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ABSTRACT
Network programming is widely understood as programming
strictly defined socket interfaces. Only some frameworks
(e.g., ANA, Click, Active Networking) have made a step
towards real network programming by decomposing net-
working functionality into small modular blocks that can
be assembled in a flexible manner. In this paper, we tackle
the challenge of accommodating 3 partially conflicting ob-
jectives: (i) high flexibility for network programmers and
network application designers, (ii) re-configuration of the
network stack at runtime, and (iii) high packet forwarding
rates. First experiences with a prototype implementation
suggest little performance overhead compared to the stan-
dard Linux protocol stack.

1. INTRODUCTION
Beyond doubt, the Internet has grown out of its infancy. A

huge variety of networked applications and a diverse range
of protocols are available, ranging from protocols for the
communication over fibre, cat5 or over the air to protocols
supporting specific applications such as p2p, web or voIP.
However, the architecture is not designed to also allow for
an easy integration of new protocols between these two lay-
ers. We argue that an architecture that would not limit in-
novation to the outer layers would give the Internet another
boost. AK: should also motivate runtime here.

Some research with this goal was already done in active
networking [3], with the Click modular router [4] or with
openflow [5]. However, none of the available implementa-
tions fulfils the following three partially conflicting objec-
tives.

1. Simple integration and testing of new protocols on end
nodes on all layers of the protocol stack.

2. Runtime reconfiguration of the protocol stack in order
to allow for even bigger flexibility.

3. High performance packet forwarding rate.
Therefore we propose another architecture that was de-

signed with those three goals in mind. The architecture is
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based on the ideas of the Autonomic Network Architecture
(ANA). [2]. In ANA network functionality is divided into
functional blocks that can be combined as required. Each
functional block implements a protocol such as ip, udp, en-
cryption, content centric routing, etc. ANA does not impose
any protocols to be used other than Ethernet, rather it pro-
vides a framework that allows for the flexible composition
and recomposition of functional blocks to a protocol stack.
This allows for the experimentation with protocol stacks
that are not known by todays standard operating system
and it allows for the optimization of the protocol stack at
runtime without communication tear down or application
support. The existing implementation of ANA shows the
feasibility of such a flexible architecture but it suffers sever
performance issues. In this paper we present the Lightweight
Autonomic Network Architecture (LANA). It allows for a
similar functionality than ANA but demonstrates that flex-
ibility does not have to come at the cost of reduced perfor-
mance.

2. LANA
Generally, the LANA network system is built similarly to

the network system of the Linux kernel. Applications can
send and transmit packets via the BSD socket interface and
the actual packet processing is done in a packet processing
engine (PPE) in the kernel space. DB: too much is said
about the vlink interface. I’d rather save the words for the
PPE or functional blocks. I think about a better paragraph
for tomorrow The hardware and device drivers interfaces
are hidden from the PPE behind a virtual link interface.
This allows for a simple integration of different underlay-
ing networking technologies such as Ethernet, Bluetooth or
InfiniBand. Additionally, virtual link interface devices are
represented as usual kernel networking devices and can be
managed with standard tools such as ifconfig or ethtool.

Each functional block is implemented as a Linux kernel
module. It offers a receive function that is registered with
the PPE upon module insertion. A functional block can
either drop a packet, forward a packet to either ingress or
egress direction or duplicate a packet. After having pro-
cessed the packet it returns the identifier of the next func-
tional block that should process this packet. In addition
functional blocks belonging to the virtual link interface will
queue the packets in the network drivers transmit queue
and functional blocks communicating with BSD sockets will
queue the packets in the sockets receive queue.

The PPE is responsible for calling one functional block
after the other and for queuing packets that need to be pro-



Figure 1: LANA architecture

cessed.

2.1 Configuration Interface
The protocol stack can be configured from user space with

the help of a command line tool. The most important com-
mands are summarized below.

• add, rm: Adds (removes) a functional block from the
list of available functional blocks in the kernel.

• set: sets specific properties of a functional block with
a key=value semantic

• bind, unbind: Binds (unbinds) a functional block to
another in order to be able to send messages to it.

• replace: Replaces one functional block with another
functional block. The connections between the blocks
are maintained. Private data can either be transferred
to the new block or dropped.

Within the Linux kernel the notification chain framework
is used to propagate those configuration messages to the
individual functional blocks.

2.2 Improving the Performance
We have evaluated different possibilities for the integra-

tion of the PPE with the Linux kernel. We summarize our
insights to provide guidance for researchers that have to do
fundamental changes on the Linux protocol stack.

We compared the maximum packet reception rate of the
Linux kernel while not doing any packet processing with
our architecture. Here packets are forwarded between three
functional blocks that do only packet forwarding.

• One high priority LANA thread per CPU achieves ap-
prox. half the performance of the default stack. The
performance degradation is due to ’starvation’ of the
software interrupt handler (ksoftirqd). Changing the
priority of the LANA thread only slightly increases
the throughput (since the ksoftirqd is a low-priority
thread).

• Explicit preemption and scheduling control achieves
approx. two third of the performance of the default
stack. The performance is still reduced by scheduling
overhead.

• Execution of the PPE in ksoftirqd context. This ap-
proach achieves approximately 95% of the performance

of the Linux kernel.
The corresponding numbers are listed in Table 1.

Mechanism Performance
Dedicated kernel thread (high priority) 700.000
Dedicated kernel thread (normal priority) 750.000
Dedicated kernel thread (controlled scheduling) 900.000
Execution in ksoftirqd 1.300.000
Linux kernel networking stack 1.380.000

Table 1: Performance evaluation in pps with 64 Byte
packets. (Intel Core 2 Quad Q6600 with 2.40GHz,
4GB RAM, Intel 82566DC-2 NIC, Linux 3.0rc1)

2.3 Software Available
The current sofware is available under the GNU General

Public License from [1]. In addition to the framework it also
includes four functional blocks: Ethernet, Berkeley Packet
Filter, Tee (duplication of packets), Packet Counter and For-
ward (an empty block that just forwards the packets to an-
other block). The framework does not need any patching of
the Linux kernel but it requires a new Linux 3.X kernel.

3. CONCLUSIONS AND FUTURE WORK
We have shown that it is possible to implement a flexi-

ble protocol stack that has a similar performance than the
default protocol stack in the Linux kernel. The flexibility
allows for the easy inclusion of new, still to be developed
protocols and for the change of the protocol stack at run-
time. Both might lead to a protocol stack that is better
suited for a given networking situation than the well known
TCP/IP protocol stack.

In the short-term we will compare the performance of our
system with the performance of other systems (e.g., default
Linux stack, Click router, etc.). In the mid-term we will
work on mechanisms that automatically configures proto-
col stacks based on the applications as well as the networks
needs. The end goal will be to have a networked system
that requires less configuration as compared to todays net-
works and that is able to adapt itself to changing network
conditions.
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