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ABSTRACT
Network programming is widely understood as program-
ming strictly defined socket interfaces. Only some frame-
works have made a step towards real network programming
by decomposing networking functionality into small modu-
lar blocks that can be assembled in a flexible manner. In
this paper, we tackle the challenge of accommodating 3 par-
tially conflicting objectives: (i) high flexibility for network
programmers, (ii) re-configuration of the network stack at
runtime, and (iii) high packet forwarding rates. First ex-
periences with a prototype implementation in Linux suggest
little performance overhead compared to the standard Linux
protocol stack.

1. INTRODUCTION
Beyond doubt, the Internet has grown out of its infancy

and has become a critical infrastructure for private and busi-
ness applications. Its success is largely due to the plethora
of transport media it uses and to the rich set of network ap-
plications it offers. Yet, network programming is still mainly
about programming sockets that form a strictly defined in-
terface between the networking (TCP/IP) and the actual
application part (Facebook, VoIP, etc.). What if design-
ers of network applications could even tailor the networking
functionality to their needs? We can just speculate about
the resulting innovations.

Nowadays, changes in the configuration of a protocol stack
usually require applications or even the operating system to
be restarted. The need for changing the protocol stack can
arise if networking functionality needs to be patched, if the
used encryption method is not considered safe anymore, or
when privacy concerns change. Ideally, applications should
not be affected by such changes. Therefore, we advocate run
time reconfigurable protocol stacks. Such protocol stacks can
be useful for various initiatives that work on self-star proper-
ties in computing by providing an algorithm that configures
and adapts the protocol stack autonomously.

Similar objectives were also followed by active network-
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ing [3], the Click modular router project[4], or OpenFlow [5],
etc. Yet, we are not aware of any research that has achieved
the following three partially conflicting goals:

1. Simple integration and testing of new protocols on end
nodes on all layers of the protocol stack.

2. Runtime reconfiguration of the protocol stack in order
to allow for even bigger flexibility.

3. High performance packet forwarding rates.
In this paper, we propose the Lightweight Autonomic Net-

work Architecture (LANA). Our architecture borrows ideas
from ANA [2], where network functionality is divided into
functional blocks (FB) that can be combined as required.
Each FB implements a protocol such as IP, UDP, or con-
tent centric routing. ANA does not impose any protocols
to be used. Rather it provides a framework that allows
for the flexible composition and recomposition of FBs to
a protocol stack. This allows for the experimentation with
protocol stacks that are not known by today’s standard op-
erating systems, and it allows for the optimization of proto-
col stacks at runtime without communication tear down or
application support. The existing implementation of ANA
shows the feasibility of such a flexible architecture but suffers
sever performance issues. In contrast to ANA, the proposed
LANA architecture relies on a message passing by reference
scheme, minimizes the number of threads, and uses opti-
mized packet processing structures provided by the Linux
kernel. Surprisingly, our first experiences with a prototype
implementation suggest that we can offer comparable flex-
ibility as ANA, but at packet forwarding rates comparable
to those of the standard Linux networking stack.

2. LANA: APPROACH
Generally, the LANA network system is built similarly to

the network subsystem of the Linux kernel. Applications can
send and transmit packets via the BSD socket interface. The
actual packet processing is done in a packet processing engine
(PPE) in the kernel space. An overview of the architecture
is presented in (Figure 1).

The hardware and device driver interfaces are hidden from
the PPE behind a virtual link interface, which allows for a
simple integration of different underlaying networking tech-
nologies such as Ethernet, Bluetooth or InfiniBand.

Each functional block is implemented as a Linux kernel
module. Upon module insertion a constructor for the cre-
ation of an instance of the FB is registered with the LANA
core. Upon configuration of the protocol stack the instances
of the FBs are created. The instances register a receive func-
tion with the PPE. This function is called when a packet
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Figure 1: Packet flow in LANA

needs to be processed.
Functional blocks can either drop a packet, forward a

packet to either ingress or egress direction or duplicate a
packet. After having processed a packet the FB returns the
identifier of the next FB that should process this packet.
In addition, FBs belonging to the virtual link interface will
queue the packets in the network drivers transmit queue and
FBs communicating with BSD sockets will queue the packets
in the sockets receive queue.

The PPE is responsible for calling one FB after the other
and for queuing packets that need to be processed.

2.1 Implementation
The protocol stack can be configured from user space with

the help of a command line tool. The most important com-
mands are summarized below.

• add, rm: Adds (removes) an FB from the list of avail-
able FBs in the kernel.

• set: sets properties of an FB with a key=value se-
mantic

• bind, unbind: Binds (unbinds) an FB to another FB
in order to be able to send messages to it.

• replace: Replaces one FB with another FB. The con-
nections between the blocks are maintained. Private
data can either be transferred to the new block or
dropped.

Within the Linux kernel the notification chain framework
is used to propagate those configuration messages to the
individual FBs.

The current software is available under the GNU Gen-
eral Public License from [1]. In addition to the framework
it also includes five functional blocks: Ethernet, Berkeley
Packet Filter, Tee (duplication of packets), Packet Counter
and Forward (an empty block that forwards the packets to
another block). The framework does not need any patching
of the Linux kernel but it requires a new Linux 3.X kernel.

2.2 Improving the Performance
We have evaluated different possibilities for the integra-

tion of the PPE with the Linux kernel. We summarize our
insights to provide guidance for researchers that have to do
fundamental changes on the Linux protocol stack.

We compared the maximum packet reception rate of the
Linux kernel while not doing any packet processing with
LANA. In LANA packets are forwarded between three FBs
that do only packet forwarding.

• One high priority LANA thread per CPU achieves ap-
prox. half the performance of the default Linux stack.
The performance degradation is due to ’starvation’ of
the software interrupt handler (ksoftirqd). Changing
the priority of the LANA thread only slightly increases
the throughput.

• Explicit preemption and scheduling control achieves
approx. two third of the performance of the default
stack. The performance degradation is due to schedul-
ing overhead.

• Execution of the PPE in ksoftirqd context. This ap-
proach achieves approx. 95% of the performance of
default stack.

The corresponding numbers are listed in Table 1.

Mechanism Performance
Dedicated kernel thread (high priority) 700.000
Dedicated kernel thread (normal priority) 750.000
Dedicated kernel thread (controlled scheduling) 900.000
Execution in ksoftirqd 1.300.000
Linux kernel networking stack 1.380.000

Table 1: Performance evaluation in pps with 64 Byte
packets. (Intel Core 2 Quad Q6600 with 2.40GHz,
4GB RAM, Intel 82566DC-2 NIC, Linux 3.0rc1)

3. CONCLUSIONS AND FUTURE WORK
We have shown that it is possible to implement a flexi-

ble protocol stack that has a similar performance than the
default protocol stack in the Linux kernel. The flexibility
allows for the easy inclusion of new, still to be developed
protocols and for the change of the protocol stack at run-
time. Both might lead to a protocol stack that is better
suited for a given networking situation than the well known
TCP/IP protocol stack.

In the short-term, we will compare the performance of our
system with the performance of other systems (e.g., default
Linux stack, Click router, etc.). In the mid-term, we will
work on mechanisms that automatically configure protocol
stacks based on the applications as well as the networks
needs. In the long-term, we envisage a system that requires
less configuration as compared to today’s networks and that
is able to adapt itself to changing network conditions.
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