
Optimizing File Accesses via Ordering and
Caching

Jan Wassenberg

7 April 2006

Abstract

Slow I/O is widespread, as attested to by splash screens and progress bars; however,
it can be done better. A reusable and highly efficient I/O solution is presented; design
decisions and key algorithms are discussed, and the resulting performance analyzed.

Contents

1 Introduction 2
1.1 Motivation / Importance of Fast I/O . 2
1.2 Intended Application . 2
1.3 Techniques . 2

2 Related Theoretical Work 3
2.1 Cache . 3
2.2 Allocation . 3
2.3 Ordering - Traveling Salesman Problem 4

3 Detailed Discussion of Techniques 4
3.1 Efficient Asynchronous I/O . 5
3.2 Compression . 6
3.3 Ordering Files . 6

3.3.1 Prepare DAG of Files . 7
3.3.2 Record Trace . 7
3.3.3 Construct Edge List . 8
3.3.4 Generate Chains . 8
3.3.5 Stitch Chains together . 9

3.4 Splitting Into Blocks . 9
3.5 Caching . 10

3.5.1 Allocator . 11
3.5.2 Extant List . 12
3.5.3 Cache Manager . 12

4 Experimental Results 14
4.1 System Information . 14
4.2 IO Throughput . 14

4.2.1 Methodology . 14
4.2.2 Results and Discussion . 14

4.3 Ordering Quality . 15
4.4 Caching Efficacy . 17

4.4.1 Effect of Cache Size . 17
4.5 Cache Manager Optimizations . 18
4.6 Allocator Fragmentation . 19

5 Conclusion 19
5.1 Implementation . 20
5.2 Lessons Learned . 20
5.3 Future Directions . 20

1

1 Introduction

1.1 Motivation / Importance of Fast I/O

Since I/O is much slower than CPU or memory, it can easily become a bottleneck within
the system as a whole. An estimate as of 2006 is 60 MB/s vs. 2600 MB/s. Many
applications would therefore benefit from faster I/O; example scenarios include:

• slow startup time. The user is inconvenienced by waiting for required files to load;
splash screens are one attempt to mitigate this by distracting the user. For a
rather extreme illustration of the problem, see [6].

• on-demand loading. If the data set is too large to fit in memory, it must be loaded
in increments as needed. This can cause ‘freezes’ in the application while waiting
for the I/O to finish.

• heavy throughput requirements. Some applications, e.g. video players or editing
tools, require high sustained I/O throughput.

1.2 Intended Application

The application for which our I/O library has been developed is a Real-Time Strategy
computer game [1]. It utilizes the traditional method of loading files on startup as well as
on-demand streaming of data, so both should be efficiently handled. While intending for
the I/O solution to remain useful for a wide range of applications, several consequences
arise from this and guide our design decisions.

First, much emphasis is placed on real-time behavior. Lag or ‘freezing’ in-game is
not acceptable and must be minimized. This means that the caching algorithm must not
have offline performance characteristics, reordering I/Os is probably not acceptable and
any pre-fetching would have to be quite conservative (so as not to penalize time-critical
on-demand loads).

Also, the working set is not static; depending on game mode and environment,
different files may be needed. Provision must be made for varying access patterns.

Finally, and related to the real-time issue, is that of fragmentation. Games can run
over several hours; during that time, performance must not degrade to unacceptable
levels e.g. due to memory fragmentation. Given the real-time requirements, offline
reorganization is not an option; the algorithms used must be designed accordingly.

Given these central design constraints, we now present the chief ideas behind our
fast I/O method.

1.3 Techniques

Our approach is five-fold:

1. caching avoids repetitive slow I/Os;

2. ordering files according to access patterns minimizes hard-drive seeks;

2

3. compressing files reduces the amount of data to be read;

4. asynchronous I/O maximizes throughput and allows computation to proceed in
parallel with I/O;

5. splitting I/Os into blocks simplifies caching and decompression while also avoiding
copying buffers for alignment purposes.

We will discuss each of these in detail in Section 3, but first cover related theoretical
work in this field.

2 Related Theoretical Work

2.1 Cache

For the cache, a central question is which files to keep in memory. This is known as the
file- or web-caching problem. In short, given a set of file requests (each with size and
retrieval cost), a cache is maintained such that total retrieval cost is minimized.

The special case where size and cost are uniform is called “paging”, which has
been studied extensively. Several algorithms that have an optimal competitive ratio are
known. In particular LRU1 is k/(k−h+1) competitive, which is the best possible for a
deterministic algorithm [17, page 207].

This model is appealing due to its simplicity, but is not sufficient for our needs. Files
are not typically uniform size, and treating them as such would be monstrously inefficient
(much cache space would be wasted by rounding up element size to that of the largest
file).

Irani gives two O(log2 k) competitive randomized algorithms that can deal with variable-
sized files and uniform cost [13].

However, we would like to achieve full generality and provide for variable cost as
well. This can be used as the name suggests to more accurately reflect load time
(as will be seen later, this is not solely dependent on file size!), or as a hint from the
application that certain files are not to be removed from the cache as early as they
otherwise would.

Young develops such an algorithm and calls it Landlord. Briefly, each file receives
‘credit’ that is initially set to its cost. When determining which file is to be removed from
cache (i.e. ‘evicted’), each one is charged ‘rent’ proportional to its size and the minimum
credit-per-size density currently in the cache. Items are evicted once their credit is
exhausted. On every access, credit is increased in an arbitrary manner. This strategy is
k/(k−h+1)-competitive, which again is optimal for a deterministic algorithm [19, 17].

We end up using an optimized variant of this Landlord cache management strategy.

2.2 Allocation

Another important part of caching is the memory allocation aspect. For reasons that will
be discussed in Section 3.5.1, existing general-purposes allocators are not adequate;

1Least Recently Used; simply evicts the file whose access time is the least recent.

3

an alternative will have to be developed. We build on decades of work in this area.
Wilson et al. give a very thorough and helpful overview [18]. A simple but crucial

point is made: fragmentation is caused by freeing regions whose neighbors are not
free. Allocators are online algorithms whose only tool against this is placement, i.e.
deciding where to allocate regions. The authors advocate benchmarking by means of
traces (a record of allocations) from real-world programs, because randomized tests do
not necessarily reflect reality. It is emphasized that allocation policy and mechanism
must be considered separately. Results of tests show certain policies, namely address-
ordered first (segregated) fit, to perform quite well, wasting only about 14 % memory.
Finally, further discussion of implementation details such as boundary tags was helpful.

Johnstone and Wilson go on to refine their measure of fragmentation and conclude
that the previously mentioned AO-first-fit policy actually only suffers from ca. 1 % frag-
mentation, the best of all techniques considered [14, page 10]. This promising result
leads us to focus on that policy.

Masmano et al. present a “Two Level Segregated Fit” algorithm with O(1) time
complexity [15].

We end up implementing a simpler variant based on this idea that also avoids the
need for block headers, which was the abovementioned problem preventing use of a
general allocator.

2.3 Ordering - Traveling Salesman Problem

The problem of ordering files according to access patterns can be seen as an instance
of the Traveling Salesman Problem. It is defined as: given a graph of nodes (cities) and
the cost of traveling from one to another (travel distance), compute a path that will take
the salesman to each city while incurring minimal cost. In our case, files correspond to
cities and the hard-disk seek distance to cost.

TSP has perhaps been studied most among all optimization problems; numerous
algorithms and heuristics have been developed, each with their strengths and weak-
nesses. The DIMACS Challenge [4] gives an extensive listing of algorithms, relative
performance and techniques and was a valuable reference.

For our application, less than optimal orderings are acceptable due to non-static ac-
cess patterns. Since variational file accesses (e.g. due to differing modes of play) would
invalidate any ordering we establish, it does not make sense to insist on an optimal so-
lution. The DIMACS Challenge shows several heuristics to perform quite well, coming
to within 11 % of the Held-Karp bound (a good approximation of the optimal solution to
an instance of TSP [16]). We therefore settle on a greedy heuristic for simplicity.

3 Detailed Discussion of Techniques

We now cover the individual techniques used to speed up I/O in detail.

4

3.1 Efficient Asynchronous I/O

For an understanding of how to achieve maximum I/O read throughput, we briefly ex-
plain how the disk is accessed on PC systems.

Early drives were addressed via Programmed I/O, where the CPU instructs it to
transfer 2 bytes at a time. Due to significant per-transfer overhead (accessing I/O reg-
isters and interrupting CPU when complete), throughput only reached a maximum of
16.7 MB/s (PIO Mode 4) [5].

Once rising disk platter densities — and the resulting increased transfer speeds
— caused this to become a bottleneck, bus-mastering DMA (Direct Memory Access)
over the PCI bus became the norm. Here, the disk controller writes directly to memory,
bypassing the CPU. It is free to perform other work during this time, so long as the bus is
not needed - an important point that will affect our choice of I/O block size (see Section
3.4).

Given this information, we now examine the I/O interfaces provided by the Operating
System. POSIX supports synchronous blocking I/O, blocking I/O in another thread, and
asynchronous I/O (“aio”). We remove the first option from consideration because it does
not allow work to proceed in parallel with the I/O. Several implementation details cause
us to choose aio over the threaded approach:

• on Windows, aio bypasses the OS file cache. This allows bulk DMA transfers,
which achieve higher throughput than the single page-in operations that would be
issued by the memory-mapping-based OS file cache.

• aio places pending read requests in a queue so that the disk controller can pro-
ceed immediately with the next I/O; the disk is always busy. With threaded block-
ing I/O, the OS would have to return from and then re-enter kernel mode before
relaying the application’s next I/O request to the disk. This overhead reduces
throughput.

• parallelism between computation and I/O is achieved without having to worry
about the OS correctly scheduling all participating threads. Additionally, behavior
is predictable and thread-switch overhead is avoided.

In short, a decent aio implementation2 should not fare worse than the threaded
blocking I/O approach. On Windows, it is in fact faster due to the abovementioned
issues.

As a final detail, the POSIX aio functionality is emulated on Windows in terms of
the “overlapped” ReadFile API. By using the POSIX interface, we ensure portability to
virtually all systems.

To summarize, we use asynchronous I/O to achieve best possible throughput and
allow computation to proceed in parallel. This is made possible by the hard drive’s DMA
capability. The validity of this approach is shown by a small test program that reaches
maximum rated drive throughput and by [11].

2Linux used to emulate aio by spawning threads, which made for less than stellar performance. However,
this is no longer the case.

5

3.2 Compression

The next cornerstone of our I/O library is compressing source files. This can dramati-
cally reduce the amount of data to be read. Indeed the current 0 A.D. dataset has been
compressed down to 46% of the original, a savings of 75 MB. (NB: the dataset includes
13 MB of uncompressible audio; 3d mesh files with compression ratios of around 3x are
chiefly responsible for the reduction)

The compression algorithm used is Deflate, a combination of LZ77 and Huffman
encoding as defined in [8] and used in the common Zip file format [10]. Other formats
may achieve better compression ratios or feature faster compression/decompression
speed, but these are not critical to success. We prefer the advantage of interoperability
— tools to work with Zip archives are universally available.

In addition to the abovementioned significant reduction in file size, a further com-
pelling argument to compress all data files is that it is effectively free! To show this, we
must first discuss how exactly I/O and decompression will be parallelized.

Presuppose that I/Os are split into fixed-size blocks, the rationale of which will be
explained in Section 3.4. These blocks are issued asynchronously up to a safe queue
depth (currently 4). A block whose I/O has finished is then decompressed while the next
ones are pending. This gives perfect parallelization if decompression requires less time
than I/O.

Indeed a benchmark shows that a typical Pentium IV system (as of 2002) manages
40 MB/s I/O throughput and 100 MB/s decompression [7]. Note: The balance is not
expected to change in the future for single-disk systems; even if it does, a compression
method more suited to real-time decompression can be substituted.

Therefore, any reduction in file size due to compression lessens I/O time at no cost.

3.3 Ordering Files

The techniques so far are not yet sufficient. They achieve good sequential read per-
formance, but overall throughput is quite poor because files will tend to be scattered
throughout the disk. This incurs expensive seeks (moving the hard-disk read head);
a rough estimation of their cost is the time taken to read 400 KB (assuming typical
7200 RPM drive with 10 ms seek and 40 MB/s throughput [9]). Given that files are often
much smaller on average (25 KB for 0 A.D.), seek time dwarfs pure I/O read time.

Throughput can be much improved by arranging files on disk in order of access, thus
avoiding seeks. Since we wish to use a standard filesystem for simplicity, but cannot
control its placement strategy, files will have to be combined into one large OS-visible
archive. As mentioned above, we prefer the Zip format for easy interoperability.

Incidentally, storing files in archives has an additional advantage. The FS needs to
store metadata and typically sector-aligns files; since sectors are 512 bytes or more,
this is very costly for tiny files3. In contrast, archives can contain files packed end-to-
end with only minimal metadata/header information, thus wasting less space and by
extension reducing read time.

It remains to determine the optimal file ordering that minimizes seeks. This will be
done once (offline); performance is therefore not of paramount importance.

3ReiserFS4 is the only known exception, able to pack several files into one sector.

6

Before, though, we decide whether files may be repeated in the archive. To see the
problem, consider the following sequence where file ‘C’ is loaded after ‘A’ 50% of the
time and otherwise after ‘B’: ACBCACBC. It would seem that 50% of ‘C’ accesses must
incur a seek, but placing two copies of this file in the archive — after ‘A’ and ‘B’ — could
avoid them entirely. However, practical considerations lead us to disallow this: the act
of finding a file within the archive would be a good deal more complicated.

Now back to the issue of finding an ordering for files. Our strategy is as follows:

1. view all files to be added as nodes in a DAG (Directed Acyclic Graph); edges
indicate that two files are immediate neighbors in the archive.

2. record a “trace” of all file accesses over one or more program runs (recall that
access patterns may differ between runs).

3. construct from this a list of possible edges sorted by their frequency (i.e. how
often they occurred in the trace).

4. generate a set of ‘chains’ by committing the above edges as long as no cycle
results. These chains are connected portions of the DAG that are known to have
been accessed in that order.

5. output the final file ordering by stitching together all chains and then adding any
remaining files that were not included in the trace.

Details on these steps follow.

3.3.1 Prepare DAG of Files

Each node holds all required information about the file. This includes its filename and
the nodes that have been chosen to come before and after it in the final layout. All of
these are stored as 16-bit IDs to reduce size and therefore improve locality; mapping
from filename to ID is accomplished in logarithmic time via tree.

3.3.2 Record Trace

The acts of loading a file and releasing the resulting memory are logged (the latter is
required by the file cache). Records consist of timestamp, filename, file size and any
flags that affect I/O mode. For simplicity, we do not record file offset or transfer size:
that would not yield any information because seeks are incurred by accessing any part
of the file. Also, we assume that loading entire files at a time is the dominant behavior.

Besides the obvious application of determining optimal archive ordering, the result-
ing plain text file can be used to benchmark the I/O implementation under repeatable
conditions. Even when lacking the actual data files, the trace can still be useful to bench-
mark performance of the file cache and ordering. For this, simply map filenames to an
integral ID and simulate the cache and I/O parts.

Notes:

7

• we are careful to ensure that recording a trace does not incur any I/Os, which
would skew performance measurements. Records are stored in binary format
within an expandable array (no copying or memory waste due to pre-reserved
virtual address space).

• trace files may log accesses over several program runs. This will be useful in the
following steps because several mutual-exclusive but equally probably access
patterns may exist, each of which should be equally considered. Program runs
are differentiated by examining the timestamp, which starts at 0 on each run.

3.3.3 Construct Edge List

This step constructs a list of edges from the trace file. First, the trace is split into program
runs, which are processed most recent first. In each of these, all adjacent pairs of files
are examined; those not already in the list are added, otherwise the existing edge’s
frequency is incremented.

Important note: presuppose the existence of a file cache, which will be presented
in the next section. Since frequent accesses to files will be absorbed by this cache, we
do not want this inflated frequency to ‘pollute’ the edge list. That would displace other
edges that might actually turn out to be more important because they actually would
incur seeks, as opposed to the edge whose file I/Os would be satisfied by the cache.
Our solution to this problem is to simulate the file cache whilst processing trace entries
(only in the same program run!); if the file would not result in an I/O due to the cache,
the current edge is ignored. Under the assumption that access patterns are similar
to the trace, this scheme improves the quality of the ordering by making it reflect the
trace more strongly (rather than being fooled by frequent I/Os). If not, correctness is not
impacted; we merely risk incurring a few more seeks.

Checking if an edge already exists is accomplished by translating the two filenames
into 16-bit IDs (O(logN) time), appending these into a 32-bit number and searching for
that in a tree (O(logN) time).

Finally, this list is sorted by decreasing frequency4. The result is a list of unique
edges (i.e. “file A should be stored after file B” relationships).

3.3.4 Generate Chains

This step is the heart of our file ordering strategy. The above edges are now ‘committed’
into the DAG in order. That means the files are marked to come after one another, i.e.
their nodes in the DAG will be connected by an edge (unless a cycle were to result). For
simplicity, committed edges are never removed, this being a greedy heuristic.

We check for cycles via “DFS”, which actually simplifies to a list walk here since
nodes have only one previous and next link. These are typically quite short and overall
run time of this entire step is not a problem in practice (7 ms for 5000 files), so we do not
attempt more efficient and sophisticated cycle detection schemes. One such approach

4The sort must be stable, i.e. preserving ordering of edges with identical frequency! This will become clear
in the next step.

8

would be to store a pointer to the current end of list for each node and perform list
jumping.

The result of this step is a set of disjoint chains, which are each a series of files
that are to be stored immediately after one another. Due to the nature of the edge list,
the files that are most frequently accessed after one another are grouped together. As
such, we have attained a good approximation of an optimal tour.

Note: now the reason for the most-recent-first program run ordering becomes ap-
parent. All but the most frequent edges are placed into the list in the order that they
occurred in the trace (due to stable sort). Since they are also committed in the DAG in
this order, they end up mostly as observed from the trace. Since the most recent trace
is assumed to be the most accurate and reflective of current behavior, it is given the
most weight (by allowing all edges that ensued from it to be committed first).

3.3.5 Stitch Chains together

The final step is to stitch together the disjoint chains and output them into the final
ordered list. File nodes will be marked once they have been output. We iterate over
all nodes and output the entire chain of which it is a part; this is done by following the
node’s previous link until at beginning of the chain. Incidentally, this iteration ensures all
files appear in the output list, even if they were not included in the trace.

We have thus generated an ordering of files that minimize seeks assuming applica-
tion behavior is similar to that which was recorded in the trace(s).

This is an approximation to a variant of the Traveling Salesman Problem; the ques-
tion as to its quality (i.e. how many seeks are avoided) is interesting and will be exam-
ined in Section 4.3.

Rough complexity analysis: except for the cycle determination, none of these steps
require more than O(logN) work per file. Expected case is therefore O(N logN), with
O(N2) work in the worst case (if DFS always scans through very long chains). However,
as mentioned above, this is an offline process; performance is entirely adequate, so we
do not delve into a complete analysis or optimize the cycle determination step.

3.4 Splitting Into Blocks

Splitting I/Os into fixed-sized blocks is desirable for two reasons:
It would allow decompression of large files to proceed immediately and in parallel

with the I/O. This is especially important when loading an alternating sequence of large
and small files: all decompression can be ‘hidden’ behind I/O. The alternative, namely
only decompressing after having finished loading the entire file, clearly breaks down in
this case and does not parallelize well.

One further advantage is that of sector alignment. Due to the end-to-end packing
in archives, files often start at unaligned offsets on disk. A limitation in the Windows
ReadFile API would require copying such files to/from an align buffer. This can be
avoided by splitting I/Os into blocks and rounding their offset/size down/up to sector
boundaries.

We now decide on the block size. Many considerations come in to play:

9

+ theoretically, larger sizes are good due to economy of scale (less overhead per
transfer).

+ block length should be a multiple of the sector size (required for sector alignment
mentioned above).

− blocks should not be too large, or else decompression cannot be done in-cache.
That would result in bus accesses, which interfere with the DMA I/O operation.
Typical L2 cache sizes are 256 to 512KiB, which must cover the compressed
source and decompressed destination buffers.

− I/Os for large blocks may end up being split into several I/O requests; beyond that
point, there would be no advantage to increasing the block size. Background: PC
DMA requires physically contiguous memory, which cannot be guaranteed from
user programs because they only see virtual addresses. As a workaround, the
OS typically analyzes the buffer and makes a “scatter-gather list” out of it. This is
a list of contiguous regions (typically only one memory page due to fragmentation)
that constitute the buffer; the driver can DMA into them individually without having
to copy from a central DMA buffer. For concreteness, the Windows ASPI layer
has a limit of 64 KiB per transfer because its scatter-gather lists are stored in
non-paged pool, a memory region of limited size [3, page 6].

− in practice, there is no difference between aio read throughput for transfer sizes
between 4 and 192 KiB [12].

+ However, the aio queue depth (maximum number of concurrent I/Os that can be
queued by the OS) is system-dependent and should not be relied upon. There-
fore, it is better to avoid all too small blocks, because it may not be possible to
queue enough buffers to keep the disk continuously busy.

The result of these ruminations was a block size of 16 KiB. However, our measure-
ments have shown 32 KiB to be most efficient (see Section 2).

This concludes discussion of our I/O techniques. To review, I/Os are automatically
split into blocks (of aligned start position and length) and issued asynchronously. Once
a block finishes, it is decompressed while the next block I/O is in progress. Finally, seeks
are avoided by having arranged the files within an archive in order of access.

3.5 Caching

It’s not true that life is one damn thing after another; it is one damn thing
over and over. Edna St. Vincent Millay

The final step we take in optimizing I/O is caching. By keeping commonly used files
in memory, some repeated I/Os can be avoided outright.

There are two ‘levels’ of cache: entire files and blocks.
The small block cache serves to avoid overhead due to sector-aligning I/Os in trans-

fers. Since files usually start at unaligned offsets within archives, data lying at the
beginning of a sector would be read twice (once for the real I/O and then again during

10

the next file’s I/O). The block cache absorbs this cost by keeping in memory the last few
blocks read; it is organized as LRU.

The per-file caching strategy is due to the assumption that files will usually be loaded
in one burst; it simplifies bookkeeping and avoids having to copy pieces of the file into a
final buffer. Our file cache is a system consisting of the following components:

• an allocator doles out variable-sized chunks of a fixed-size memory region.

• the ‘extant list’ keeps track of which buffers are currently in use by the application.

• a cache manager provides efficient lookup of the file contents given filename and
decides which files to keep in memory.

We now explain these in detail.

3.5.1 Allocator

A general-purpose allocator (e.g. malloc) is not acceptable for this application because
file buffer addresses are required by Windows ReadFile to be aligned to a sector
boundary. Rounding up returned addresses would waste unacceptable amounts of
memory, so a special allocation scheme is needed that always returns aligned regions.

This entails not prefixing the allocated regions with a header. Our idea is to transfer
ownership of an allocated region from the allocator to cache and/or extant list; these
have to record region address and size anyway for their bookkeeping. When the region
is to be freed, the extant list informs the allocator of its size and address, which is
typically what a header would have stored.

Having now established the requirement for alignment and how to ensure it, we
discuss the main problem of an allocator: fragmentation. There are basically two ways
to deal with this: perform periodic reorganization, or prevent it from happening in the
first place.

The former is not feasible due to our real-time requirements, and — more impor-
tantly — because users receive direct pointers to the cache memory. This allows zero-
copy I/O and reduces memory footprint because multiple users of a file can share its
(read-only) contents. However, it is believed that currently in-use and therefore unmov-
able regions would severely hamper defragmentation. We therefore focus on the latter
approach.

With all pieces in places, we now discuss the allocation policy. As mentioned in Sec-
tion 2.2, Address-Ordered good-fit performs well. When freeing, we coalesce regions
immediately. This may perform unnecessary work, but is acceptable in light of its sim-
plicity. Allocation first exhausts all available memory before reusing freelist entries. This
is fine because the cache size is chosen such that it can and should be used in its en-
tirety. The benefit is reducing freelist splitting, which tends to produce larger coalesced
regions.

Note: in addition to policy, there is another approach to mitigating fragmentation. Its
root cause is freeing objects whose neighbors are not free. We attack this by allowing
for the application to pass hints as to buffer lifetimes, so that long-lived objects can be
placed differently and not cause ‘holes’ around freed short-lived objects.

11

Implementation Details A ‘good’ fit is achieved by searching in segregated freelists.
They are divided into size classes, where class i >= 0 holds regions of size (2i−1,2i].
Determining size class can be done by taking the base-2 logarithm of the size. If a
freelist is empty, the allocation can be satisfied by finding the next highest non-empty
class (O(1) due to bit scan) and splitting its first block.

Total allocation performance can be made O(1) by further splitting size classes
into fixed-size subclasses; this is the approach taken by [15]. However, we find that
freelists are typically empty anyway (because the cache is always as full as possible)
and therefore omit this for simplicity.

Coalescing works by storing boundary tags within the freed (!) memory. When
freeing a block, we check if the regions that come before and after it have such tags
(identified via distinctive bit patterns very likely to occur in normal data); if so, they are
merged. Note that this is somewhat risky but the ‘magic’ bit pattern is long enough to
make any mix-up extremely unlikely. This trouble is necessary because the tags cannot
be added to the beginning/end of a region due to alignment requirements.

For convenience, memory is doled out from a fixed-size chunk of virtual address
space, rather than separate on-demand allocations from the OS. This allows easily
checking whether a given pointer is valid and was taken from the chunk. Due to on-
demand committing of the virtual memory, only as much physical memory as necessary
is used.

3.5.2 Extant List

This list tracks all buffers that have been handed out to the application but not yet freed.
Since they are expected to be freed immediately (before allocating the next, which is
enforced by a warning), this list only contains a few entries and therefore need not be
organized as a tree.

It stores address and size of the allocated regions, which are passed to the allocator
when freeing a buffer. This avoids the need for per-region headers, as explained above.
An alternative would be providing a separate data structure associating allocated ad-
dress with its size, but this is redundant since many of these regions are also stored in
the cache. Therefore, our approach uses less memory.

3.5.3 Cache Manager

The cache manager is the heart of this system; it maps filenames to the file’s cached
contents and decides which ones to keep in memory. As mentioned in Section 2.1, we
use the Landlord algorithm for this purpose. See Figure 1 for pseudocode describing its
operation.

The quoted steps can be adapted as desired to yield various other strategies that
Landlord generalizes (e.g. FWF, LRU).

We see that the naı̈ve version of this algorithm has a high memory access cost:
makeRoomFor involves two complete loops over all cached items (lines 9 and 11).

The first step towards mitigating this is to optimize the manager’s item container
(used to implement the filename-to-cached-file mapping) for good locality. An array-

12

Figure 1: Landlord Pseudocode

1 def access(item):
2 if cache.contains(item):
3 "increase item.credit"
4 else:
5 makeRoomFor(item)
6 cache.add(item)
7
8 def makeRoomFor(item):
9 minCreditDensity = min{cached item i} (i.credit / i.size)
10 while cache.remainingSize < item.size:
11 for_each i in cache: i.credit -= minCreditDensity * i.size
12 "remove any subset of items that have credit 0"

based hash table will perform much better than a tree whose elements are scattered
throughout memory.

We have developed several further improvements:

1. The costly divisions required to calculate credit density can be replaced with mul-
tiplying by the reciprocal. This trades less latency (4 vs. 20 cycles on Athlon XP
CPUs [2]) for increased memory use.

2. the two loops can be fused by calculating the next MCD (Minimum Credit Density)
value on the side. We therefore avoid iterating over all items twice, which is
especially important for large sets of items that do not fit in cache.

3. a priority queue can return and remove the MCD item in O(logN) time; the rent
that should be charged from all items can be accumulated and applied in batches.

The validity of this approach is not immediately clear. Landlord specifies decreas-
ing all credit by MCD · item.size and removing any subset of items with no credit
remaining. By definition of MCD, at least one item will be removed, and this is
exactly the one returned by the priority queue.

Note that any pending charges must be committed before adding any items; oth-
erwise, they too would be charged during the next commit cycle, which would be
incorrect.

Implementation note: to avoid duplicating code, the priority queue is separate
from the filename-to-cached-file mapping. Since it is ordered by the item credit,
the queue must be re-sorted after an item is accessed, which increases its credit.
Due to limitations in the STL priority queue, this takes O(N) time on every
access. Since cache hits are fairly rare, time is still saved overall; however, this
bottleneck should be removed by substituting a heap implementation that allows
a O(logN) “sift” operation.

13

These improvements are made available as template policy classes and can there-
fore easily be enabled for applications where they provide a benefit.

We examine results of these optimizations in Section 4.5.
This concludes discussion of the cache. To recap, the small block cache absorbs

the cost of rounding I/Os up to block size boundaries. A file cache managed by the
Landlord algorithm caches the contents of entire files.

4 Experimental Results

4.1 System Information

The test system has the following specifications:
CPU Athlon XP 2400+ (2000 MHz)
Memory 768 MB DDR 2100 CL2.5
Chipset NForce2
HD Deskstar 7K250 (160 GB, PATA, 8 MB cache)5

OS Windows XP SP2
Compiler MS Visual C++ 7.1 (optimization flags “/Oxgb1y /G6”)

We now describe methodology and show results of several tests measuring perfor-
mance of our I/O library.

4.2 IO Throughput

4.2.1 Methodology

The basis for our I/O throughput measurement is a trace file recorded from the startup
of 0 A.D. encompassing ca. 500 file loads. Using the trace simulation feature described
above, we issue these I/Os as quickly as possible; this removes the influence of other
system-specific conditions such as graphics card performance etc.

What is actually measured is the total amount of time elapsed between start and end
of I/Os; this together with the amount of user data transferred yields effective throughput
(“effective” because it differs from the actual disk throughput due to compression).

This was chosen as the benchmark measure because it reflects real-world perfor-
mance of the entire system.

Note: if a cache is involved, we ensure it is empty so as not to skew results; in the
case of the OS file cache, testing takes place after a clean reboot.

4.2.2 Results and Discussion

We are interested in the total improvement yielded by our I/O library, as compared to
throughput reached by the bare OS-provided read API. According to the above mea-
sure, we see 29.3 MB/s vs. 2.96 MB/s, a staggering speedup of 990 %! We now exam-
ine which I/O techniques are chiefly responsible for these gains:

14

Leaving everything else the same but no longer compressing files stored in archives,
performance falls from 27.2 MB/s to 22.2 MB/s6. We are led to conclude that disk
throughput is a limiting factor; a good sign indicating seeks are not the bottleneck. Sec-
tion 4.3 will examine this in more detail.

As an aside, decompression performance indeed mirrors the previously quoted
100 MB/s figure; we observe 94.5 MB/s.

When archives are disabled entirely and I/O is from loose files (stored in the normal
filesystem), performance drops to 2.62 MB/s. The immediate conclusion is that reduced
locality (due to poor FS ordering and extra headers) induces many costly seeks. We
also notice that performance is worse than that measured for the synchronous API; this
could be explained by increased overhead of the aio APIs. Indeed, they do not support
the Windows FastIO driver entry points that avoid needing to build an I/O request packet.

Finally, we revisit the question of file block size. The initial choice of 16 KiB was not
optimal; based on the results given in Section 2, we choose a size of 32 KiB.

It is interesting that performance begins to falls off starting with 64 KiB blocks. An
explanation might be that transfers are split up due to the previously mentioned scatter-
gather list limit, but this is speculation.

In summary, we have found that bundling files into archives is the most worth-
while improvement, due to reducing seeks. Once these are eliminated, the increased
throughput afforded by the (free) data compression step contributes an additional 23 %
speedup.

4.3 Ordering Quality

The above result indirectly shows that storing files in archives manages to avoid numer-
ous seeks; else throughput would not be so high. We now examine exactly how many
are incurred, thus evaluating the quality of the archive ordering and its TSP heuristic.

To measure total seek impact, we must first define their cost. Short seeks may
actually be free because the HD controller has already read the target data into its
cache. Also, long seeks may be more expensive due to physical limitations of the disk
head (it must accelerate/decelerate to/from maximum velocity and then settle on the
target track).

A good model for this would be a constant overhead plus cost proportional to the
seek distance, plus rotational latency. However, this is quite disk-dependent and difficult
to determine. For simplicity, we currently assume uniform cost and try to avoid all seeks.

Our first step in measuring them is to record a trace of three different 0 A.D. startup
sequences, each loading a separate map (which share some files but differ in others,
e.g. environment textures). This large trace consisting of some 2300 loads is used to
guide creation of an archive. We then count the seeks incurred by each of the individual
sequences - this is easily done in our code by comparing current I/O file and offset with
the last known values.

6This measure differs from the peak performance listed above in that file block size was not yet the optimal
value.

15

Figure 2: Effect of Block Size on I/O Throughput

Block Size [KiB] Throughput [MB/s]
4 23.7

16 27.2
32 29.3
64 29.1
128 23.3

16

For the combined trace, no seeks are observed7. This is as expected because the
archive was specifically ordered for that sequence.

The individual “Cantabrian Highlands” and “Neareastern” map sequences incur only
49 (9.4 % of total I/O requests) and 60 (10.6 %) seeks, respectively. It may come as
a surprise that subsequences of the trace incur seeks, while the whole does not. The
explanation is that our file cache also serves to avoid seeks8.

These positive results justify our decision to use a heuristic to approximate TSP.
Because the access patterns induced by separate maps differ widely, insisting on an
optimal ordering for one particular pattern does not make sense. Instead, this heuristic
produces good results for a variety of maps.

4.4 Caching Efficacy

We now appraise the effectiveness of the cache replacement policy, i.e. its tendency
to keep files in memory that will be needed later. To measure this, we simulate cache
operation over the combined trace mentioned above. It comprises 57 MB of data, of
which 14 are repeated and therefore potentially cacheable.

Since the 0 A.D. dataset is as yet relatively small (real-world cache sizes may well
be larger), we have artificially limited the cache size to ensure that items will have to
be evicted from the cache. Without this action, the cache replacement policy would be
irrelevant. A size of 10 MB has been chosen arbitrarily; its impact on cache performance
will be studied below.

We first evaluate the well-known LRU algorithm under these conditions. The cache
hit rate is determined to be 19 % (473 hits totaling 6.18 MB vs. 1915 misses totaling
51.22 MB). Our Landlord implementation more than doubles this to 39 % (945 hits
totaling 8.88 MB vs. 1443 misses totaling 48.52 MB). A more intuitive view of these
numbers is that the percentage of non-compulsory misses (i.e. files that were evicted
but needed later) drops from 26 % to 2 %.

We are pleasantly surprised by this favorable result. Since our implementation does
not yet take advantage of file cost hints from the application, the difference in perfor-
mance is due solely to the Landlord algorithm’s awareness of item size. This apparently
leads to more efficient handling of the cache memory: fewer files need be evicted to
make enough room for the next item. Another factor is that the repeated files in this
trace are spaced widely apart (e.g. at the start of each of the three map loads constitut-
ing the trace); LRU would tend to remove exactly these items.

4.4.1 Effect of Cache Size

One question that remains is whether our arbitrarily chosen cache limit affects the re-
sults in an untoward fashion. To gauge this, we repeat the above measurements for

7We have excluded 4 unavoidable seeks that are unrelated to the archive ordering, namely 1 during the
course of opening the Zip file (reading ECDR and then Central Directory) and 3 due to files that cannot be
added to an archive.

8To see this, consider the following simple example: trace = ABACAD, optimal ordering = ABCD. For the
entire trace, the file cache will absorb the latter two A accesses, whereas the subsequences AC and AD each
incur a seek.

17

Figure 3: Effect of Cache Size Restriction

various cache sizes; the percentage of non-compulsory misses reflects the influence of
the cache size (see Figure 3).

The result is as expected: non-compulsory misses decrease as the cache size limit
approaches the size of the potentially cacheable data. The arbitrarily chosen 10 MiB is
a good compromise: it forces some data to be evicted from the cache, but is not such a
severe constraint that the cache is of no benefit.

One further result of this cache limit is a change in the number of seeks measured.
Due to the interdependency mentioned in Section 4.3, seeks increase to 14 % of all files
when the 10 MiB limit is in place.

4.5 Cache Manager Optimizations

Of further theoretical and practical interest is how much improvement the various Land-
lord algorithm optimizations yield.

Accounting CPU cost is done as follows. First, external influences are minimized by
running at highest scheduler priority. Several thousand iterations of the target code are
run while measuring elapsed time via high-resolution timer (precise to 1 CPU clock!).
Each of these iterations performs an operation (e.g. allocate or free) chosen randomly;
this avoids measuring characteristics that are specific to a given trace. Note, however,
that we control the random distribution (in the example, ratio of “allocate” to “free” oper-
ations); these are weighted towards the most frequent and important operations.

The first result is that with the naı̈ve Landlord implementation, dividing via multiplying

18

by reciprocal is actually 1.4 % slower! This is likely because the additional storage
required for the reciprocal breaks the nice cache-friendly 16 byte element size. Since
this algorithm iterates over all items twice, the memory access cost weighs more heavily
than a few extra CPU cycles spent dividing.

Next, we find that the Landlord Cached strategy (recall that it calculates minimum
credit density while updating and therefore often avoids needing to iterate over all items)
performs 21 % faster. However, its divide-via-reciprocal variant is again slower - this
time by 0.6 %. We see that iterating less often increases the benefit from the reciprocal
divider.

The final variant is Landlord Lazy (which uses a priority queue to find the least
valuable item in O(logN) and thus avoids iterating over all items when wanting to re-
move one from the cache). It performs 19 % better than baseline — slightly slower than
the previous variant. Note that this result is heavily dependent on the relative frequency
of cache add and remove operations: since the former require iteration over all items
(to ‘commit’ a previous pending charge), decreasing their number from the current (and
quite arbitrary) 70 % will cause this implementation to come out far ahead. Applying the
reciprocal divider results in further gains of 0.8 %. Since we rarely iterate over all items
here, the increase in size is outweighed by the faster division.

To conclude this section, we find that Landlord Cached performs best in the current
benchmark. Since it is less complex and requires less memory than the possibly faster
Landlord Lazy strategy, it is chosen as the default. However, the implementation via
template policy classes allows easily switching strategies in applications where results
differ.

4.6 Allocator Fragmentation

The important question of allocator fragmentation is next. We gauge it in the course of
simulating the previous 500-file trace. A simple and adequate measure is to compare
the total requested size with how much of the total file cache is actually occupied. The
result is a total memory waste of 12 %, which is in line with the findings of [14]. While
not great, this is acceptable.

5 Conclusion

Waiting for slow I/O is the bane of many a computer user; we have shown that this need
not be and can be mitigated to a large degree.

A method for fast I/O has been presented and analyzed. The main contribution is
a combination of techniques that greatly improves effective I/O throughput. By caching
file contents, we can avoid repetitive I/Os; placing files in archives arranged in order of
access reduces costly seeks. Asynchronous access maximizes read throughput and
(together with block-splitting) allows the data to be compressed, which reduces the
amount that must be read. The end result is a measured speedup of nearly 1000 %
in the target application, which is expected to apply widely due to inefficient filesystems.

Of further interest are optimizations made to the memory allocation and cache man-
agement algorithms. They respectively allow returning aligned file buffers (required

19

by the aio implementation) without serious fragmentation and reduce CPU cost of the
cache manager by 20 %.

Other applications can build on our work and easily speed up their load times and
file accesses.

5.1 Implementation

Our I/O code has been developed in C++ and also contains a few time-critical assembly
language subroutines. It encompasses ca. 12 KLOC9, about 60 % of which is new; the
rest was built upon previous work. Unfortunately there are dependencies on another
30 KLOC, so releasing and integrating into other applications is not as easy as it could
be; this is being worked upon. Eventually releasing the code under the GNU General
Public License (Free Software) is planned.

5.2 Lessons Learned

Experience is what you get when you don’t get what you want.
Dan Stanford

Despite application of Software Engineering best-practices such as careful modular-
ization, built-in self tests and pre/postcondition guards, the defect rate was unpleasantly
high. This may be the norm for low-level C++ codebases of the above size, but was
a problem given that file loading is a critical part of the application. The takeaway is
that more self-tests and condition checking can be recommended unreservedly - they
exposed many bugs.

The trace functionality (recording all I/Os) was found to be quite valuable. Besides
its immediate application of ordering files, it allows testing I/O performance under re-
peatable conditions and reproducing bugs.

On a final positive note, much room for improvement was to be had with I/O! The
gains achieved were surprising.

5.3 Future Directions

We have further ideas for improvement that could not yet be implemented due to time
constraints.

Prefetching, i.e. reading data before it is needed (during idle time), shows promise.
While requiring more work and tighter integration with the application, this can improve
performance by always keeping the hard disk busy. The downsides that must be miti-
gated are increased power usage and potentially interfering with time-critical I/Os.

Currently, the main bit of ‘intelligence’ is offline and consists of finding a good or-
dering for files within an archive. We would like to bring more of this into real time and
e.g. make decisions in the file cache based on predicted future behavior. In particular,
small files known to be accessed after one another could be removed from the file cache

9Kilo Lines Of Code.

20

together, thus freeing up more space (meaning less fragmentation) without hurting per-
formance (because one file not in cache will force reading the block in which it is stored,
anyway).

Two approaches are envisaged that could realize these wishes. A Markov chain
could be constructed and used to decide the probability of certain I/Os coming after one
another. Also, previous traces could be examined at runtime to determine where in the
load sequence we are, thus predicting further I/Os.

Stay tuned!

References

[1] 0 A.D. http://www.wildfiregames.com/0ad.

[2] AMD Athlon Processor x86 Code Optimization Guide. http://www.amd.com/
us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf.

[3] ASPI Frequently Asked Questions. http://www.eetkorea.com/ARTICLES/
2000APR/2000APR05_CT_ID_AN.PDF.

[4] DIMACS TSP challenge. http://public.research.att.com/˜dsj/chtsp/.

[5] IDE/ATA Transfer Modes and Protocols. http://www.pcguide.com/ref/hdd/
if/ide/modes_PIO.htm.

[6] Least Patient Kid Ever. http://www.break.com/index/patiencechild.html.

[7] Ludicrous Speed Ahead. http://archive.gamespy.com/hardware/june02/
p45331/index2.shtm.

[8] RFC 1951. http://rfc.net/rfc1951.html.

[9] Storagereview.com’s Drive Performance Resource Center. http://www.
storagereview.com.

[10] Zip Application Note. http://www.pkware.com/business_and_developers/
developer/appnote/.

[11] J. Gray, E. Riedel, and C. van Ingen. A Study of Windows NT Sequential IO Per-
formance. Technical Report P117, Microsoft Research (MSR), September 1997.
http://research.microsoft.com/barc/Sequential_IO/default.htm.

[12] J. Gray, B. Worthington, and R. Horst. Windows 2000 Disk IO Performance, June
2000. http://research.microsoft.com/˜gray/papers/Win2K_IO_MSTR_
2000_55.pdf.

[13] S. Irani. Page Replacement with Multi-Size Pages and Applications to Web
Caching. Algorithmica, 33, 2002.

[14] M. Johnstone and P. Wilson. The Memory Fragmentation Problem: Solved? ACM
SIGPLAN Notices, 34, 1999.

21

[15] M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: A New Dynamic Memory
Allocator for Real-Time Systems. In Euromicro Conference on Real-Time Systems,
pages 79–86, 2004.

[16] D. Shmoys and D. Williamson. Analyzing the Held-Karp TSP Bound: a Monotonic-
ity Property with Application. Information Processing Letters, 37:281–285, 1991.

[17] D. Sleator and R. Tarjan. Amortized Efficiency of List Update and Paging Rules.
Communications of the ACM, 28, 1985.

[18] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic Storage Alloca-
tion: A Survey and Critical Review. In Proceedings of the International Sympo-
sium/Workshop on Memory Management, pages 1–116, 1995.

[19] N. Young. On-Line File Caching. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, pages 82–86, 1998.

22

