION_semihosting:
5274 semihosting_enabled = 1;
5275 break;
5276 #endif
5277 case QEMU_OPTION_name:
5278 qemu_name = qemu_strdup(optarg);
5280 char *p = strchr(qemu_name, ',');
5281 if (p != NULL) {
5282 *p++ = 0;
5283 if (strncmp(p, "process=", 8)) {
5284 fprintf(stderr, "Unknown subargument %s to -name", p);
5285 exit(1);
5287 p += 8;
5288 set_proc_name(p);
5291 break;
5292 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5293 case QEMU_OPTION_prom_env:
5294 if (nb_prom_envs >= MAX_PROM_ENVS) {
5295 fprintf(stderr, "Too many prom variables\n");
5296 exit(1);
5298 prom_envs[nb_prom_envs] = optarg;
5299 nb_prom_envs++;
5300 break;
5301 #endif
5302 #ifdef TARGET_ARM
5303 case QEMU_OPTION_old_param:
5304 old_param = 1;
5305 break;
5306 #endif
5307 case QEMU_OPTION_clock:
5308 configure_alarms(optarg);
5309 break;
5310 case QEMU_OPTION_startdate:
5311 configure_rtc_date_offset(optarg, 1);
5312 break;
5313 case QEMU_OPTION_rtc:
5314 opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5315 if (!opts) {
5316 fprintf(stderr, "parse error: %s\n", optarg);
5317 exit(1);
5319 configure_rtc(opts);
5320 break;
5321 case QEMU_OPTION_tb_size:
5322 tb_size = strtol(optarg, NULL, 0);
5323 if (tb_size < 0)
5324 tb_size = 0;
5325 break;
5326 case QEMU_OPTION_icount:
5327 use_icount = 1;
5328 if (strcmp(optarg, "auto") == 0) {
5329 icount_time_shift = -1;
5330 } else {
5331 icount_time_shift = strtol(optarg, NULL, 0);
5333 break;
5334 case QEMU_OPTION_incoming:
5335 incoming = optarg;
5336 break;
5337 #ifndef _WIN32
5338 case QEMU_OPTION_chroot:
5339 chroot_dir = optarg;
5340 break;
5341 case QEMU_OPTION_runas:
5342 run_as = optarg;
5343 break;
5344 #endif
5345 #ifdef CONFIG_XEN
5346 case QEMU_OPTION_xen_domid:
5347 xen_domid = atoi(optarg);
5348 break;
5349 case QEMU_OPTION_xen_create:
5350 xen_mode = XEN_CREATE;
5351 break;
5352 case QEMU_OPTION_xen_attach:
5353 xen_mode = XEN_ATTACH;
5354 break;
5355 #endif
5360 /* If no data_dir is specified then try to find it relative to the
5361 executable path. */
5362 if (!data_dir) {
5363 data_dir = find_datadir(argv[0]);
5365 /* If all else fails use the install patch specified when building. */
5366 if (!data_dir) {
5367 data_dir = CONFIG_QEMU_SHAREDIR;
5371 * Default to max_cpus = smp_cpus, in case the user doesn't
5372 * specify a max_cpus value.
5374 if (!max_cpus)
5375 max_cpus = smp_cpus;
5377 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5378 if (smp_cpus > machine->max_cpus) {
5379 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5380 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5381 machine->max_cpus);
5382 exit(1);
5385 if (display_type == DT_NOGRAPHIC) {
5386 if (serial_device_index == 0)
5387 serial_devices[0] = "stdio";
5388 if (parallel_device_index == 0)
5389 parallel_devices[0] = "null";
5390 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5391 monitor_devices[0] = "stdio";
5395 #ifndef _WIN32
5396 if (daemonize) {
5397 pid_t pid;
5399 if (pipe(fds) == -1)
5400 exit(1);
5402 pid = fork();
5403 if (pid > 0) {
5404 uint8_t status;
5405 ssize_t len;
5407 close(fds[1]);
5409 again:
5410 len = read(fds[0], &status, 1);
5411 if (len == -1 && (errno == EINTR))
5412 goto again;
5414 if (len != 1)
5415 exit(1);
5416 else if (status == 1) {
5417 fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5418 exit(1);
5419 } else
5420 exit(0);
5421 } else if (pid < 0)
5422 exit(1);
5424 setsid();
5426 pid = fork();
5427 if (pid > 0)
5428 exit(0);
5429 else if (pid < 0)
5430 exit(1);
5432 umask(027);
5434 signal(SIGTSTP, SIG_IGN);
5435 signal(SIGTTOU, SIG_IGN);
5436 signal(SIGTTIN, SIG_IGN);
5439 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5440 if (daemonize) {
5441 uint8_t status = 1;
5442 write(fds[1], &status, 1);
5443 } else
5444 fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5445 exit(1);
5447 #endif
5449 if (kvm_enabled()) {
5450 int ret;
5452 ret = kvm_init(smp_cpus);
5453 if (ret < 0) {
5454 fprintf(stderr, "failed to initialize KVM\n");
5455 exit(1);
5459 if (qemu_init_main_loop()) {
5460 fprintf(stderr, "qemu_init_main_loop failed\n");
5461 exit(1);
5463 linux_boot = (kernel_filename != NULL);
5465 if (!linux_boot && *kernel_cmdline != '\0') {
5466 fprintf(stderr, "-append only allowed with -kernel option\n");
5467 exit(1);
5470 if (!linux_boot && initrd_filename != NULL) {
5471 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5472 exit(1);
5475 #ifndef _WIN32
5476 /* Win32 doesn't support line-buffering and requires size >= 2 */
5477 setvbuf(stdout, NULL, _IOLBF, 0);
5478 #endif
5480 if (init_timer_alarm() < 0) {
5481 fprintf(stderr, "could not initialize alarm timer\n");
5482 exit(1);
5484 if (use_icount && icount_time_shift < 0) {
5485 use_icount = 2;
5486 /* 125MIPS seems a reasonable initial guess at the guest speed.
5487 It will be corrected fairly quickly anyway. */
5488 icount_time_shift = 3;
5489 init_icount_adjust();
5492 #ifdef _WIN32
5493 socket_init();
5494 #endif
5496 if (net_init_clients() < 0) {
5497 exit(1);
5500 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5501 net_set_boot_mask(net_boot);
5503 /* init the bluetooth world */
5504 if (foreach_device_config(DEV_BT, bt_parse))
5505 exit(1);
5507 /* init the memory */
5508 if (ram_size == 0)
5509 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5511 /* init the dynamic translator */
5512 cpu_exec_init_all(tb_size * 1024 * 1024);
5514 bdrv_init();
5516 /* we always create the cdrom drive, even if no disk is there */
5517 drive_add(NULL, CDROM_ALIAS);
5519 /* we always create at least one floppy */
5520 drive_add(NULL, FD_ALIAS, 0);
5522 /* we always create one sd slot, even if no card is in it */
5523 drive_add(NULL, SD_ALIAS);
5525 /* open the virtual block devices */
5526 if (snapshot)
5527 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5528 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5529 exit(1);
5531 vmstate_register(0, &vmstate_timers ,&timers_state);
5532 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5534 /* Maintain compatibility with multiple stdio monitors */
5535 if (!strcmp(monitor_devices[0],"stdio")) {
5536 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5537 const char *devname = serial_devices[i];
5538 if (devname && !strcmp(devname,"mon:stdio")) {
5539 monitor_devices[0] = NULL;
5540 break;
5541 } else if (devname && !strcmp(devname,"stdio")) {
5542 monitor_devices[0] = NULL;
5543 serial_devices[i] = "mon:stdio";
5544 break;
5549 if (nb_numa_nodes > 0) {
5550 int i;
5552 if (nb_numa_nodes > smp_cpus) {
5553 nb_numa_nodes = smp_cpus;
5556 /* If no memory size if given for any node, assume the default case
5557 * and distribute the available memory equally across all nodes
5559 for (i = 0; i < nb_numa_nodes; i++) {
5560 if (node_mem[i] != 0)
5561 break;
5563 if (i == nb_numa_nodes) {
5564 uint64_t usedmem = 0;
5566 /* On Linux, the each node's border has to be 8MB aligned,
5567 * the final node gets the rest.
5569 for (i = 0; i < nb_numa_nodes - 1; i++) {
5570 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5571 usedmem += node_mem[i];
5573 node_mem[i] = ram_size - usedmem;
5576 for (i = 0; i < nb_numa_nodes; i++) {
5577 if (node_cpumask[i] != 0)
5578 break;
5580 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5581 * must cope with this anyway, because there are BIOSes out there in
5582 * real machines which also use this scheme.
5584 if (i == nb_numa_nodes) {
5585 for (i = 0; i < smp_cpus; i++) {
5586 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5591 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5592 const char *devname = monitor_devices[i];
5593 if (devname && strcmp(devname, "none")) {
5594 char label[32];
5595 if (i == 0) {
5596 snprintf(label, sizeof(label), "monitor");
5597 } else {
5598 snprintf(label, sizeof(label), "monitor%d", i);
5600 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5601 if (!monitor_hds[i]) {
5602 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5603 devname);
5604 exit(1);
5609 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5610 const char *devname = serial_devices[i];
5611 if (devname && strcmp(devname, "none")) {
5612 char label[32];
5613 snprintf(label, sizeof(label), "serial%d", i);
5614 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5615 if (!serial_hds[i]) {
5616 fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
5617 devname, strerror(errno));
5618 exit(1);
5623 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5624 const char *devname = parallel_devices[i];
5625 if (devname && strcmp(devname, "none")) {
5626 char label[32];
5627 snprintf(label, sizeof(label), "parallel%d", i);
5628 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5629 if (!parallel_hds[i]) {
5630 fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
5631 devname, strerror(errno));
5632 exit(1);
5637 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5638 const char *devname = virtio_consoles[i];
5639 if (devname && strcmp(devname, "none")) {
5640 char label[32];
5641 snprintf(label, sizeof(label), "virtcon%d", i);
5642 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5643 if (!virtcon_hds[i]) {
5644 fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
5645 devname, strerror(errno));
5646 exit(1);
5651 module_call_init(MODULE_INIT_DEVICE);
5653 if (watchdog) {
5654 i = select_watchdog(watchdog);
5655 if (i > 0)
5656 exit (i == 1 ? 1 : 0);
5659 if (machine->compat_props) {
5660 qdev_prop_register_compat(machine->compat_props);
5662 machine->init(ram_size, boot_devices,
5663 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5666 #ifndef _WIN32
5667 /* must be after terminal init, SDL library changes signal handlers */
5668 sighandler_setup();
5669 #endif
5671 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5672 for (i = 0; i < nb_numa_nodes; i++) {
5673 if (node_cpumask[i] & (1 << env->cpu_index)) {
5674 env->numa_node = i;
5679 current_machine = machine;
5681 /* init USB devices */
5682 if (usb_enabled) {
5683 if (foreach_device_config(DEV_USB, usb_parse) < 0)
5684 exit(1);
5687 /* init generic devices */
5688 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5689 exit(1);
5691 if (!display_state)
5692 dumb_display_init();
5693 /* just use the first displaystate for the moment */
5694 ds = display_state;
5696 if (display_type == DT_DEFAULT) {
5697 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5698 display_type = DT_SDL;
5699 #else
5700 display_type = DT_VNC;
5701 vnc_display = "localhost:0,to=99";
5702 show_vnc_port = 1;
5703 #endif
5707 switch (display_type) {
5708 case DT_NOGRAPHIC:
5709 break;
5710 #if defined(CONFIG_CURSES)
5711 case DT_CURSES:
5712 curses_display_init(ds, full_screen);
5713 break;
5714 #endif
5715 #if defined(CONFIG_SDL)
5716 case DT_SDL:
5717 sdl_display_init(ds, full_screen, no_frame);
5718 break;
5719 #elif defined(CONFIG_COCOA)
5720 case DT_SDL:
5721 cocoa_display_init(ds, full_screen);
5722 break;
5723 #endif
5724 case DT_VNC:
5725 vnc_display_init(ds);
5726 if (vnc_display_open(ds, vnc_display) < 0)
5727 exit(1);
5729 if (show_vnc_port) {
5730 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5732 break;
5733 default:
5734 break;
5736 dpy_resize(ds);
5738 dcl = ds->listeners;
5739 while (dcl != NULL) {
5740 if (dcl->dpy_refresh != NULL) {
5741 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5742 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5744 dcl = dcl->next;
5747 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5748 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5749 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5752 text_consoles_set_display(display_state);
5753 qemu_chr_initial_reset();
5755 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5756 if (monitor_devices[i] && monitor_hds[i]) {
5757 monitor_init(monitor_hds[i],
5758 MONITOR_USE_READLINE |
5759 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
5763 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5764 const char *devname = serial_devices[i];
5765 if (devname && strcmp(devname, "none")) {
5766 if (strstart(devname, "vc", 0))
5767 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5771 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5772 const char *devname = parallel_devices[i];
5773 if (devname && strcmp(devname, "none")) {
5774 if (strstart(devname, "vc", 0))
5775 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5779 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5780 const char *devname = virtio_consoles[i];
5781 if (virtcon_hds[i] && devname) {
5782 if (strstart(devname, "vc", 0))
5783 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5787 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5788 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5789 gdbstub_dev);
5790 exit(1);
5793 qdev_machine_creation_done();
5795 rom_load_all();
5797 if (loadvm) {
5798 if (load_vmstate(cur_mon, loadvm) < 0) {
5799 autostart = 0;
5803 if (incoming) {
5804 qemu_start_incoming_migration(incoming);
5805 } else if (autostart) {
5806 vm_start();
5809 #ifndef _WIN32
5810 if (daemonize) {
5811 uint8_t status = 0;
5812 ssize_t len;
5814 again1:
5815 len = write(fds[1], &status, 1);
5816 if (len == -1 && (errno == EINTR))
5817 goto again1;
5819 if (len != 1)
5820 exit(1);
5822 chdir("/");
5823 TFR(fd = open("/dev/null", O_RDWR));
5824 if (fd == -1)
5825 exit(1);
5828 if (run_as) {
5829 pwd = getpwnam(run_as);
5830 if (!pwd) {
5831 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
5832 exit(1);
5836 if (chroot_dir) {
5837 if (chroot(chroot_dir) < 0) {
5838 fprintf(stderr, "chroot failed\n");
5839 exit(1);
5841 chdir("/");
5844 if (run_as) {
5845 if (setgid(pwd->pw_gid) < 0) {
5846 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
5847 exit(1);
5849 if (setuid(pwd->pw_uid) < 0) {
5850 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
5851 exit(1);
5853 if (setuid(0) != -1) {
5854 fprintf(stderr, "Dropping privileges failed\n");
5855 exit(1);
5859 if (daemonize) {
5860 dup2(fd, 0);
5861 dup2(fd, 1);
5862 dup2(fd, 2);
5864 close(fd);
5866 #endif
5868 main_loop();
5869 quit_timers();
5870 net_cleanup();
5872 return 0;